summaryrefslogtreecommitdiff
path: root/lib/Transforms/ExprTypeConvert.cpp
blob: 779e23c1992685c5bbf8ec8e93dd3f562ff55162 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
//===- ExprTypeConvert.cpp - Code to change an LLVM Expr Type -------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the part of level raising that checks to see if it is
// possible to coerce an entire expression tree into a different type.  If
// convertible, other routines from this file will do the conversion.
//
//===----------------------------------------------------------------------===//

#include "TransformInternals.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;

static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
                                     ValueTypeCache &ConvertedTypes,
                                     const TargetData &TD);

static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
                                 ValueMapCache &VMC, const TargetData &TD);

// Peephole Malloc instructions: we take a look at the use chain of the
// malloc instruction, and try to find out if the following conditions hold:
//   1. The malloc is of the form: 'malloc [sbyte], uint <constant>'
//   2. The only users of the malloc are cast & add instructions
//   3. Of the cast instructions, there is only one destination pointer type
//      [RTy] where the size of the pointed to object is equal to the number
//      of bytes allocated.
//
// If these conditions hold, we convert the malloc to allocate an [RTy]
// element.  TODO: This comment is out of date WRT arrays
//
static bool MallocConvertibleToType(MallocInst *MI, const Type *Ty,
                                    ValueTypeCache &CTMap,
                                    const TargetData &TD) {
  if (!isa<PointerType>(Ty)) return false;   // Malloc always returns pointers

  // Deal with the type to allocate, not the pointer type...
  Ty = cast<PointerType>(Ty)->getElementType();
  if (!Ty->isSized()) return false;      // Can only alloc something with a size

  // Analyze the number of bytes allocated...
  ExprType Expr = ClassifyExpr(MI->getArraySize());

  // Get information about the base datatype being allocated, before & after
  int ReqTypeSize = TD.getTypeSize(Ty);
  if (ReqTypeSize == 0) return false;
  unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());

  // Must have a scale or offset to analyze it...
  if (!Expr.Offset && !Expr.Scale && OldTypeSize == 1) return false;

  // Get the offset and scale of the allocation...
  int64_t OffsetVal = Expr.Offset ? getConstantValue(Expr.Offset) : 0;
  int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) :(Expr.Var != 0);

  // The old type might not be of unit size, take old size into consideration
  // here...
  int64_t Offset = OffsetVal * OldTypeSize;
  int64_t Scale  = ScaleVal  * OldTypeSize;
  
  // In order to be successful, both the scale and the offset must be a multiple
  // of the requested data type's size.
  //
  if (Offset/ReqTypeSize*ReqTypeSize != Offset ||
      Scale/ReqTypeSize*ReqTypeSize != Scale)
    return false;   // Nope.

  return true;
}

static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
                                        const std::string &Name,
                                        ValueMapCache &VMC,
                                        const TargetData &TD){
  BasicBlock *BB = MI->getParent();
  BasicBlock::iterator It = BB->end();

  // Analyze the number of bytes allocated...
  ExprType Expr = ClassifyExpr(MI->getArraySize());

  const PointerType *AllocTy = cast<PointerType>(Ty);
  const Type *ElType = AllocTy->getElementType();

  unsigned DataSize = TD.getTypeSize(ElType);
  unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());

  // Get the offset and scale coefficients that we are allocating...
  int64_t OffsetVal = (Expr.Offset ? getConstantValue(Expr.Offset) : 0);
  int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) : (Expr.Var !=0);

  // The old type might not be of unit size, take old size into consideration
  // here...
  unsigned Offset = (uint64_t)OffsetVal * OldTypeSize / DataSize;
  unsigned Scale  = (uint64_t)ScaleVal  * OldTypeSize / DataSize;

  // Locate the malloc instruction, because we may be inserting instructions
  It = MI;

  // If we have a scale, apply it first...
  if (Expr.Var) {
    // Expr.Var is not necessarily unsigned right now, insert a cast now.
    if (Expr.Var->getType() != Type::UIntTy)
      Expr.Var = new CastInst(Expr.Var, Type::UIntTy,
                              Expr.Var->getName()+"-uint", It);

    if (Scale != 1)
      Expr.Var = BinaryOperator::create(Instruction::Mul, Expr.Var,
                                        ConstantUInt::get(Type::UIntTy, Scale),
                                        Expr.Var->getName()+"-scl", It);

