summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86TargetMachine.cpp
blob: 954d4f4ced6c1cba911f7c5bca7e541d5643d79b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// 
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//

#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Transforms/Scalar.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"

namespace {
  cl::opt<bool> PrintCode("print-machineinstrs",
			  cl::desc("Print generated machine code"));
  cl::opt<bool> NoPatternISel("disable-pattern-isel", cl::init(true),
                        cl::desc("Use the 'simple' X86 instruction selector"));
}

// allocateX86TargetMachine - Allocate and return a subclass of TargetMachine
// that implements the X86 backend.
//
TargetMachine *allocateX86TargetMachine(const Module &M) {
  return new X86TargetMachine(M);
}


/// X86TargetMachine ctor - Create an ILP32 architecture model
///
X86TargetMachine::X86TargetMachine(const Module &M)
  : TargetMachine("X86", true, 4, 4, 4, 4, 4),
    FrameInfo(TargetFrameInfo::StackGrowsDown, 8/*16 for SSE*/, 4) {
}


// addPassesToEmitAssembly - We currently use all of the same passes as the JIT
// does to emit statically compiled machine code.
bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM,
					       std::ostream &Out) {
  // FIXME: Implement the switch instruction in the instruction selector!
  PM.add(createLowerSwitchPass());

  // FIXME: Implement the invoke/unwind instructions!
  PM.add(createLowerInvokePass());

  // FIXME: The code generator does not properly handle functions with
  // unreachable basic blocks.
  PM.add(createCFGSimplificationPass());

  if (NoPatternISel)
    PM.add(createX86SimpleInstructionSelector(*this));
  else
    PM.add(createX86PatternInstructionSelector(*this));

  // TODO: optional optimizations go here

  // FIXME: Add SSA based peephole optimizer here.

  // Print the instruction selected machine code...
  if (PrintCode)
    PM.add(createMachineFunctionPrinterPass());

  // Perform register allocation to convert to a concrete x86 representation
  PM.add(createRegisterAllocator());

  if (PrintCode)
    PM.add(createMachineFunctionPrinterPass());

  PM.add(createX86FloatingPointStackifierPass());

  if (PrintCode)
    PM.add(createMachineFunctionPrinterPass());

  // Insert prolog/epilog code.  Eliminate abstract frame index references...
  PM.add(createPrologEpilogCodeInserter());

  PM.add(createX86PeepholeOptimizerPass());

  if (PrintCode)  // Print the register-allocated code
    PM.add(createX86CodePrinterPass(std::cerr, *this));

  PM.add(createX86CodePrinterPass(Out, *this));
  return false; // success!
}

/// addPassesToJITCompile - Add passes to the specified pass manager to
/// implement a fast dynamic compiler for this target.  Return true if this is
/// not supported for this target.
///
bool X86TargetMachine::addPassesToJITCompile(FunctionPassManager &PM) {
  // FIXME: Implement the switch instruction in the instruction selector!
  PM.add(createLowerSwitchPass());

  // FIXME: Implement the invoke/unwind instructions!
  PM.add(createLowerInvokePass());

  // FIXME: The code generator does not properly handle functions with
  // unreachable basic blocks.
  PM.add(createCFGSimplificationPass());

  if (NoPatternISel)
    PM.add(createX86SimpleInstructionSelector(*this));
  else
    PM.add(createX86PatternInstructionSelector(*this));

  // TODO: optional optimizations go here

  // FIXME: Add SSA based peephole optimizer here.

  // Print the instruction selected machine code...
  if (PrintCode)
    PM.add(createMachineFunctionPrinterPass());

  // Perform register allocation to convert to a concrete x86 representation
  PM.add(createRegisterAllocator());

  if (PrintCode)
    PM.add(createMachineFunctionPrinterPass());

  PM.add(createX86FloatingPointStackifierPass());

  if (PrintCode)
    PM.add(createMachineFunctionPrinterPass());

  // Insert prolog/epilog code.  Eliminate abstract frame index references...
  PM.add(createPrologEpilogCodeInserter());

  PM.add(createX86PeepholeOptimizerPass());

  if (PrintCode)  // Print the register-allocated code
    PM.add(createX86CodePrinterPass(std::cerr, *this));
  return false; // success!
}

void X86TargetMachine::replaceMachineCodeForFunction (void *Old, void *New) {
  // FIXME: This code could perhaps live in a more appropriate place.
  char *OldByte = (char *) Old;
  *OldByte++ = 0xE9;                // Emit JMP opcode.
  int32_t *OldWord = (int32_t *) OldByte;
  int32_t NewAddr = (intptr_t) New;
  int32_t OldAddr = (intptr_t) OldWord;
  *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
}