  } else {
    // If we are not scaling anything, just make the offset be the "var"...
    Expr.Var = ConstantUInt::get(Type::UIntTy, Offset);
    Offset = 0; Scale = 1;
  }

  // If we have an offset now, add it in...
  if (Offset != 0) {
    assert(Expr.Var && "Var must be nonnull by now!");
    Expr.Var = BinaryOperator::create(Instruction::Add, Expr.Var,
                                      ConstantUInt::get(Type::UIntTy, Offset),
                                      Expr.Var->getName()+"-off", It);
  }

  assert(AllocTy == Ty);
  return new MallocInst(AllocTy->getElementType(), Expr.Var, Name);
}


// ExpressionConvertibleToType - Return true if it is possible
bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty,
                                 ValueTypeCache &CTMap, const TargetData &TD) {
  // Expression type must be holdable in a register.
  if (!Ty->isFirstClassType())
    return false;
  
  ValueTypeCache::iterator CTMI = CTMap.find(V);
  if (CTMI != CTMap.end()) return CTMI->second == Ty;

  // If it's a constant... all constants can be converted to a different
  // type.
  //
  if (isa<Constant>(V) && !isa<GlobalValue>(V))
    return true;
  
  CTMap[V] = Ty;
  if (V->getType() == Ty) return true;  // Expression already correct type!

  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) return false;              // Otherwise, we can't convert!

  switch (I->getOpcode()) {
  case Instruction::Cast:
    // We can convert the expr if the cast destination type is losslessly
    // convertible to the requested type.
    if (!Ty->isLosslesslyConvertibleTo(I->getType())) return false;

    // We also do not allow conversion of a cast that casts from a ptr to array
    // of X to a *X.  For example: cast [4 x %List *] * %val to %List * *
    //
    if (const PointerType *SPT = 
        dyn_cast<PointerType>(I->getOperand(0)->getType()))
      if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
        if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
          if (AT->getElementType() == DPT->getElementType())
            return false;
    break;

  case Instruction::Add:
  case Instruction::Sub:
    if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
    if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD) ||
        !ExpressionConvertibleToType(I->getOperand(1), Ty, CTMap, TD))
      return false;
    break;
  case Instruction::Shr:
    if (!Ty->isInteger()) return false;
    if (Ty->isSigned() != V->getType()->isSigned()) return false;
    // FALL THROUGH
  case Instruction::Shl:
    if (!Ty->isInteger()) return false;
    if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD))
      return false;
    break;

  case Instruction::Load: {
    LoadInst *LI = cast<LoadInst>(I);
    if (!ExpressionConvertibleToType(LI->getPointerOperand(),
                                     PointerType::get(Ty), CTMap, TD))
      return false;
    break;                                     
  }
  case Instruction::PHI: {
    PHINode *PN = cast<PHINode>(I);
    // Be conservative if we find a giant PHI node.
    if (PN->getNumIncomingValues() > 32) return false;

    for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
      if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
        return false;
    break;
  }

  case Instruction::Malloc:
    if (!MallocConvertibleToType(cast<MallocInst>(I), Ty, CTMap, TD))
      return false;
    break;

  case Instruction::GetElementPtr: {
    // GetElementPtr's are directly convertible to a pointer type if they have
    // a number of zeros at the end.  Because removing these values does not
    // change the logical offset of the GEP, it is okay and fair to remove them.
    // This can change this:
    //   %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0  ; <%List **>
    //   %t2 = cast %List * * %t1 to %List *
    // into
    //   %t2 = getelementptr %Hosp * %hosp, ubyte 4           ; <%List *>
    // 
    GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
    const PointerType *PTy = dyn_cast<PointerType>(Ty);
    if (!PTy) return false;  // GEP must always return a pointer...
    const Type *PVTy = PTy->getElementType();

    // Check to see if there are zero elements that we can remove from the
    // index array.  If there are, check to see if removing them causes us to
    // get to the right type...
    //
    std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
    const Type *BaseType = GEP->getPointerOperand()->getType();
    const Type *ElTy = 0;

    while (!Indices.empty() &&
           Indices.back() == Constant::getNullValue(Indices.back()->getType())){
      Indices.pop_back();
      ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, true);
      if (ElTy == PVTy)
        break;  // Found a match!!
      ElTy = 0;
    }

    if (ElTy) break;   // Found a number of zeros we can strip off!

    // Otherwise, we can convert a GEP from one form to the other iff the
    // current gep is of the form 'getelementptr sbyte*, long N
    // and we could convert this to an appropriate GEP for the new type.
    //
    if (GEP->getNumOperands() == 2 &&
        GEP->getType() == PointerType::get(Type::SByteTy)) {

      // Do not Check to see if our incoming pointer can be converted
      // to be a ptr to an array of the right type... because in more cases than
      // not, it is simply not analyzable because of pointer/array
      // discrepancies.  To fix this, we will insert a cast before the GEP.
      //

      // Check to see if 'N' is an expression that can be converted to
      // the appropriate size... if so, allow it.
      //
      std::vector<Value*> Indices;
      const Type *ElTy = ConvertibleToGEP(PTy, I->getOperand(1), Indices, TD);
      if (ElTy == PVTy) {
        if (!ExpressionConvertibleToType(I->getOperand(0),
                                         PointerType::get(ElTy), CTMap, TD))
          return false;  // Can't continue, ExConToTy might have polluted set!
        break;
      }
    }

    // Otherwise, it could be that we have something like this:
    //     getelementptr [[sbyte] *] * %reg115, long %reg138    ; [sbyte]**
    // and want to convert it into something like this:
    //     getelemenptr [[int] *] * %reg115, long %reg138      ; [int]**
    //
    if (GEP->getNumOperands() == 2 && 
        PTy->getElementType()->isSized() &&
        TD.getTypeSize(PTy->getElementType()) == 
        TD.getTypeSize(GEP->getType()->getElementType())) {
      const PointerType *NewSrcTy = PointerType::get(PVTy);
      if (!ExpressionConvertibleToType(I->getOperand(0), NewSrcTy, CTMap, TD))
        return false;
      break;
    }

    return false;   // No match, maybe next time.
  }

  case Instruction::Call: {
    if (isa<Function>(I->getOperand(0)))
      return false;  // Don't even try to change direct calls.

    // If this is a function pointer, we can convert the return type if we can
    // convert the source function pointer.
    //
    const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
    const FunctionType *FT = cast<FunctionType>(PT->getElementType());
    std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
    const FunctionType *NewTy =
      FunctionType::get(Ty, ArgTys, FT->isVarArg());
    if (!ExpressionConvertibleToType(I->getOperand(0),
                                     PointerType::get(NewTy), CTMap, TD))
      return false;
    break;
  }
  default:
    return false;
  }

  // Expressions are only convertible if all of the users of the expression can
  // have this value converted.  This makes use of the map to avoid infinite
  // recursion.
  //
  for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It)
    if (!OperandConvertibleToType(*It, I, Ty, CTMap, TD))
      return false;

  return true;
}


Value *llvm::ConvertExpressionToType(Value *V, const Type *Ty, 
                                     ValueMapCache &VMC, const TargetData &TD) {
  if (V->getType() == Ty) return V;  // Already where we need to be?

  ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(V);
  if (VMCI != VMC.ExprMap.end()) {
    const Value *GV = VMCI->second;
    const Type *GTy = VMCI->second->getType();
    assert(VMCI->second->getType() == Ty);

    if (Instruction *I = dyn_cast<Instruction>(V))
      ValueHandle IHandle(VMC, I);  // Remove I if it is unused now!

    return VMCI->second;
  }

  DEBUG(std::cerr << "CETT: " << (void*)V << " " << *V);

  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) {
    Constant *CPV = cast<Constant>(V);
    // Constants are converted by constant folding the cast that is required.
    // We assume here that all casts are implemented for constant prop.
    Value *Result = ConstantExpr::getCast(CPV, Ty);
    // Add the instruction to the expression map
    //VMC.ExprMap[V] = Result;
    return Result;
  }


  BasicBlock *BB = I->getParent();
  std::string Name = I->getName();  if (!Name.empty()) I->setName("");
  Instruction *Res;     // Result of conversion

  ValueHandle IHandle(VMC, I);  // Prevent I from being removed!
  
  Constant *Dummy = Constant::getNullValue(Ty);

  switch (I->getOpcode()) {
  case Instruction::Cast:
    assert(VMC.NewCasts.count(ValueHandle(VMC, I)) == 0);
    Res = new CastInst(I->getOperand(0), Ty, Name);
    VMC.NewCasts.insert(ValueHandle(VMC, Res));
    break;
    
  case Instruction::Add:
  case Instruction::Sub:
    Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
                                 Dummy, Dummy, Name);
    VMC.ExprMap[I] = Res;   // Add node to expression eagerly

    Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
    Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), Ty, VMC, TD));
    break;

  case Instruction::Shl:
  case Instruction::Shr:
    Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), Dummy,
                        I->getOperand(1), Name);
    VMC.ExprMap[I] = Res;
    Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
    break;

  case Instruction::Load: {
    LoadInst *LI = cast<LoadInst>(I);

    Res = new LoadInst(Constant::getNullValue(PointerType::get(Ty)), Name);
    VMC.ExprMap[I] = Res;
    Res->setOperand(0, ConvertExpressionToType(LI->getPointerOperand(),
                                               PointerType::get(Ty), VMC, TD));
    assert(Res->getOperand(0)->getType() == PointerType::get(Ty));
    assert(Ty == Res->getType());
    assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
    break;
  }

  case Instruction::PHI: {
    PHINode *OldPN = cast<PHINode>(I);
    PHINode *NewPN = new PHINode(Ty, Name);

    VMC.ExprMap[I] = NewPN;   // Add node to expression eagerly
    while (OldPN->getNumOperands()) {
      BasicBlock *BB = OldPN->getIncomingBlock(0);
      Value *OldVal = OldPN->getIncomingValue(0);
      ValueHandle OldValHandle(VMC, OldVal);
      OldPN->removeIncomingValue(BB, false);
      Value *V = ConvertExpressionToType(OldVal, Ty, VMC, TD);
      NewPN->addIncoming(V, BB);
    }
    Res = NewPN;
    break;
  }

  case Instruction::Malloc: {
    Res = ConvertMallocToType(cast<MallocInst>(I), Ty, Name, VMC, TD);
    break;
  }

  case Instruction::GetElementPtr: {
    // GetElementPtr's are directly convertible to a pointer type if they have
    // a number of zeros at the end.  Because removing these values does not
    // change the logical offset of the GEP, it is okay and fair to remove them.
    // This can change this:
    //   %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0  ; <%List **>
    //   %t2 = cast %List * * %t1 to %List *
    // into
    //   %t2 = getelementptr %Hosp * %hosp, ubyte 4           ; <%List *>
    // 
    GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);

    // Check to see if there are zero elements that we can remove from the
    // index array.  If there are, check to see if removing them causes us to
    // get to the right type...
    //
    std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
    const Type *BaseType = GEP->getPointerOperand()->getType();
    const Type *PVTy = cast<PointerType>(Ty)->getElementType();
    Res = 0;
    while (!Indices.empty() &&
           Indices.back() == Constant::getNullValue(Indices.back()->getType())){
      Indices.pop_back();
      if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
        if (Indices.size() == 0)
          Res = new CastInst(GEP->getPointerOperand(), BaseType); // NOOP CAST
        else
          Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name);
        break;
      }
    }

    if (Res == 0 && GEP->getNumOperands() == 2 &&
        GEP->getType() == PointerType::get(Type::SByteTy)) {
      
      // Otherwise, we can convert a GEP from one form to the other iff the
      // current gep is of the form 'getelementptr sbyte*, unsigned N
      // and we could convert this to an appropriate GEP for the new type.
      //
      const PointerType *NewSrcTy = PointerType::get(PVTy);
      BasicBlock::iterator It = I;

      // Check to see if 'N' is an expression that can be converted to
      // the appropriate size... if so, allow it.
      //
      std::vector<Value*> Indices;
      const Type *ElTy = ConvertibleToGEP(NewSrcTy, I->getOperand(1),
                                          Indices, TD, &It);
      if (ElTy) {        
        assert(ElTy == PVTy && "Internal error, setup wrong!");
        Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy),
                                    Indices, Name);
        VMC.ExprMap[I] = Res;
        Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
                                                   NewSrcTy, VMC, TD));
      }
    }

    // Otherwise, it could be that we have something like this:
    //     getelementptr [[sbyte] *] * %reg115, uint %reg138    ; [sbyte]**
    // and want to convert it into something like this:
    //     getelemenptr [[int] *] * %reg115, uint %reg138      ; [int]**
    //
    if (Res == 0) {
      const PointerType *NewSrcTy = PointerType::get(PVTy);
      std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
      Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy),
                                  Indices, Name);
      VMC.ExprMap[I] = Res;
      Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
                                                 NewSrcTy, VMC, TD));
    }


    assert(Res && "Didn't find match!");
    break;
  }

  case Instruction::Call: {
    assert(!isa<Function>(I->getOperand(0)));

    // If this is a function pointer, we can convert the return type if we can
    // convert the source function pointer.
    //
    const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
    const FunctionType *FT = cast<FunctionType>(PT->getElementType());
    std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
    const FunctionType *NewTy =
      FunctionType::get(Ty, ArgTys, FT->isVarArg());
    const PointerType *NewPTy = PointerType::get(NewTy);
    if (Ty == Type::VoidTy)
      Name = "";  // Make sure not to name calls that now return void!

    Res = new CallInst(Constant::getNullValue(NewPTy),
                       std::vector<Value*>(I->op_begin()+1, I->op_end()),
                       Name);
    VMC.ExprMap[I] = Res;
    Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),NewPTy,VMC,TD));
    break;
  }
  default:
    assert(0 && "Expression convertible, but don't know how to convert?");
    return 0;
  }

  assert(Res->getType() == Ty && "Didn't convert expr to correct type!");

  BB->getInstList().insert(I, Res);

  // Add the instruction to the expression map
  VMC.ExprMap[I] = Res;


  unsigned NumUses = I->use_size();
  for (unsigned It = 0; It < NumUses; ) {
    unsigned OldSize = NumUses;
    Value::use_iterator UI = I->use_begin();
    std::advance(UI, It);
    ConvertOperandToType(*UI, I, Res, VMC, TD);
    NumUses = I->use_size();
    if (NumUses == OldSize) ++It;
  }

  DEBUG(std::cerr << "ExpIn: " << (void*)I << " " << *I
                  << "ExpOut: " << (void*)Res << " " << *Res);

  return Res;
}



// ValueConvertibleToType - Return true if it is possible
bool llvm::ValueConvertibleToType(Value *V, const Type *Ty,
                                  ValueTypeCache &ConvertedTypes,
                                  const TargetData &TD) {
  ValueTypeCache::iterator I = ConvertedTypes.find(V);
  if (I != ConvertedTypes.end()) return I->second == Ty;
  ConvertedTypes[V] = Ty;

  // It is safe to convert the specified value to the specified type IFF all of
  // the uses of the value can be converted to accept the new typed value.
  //
  if (V->getType() != Ty) {
    for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
      if (!OperandConvertibleToType(*I, V, Ty, ConvertedTypes, TD))
        return false;
  }

  return true;
}





// OperandConvertibleToType - Return true if it is possible to convert operand
// V of User (instruction) U to the specified type.  This is true iff it is
// possible to change the specified instruction to accept this.  CTMap is a map
// of converted types, so that circular definitions will see the future type of
// the expression, not the static current type.
//
static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
                                     ValueTypeCache &CTMap,
                                     const TargetData &TD) {
  //  if (V->getType() == Ty) return true;   // Operand already the right type?

  // Expression type must be holdable in a register.
  if (!Ty->isFirstClassType())
    return false;

  Instruction *I = dyn_cast<Instruction>(U);
  if (I == 0) return false;              // We can't convert!

  switch (I->getOpcode()) {
  case Instruction::Cast:
    assert(I->getOperand(0) == V);
    // We can convert the expr if the cast destination type is losslessly
    // convertible to the requested type.
    // Also, do not change a cast that is a noop cast.  For all intents and
    // purposes it should be eliminated.
    if (!Ty->isLosslesslyConvertibleTo(I->getOperand(0)->getType()) ||
        I->getType() == I->getOperand(0)->getType())
      return false;

    // Do not allow a 'cast ushort %V to uint' to have it's first operand be
    // converted to a 'short' type.  Doing so changes the way sign promotion
    // happens, and breaks things.  Only allow the cast to take place if the
    // signedness doesn't change... or if the current cast is not a lossy
    // conversion.
    //
    if (!I->getType()->isLosslesslyConvertibleTo(I->getOperand(0)->getType()) &&
        I->getOperand(0)->getType()->isSigned() != Ty->isSigned())
      return false;

    // We also do not allow conversion of a cast that casts from a ptr to array
    // of X to a *X.  For example: cast [4 x %List *] * %val to %List * *
    //
    if (const PointerType *SPT = 
        dyn_cast<PointerType>(I->getOperand(0)->getType()))
      if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
        if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
          if (AT->getElementType() == DPT->getElementType())
            return false;
    return true;

  case Instruction::Add:
    if (isa<PointerType>(Ty)) {
      Value *IndexVal = I->getOperand(V == I->getOperand(0) ? 1 : 0);
      std::vector<Value*> Indices;
      if (const Type *ETy = ConvertibleToGEP(Ty, IndexVal, Indices, TD)) {
        const Type *RetTy = PointerType::get(ETy);

        // Only successful if we can convert this type to the required type
        if (ValueConvertibleToType(I, RetTy, CTMap, TD)) {
          CTMap[I] = RetTy;
          return true;
        }
        // We have to return failure here because ValueConvertibleToType could 
        // have polluted our map
        return false;
      }
    }
    // FALLTHROUGH
  case Instruction::Sub: {
    if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;

    Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
    return ValueConvertibleToType(I, Ty, CTMap, TD) &&
           ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
  }
  case Instruction::SetEQ:
  case Instruction::SetNE: {
    Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
    return ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
  }
  case Instruction::Shr:
    if (Ty->isSigned() != V->getType()->isSigned()) return false;
    // FALL THROUGH
  case Instruction::Shl:
    if (I->getOperand(1) == V) return false;  // Cannot change shift amount type
    if (!Ty->isInteger()) return false;
    return ValueConvertibleToType(I, Ty, CTMap, TD);

  case Instruction::Free:
    assert(I->getOperand(0) == V);
    return isa<PointerType>(Ty);    // Free can free any pointer type!

  case Instruction::Load:
    // Cannot convert the types of any subscripts...
    if (I->getOperand(0) != V) return false;

    if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
      LoadInst *LI = cast<LoadInst>(I);
      
      const Type *LoadedTy = PT->getElementType();

      // They could be loading the first element of a composite type...
      if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
        unsigned Offset = 0;     // No offset, get first leaf.
        std::vector<Value*> Indices;  // Discarded...
        LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
        assert(Offset == 0 && "Offset changed from zero???");
      }

      if (!LoadedTy->isFirstClassType())
        return false;

      if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType()))
        return false;

      return ValueConvertibleToType(LI, LoadedTy, CTMap, TD);
    }
    return false;

  case Instruction::Store: {
    StoreInst *SI = cast<StoreInst>(I);

    if (V == I->getOperand(0)) {
      ValueTypeCache::iterator CTMI = CTMap.find(I->getOperand(1));
      if (CTMI != CTMap.end()) {   // Operand #1 is in the table already?
        // If so, check to see if it's Ty*, or, more importantly, if it is a
        // pointer to a structure where the first element is a Ty... this code
        // is necessary because we might be trying to change the source and
        // destination type of the store (they might be related) and the dest
        // pointer type might be a pointer to structure.  Below we allow pointer
        // to structures where the 0th element is compatible with the value,
        // now we have to support the symmetrical part of this.
        //
        const Type *ElTy = cast<PointerType>(CTMI->second)->getElementType();

        // Already a pointer to what we want?  Trivially accept...
        if (ElTy == Ty) return true;

        // Tricky case now, if the destination is a pointer to structure,
        // obviously the source is not allowed to be a structure (cannot copy
        // a whole structure at a time), so the level raiser must be trying to
        // store into the first field.  Check for this and allow it now:
        //
        if (const StructType *SElTy = dyn_cast<StructType>(ElTy)) {
          unsigned Offset = 0;
          std::vector<Value*> Indices;
          ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
          assert(Offset == 0 && "Offset changed!");
          if (ElTy == 0)    // Element at offset zero in struct doesn't exist!
            return false;   // Can only happen for {}*
          
          if (ElTy == Ty)   // Looks like the 0th element of structure is
            return true;    // compatible!  Accept now!

          // Otherwise we know that we can't work, so just stop trying now.
          return false;
        }
      }

      // Can convert the store if we can convert the pointer operand to match
      // the new  value type...
      return ExpressionConvertibleToType(I->getOperand(1), PointerType::get(Ty),
                                         CTMap, TD);
    } else if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
      const Type *ElTy = PT->getElementType();
      assert(V == I->getOperand(1));

      if (isa<StructType>(ElTy)) {
        // We can change the destination pointer if we can store our first
        // argument into the first element of the structure...
        //
        unsigned Offset = 0;
        std::vector<Value*> Indices;
        ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
        assert(Offset == 0 && "Offset changed!");
        if (ElTy == 0)    // Element at offset zero in struct doesn't exist!
          return false;   // Can only happen for {}*
      }

      // Must move the same amount of data...
      if (!ElTy->isSized() || 
          TD.getTypeSize(ElTy) != TD.getTypeSize(I->getOperand(0)->getType()))
        return false;

      // Can convert store if the incoming value is convertible and if the
      // result will preserve semantics...
      const Type *Op0Ty = I->getOperand(0)->getType();
      if (!(Op0Ty->isIntegral() ^ ElTy->isIntegral()) &&
          !(Op0Ty->isFloatingPoint() ^ ElTy->isFloatingPoint()))
        return ExpressionConvertibleToType(I->getOperand(0), ElTy, CTMap, TD);
    }
    return false;
  }

  case Instruction::GetElementPtr:
    if (V != I->getOperand(0) || !isa<PointerType>(Ty)) return false;

    // If we have a two operand form of getelementptr, this is really little
    // more than a simple addition.  As with addition, check to see if the
    // getelementptr instruction can be changed to index into the new type.
    //
    if (I->getNumOperands() == 2) {
      const Type *OldElTy = cast<PointerType>(I->getType())->getElementType();
      unsigned DataSize = TD.getTypeSize(OldElTy);
      Value *Index = I->getOperand(1);
      Instruction *TempScale = 0;

      // If the old data element is not unit sized, we have to create a scale
      // instruction so that ConvertibleToGEP will know the REAL amount we are
      // indexing by.  Note that this is never inserted into the instruction
      // stream, so we have to delete it when we're done.
      //
      if (DataSize != 1) {
        Value *CST;
        if (Index->getType()->isSigned())
          CST = ConstantSInt::get(Index->getType(), DataSize);
        else
          CST = ConstantUInt::get(Index->getType(), DataSize);
                                  
        TempScale = BinaryOperator::create(Instruction::Mul, Index, CST);
        Index = TempScale;
      }

      // Check to see if the second argument is an expression that can
      // be converted to the appropriate size... if so, allow it.
      //
      std::vector<Value*> Indices;
      const Type *ElTy = ConvertibleToGEP(Ty, Index, Indices, TD);
      delete TempScale;   // Free our temporary multiply if we made it

      if (ElTy == 0) return false;  // Cannot make conversion...
      return ValueConvertibleToType(I, PointerType::get(ElTy), CTMap, TD);
    }
    return false;

  case Instruction::PHI: {
    PHINode *PN = cast<PHINode>(I);
    // Be conservative if we find a giant PHI node.
    if (PN->getNumIncomingValues() > 32) return false;

    for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
      if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
        return false;
    return ValueConvertibleToType(PN, Ty, CTMap, TD);
  }

  case Instruction::Call: {
    User::op_iterator OI = find(I->op_begin(), I->op_end(), V);
    assert (OI != I->op_end() && "Not using value!");
    unsigned OpNum = OI - I->op_begin();

    // Are we trying to change the function pointer value to a new type?
    if (OpNum == 0) {
      const PointerType *PTy = dyn_cast<PointerType>(Ty);
      if (PTy == 0) return false;  // Can't convert to a non-pointer type...
      const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
      if (FTy == 0) return false;  // Can't convert to a non ptr to function...

      // Do not allow converting to a call where all of the operands are ...'s
      if (FTy->getNumParams() == 0 && FTy->isVarArg())
        return false;              // Do not permit this conversion!

      // Perform sanity checks to make sure that new function type has the
      // correct number of arguments...
      //
      unsigned NumArgs = I->getNumOperands()-1;  // Don't include function ptr

      // Cannot convert to a type that requires more fixed arguments than
      // the call provides...
      //
      if (NumArgs < FTy->getNumParams()) return false;
      
      // Unless this is a vararg function type, we cannot provide more arguments
      // than are desired...
      //
      if (!FTy->isVarArg() && NumArgs > FTy->getNumParams())
        return false;

      // Okay, at this point, we know that the call and the function type match
      // number of arguments.  Now we see if we can convert the arguments
      // themselves.  Note that we do not require operands to be convertible,
      // we can insert casts if they are convertible but not compatible.  The
      // reason for this is that we prefer to have resolved functions but casted
      // arguments if possible.
      //
      for (unsigned i = 0, NA = FTy->getNumParams(); i < NA; ++i)
        if (!FTy->getParamType(i)->isLosslesslyConvertibleTo(I->getOperand(i+1)->getType()))
          return false;   // Operands must have compatible types!

      // Okay, at this point, we know that all of the arguments can be
      // converted.  We succeed if we can change the return type if
      // necessary...
      //
      return ValueConvertibleToType(I, FTy->getReturnType(), CTMap, TD);
    }
    
    const PointerType *MPtr = cast<PointerType>(I->getOperand(0)->getType());
    const FunctionType *FTy = cast<FunctionType>(MPtr->getElementType());
    if (!FTy->isVarArg()) return false;

    if ((OpNum-1) < FTy->getNumParams())
      return false;  // It's not in the varargs section...

    // If we get this far, we know the value is in the varargs section of the
    // function!  We can convert if we don't reinterpret the value...
    //
    return Ty->isLosslesslyConvertibleTo(V->getType());
  }
  }
  return false;
}


void llvm::ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC,
                                 const TargetData &TD) {
  ValueHandle VH(VMC, V);

  unsigned NumUses = V->use_size();
  for (unsigned It = 0; It < NumUses; ) {
    unsigned OldSize = NumUses;
    Value::use_iterator UI = V->use_begin();
    std::advance(UI, It);
    ConvertOperandToType(*UI, V, NewVal, VMC, TD);
    NumUses = V->use_size();
    if (NumUses == OldSize) ++It;
  }
}



static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
                                 ValueMapCache &VMC, const TargetData &TD) {
  if (isa<ValueHandle>(U)) return;  // Valuehandles don't let go of operands...

  if (VMC.OperandsMapped.count(U)) return;
  VMC.OperandsMapped.insert(U);

  ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(U);
  if (VMCI != VMC.ExprMap.end())
    return;


  Instruction *I = cast<Instruction>(U);  // Only Instructions convertible

  BasicBlock *BB = I->getParent();
  assert(BB != 0 && "Instruction not embedded in basic block!");
  std::string Name = I->getName();
  I->setName("");
  Instruction *Res;     // Result of conversion

  //std::cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I
  //          << "BB Before: " << BB << endl;

  // Prevent I from being removed...
  ValueHandle IHandle(VMC, I);

  const Type *NewTy = NewVal->getType();
  Constant *Dummy = (NewTy != Type::VoidTy) ? 
                  Constant::getNullValue(NewTy) : 0;

  switch (I->getOpcode()) {
  case Instruction::Cast:
    if (VMC.NewCasts.count(ValueHandle(VMC, I))) {
      // This cast has already had it's value converted, causing a new cast to
      // be created.  We don't want to create YET ANOTHER cast instruction
      // representing the original one, so just modify the operand of this cast
      // instruction, which we know is newly created.
      I->setOperand(0, NewVal);
      I->setName(Name);  // give I its name back
      return;

    } else {
      Res = new CastInst(NewVal, I->getType(), Name);
    }
    break;

  case Instruction::Add:
    if (isa<PointerType>(NewTy)) {
      Value *IndexVal = I->getOperand(OldVal == I->getOperand(0) ? 1 : 0);
      std::vector<Value*> Indices;
      BasicBlock::iterator It = I;

      if (const Type *ETy = ConvertibleToGEP(NewTy, IndexVal, Indices, TD,&It)){
        // If successful, convert the add to a GEP
        //const Type *RetTy = PointerType::get(ETy);
        // First operand is actually the given pointer...
        Res = new GetElementPtrInst(NewVal, Indices, Name);
        assert(cast<PointerType>(Res->getType())->getElementType() == ETy &&
               "ConvertibleToGEP broken!");
        break;
      }
    }
    // FALLTHROUGH

  case Instruction::Sub:
  case Instruction::SetEQ:
  case Instruction::SetNE: {
    Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
                                 Dummy, Dummy, Name);
    VMC.ExprMap[I] = Res;   // Add node to expression eagerly

    unsigned OtherIdx = (OldVal == I->getOperand(0)) ? 1 : 0;
    Value *OtherOp    = I->getOperand(OtherIdx);
    Res->setOperand(!OtherIdx, NewVal);
    Value *NewOther   = ConvertExpressionToType(OtherOp, NewTy, VMC, TD);
    Res->setOperand(OtherIdx, NewOther);
    break;
  }
  case Instruction::Shl:
  case Instruction::Shr:
    assert(I->getOperand(0) == OldVal);
    Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), NewVal,
                        I->getOperand(1), Name);
    break;

  case Instruction::Free:            // Free can free any pointer type!
    assert(I->getOperand(0) == OldVal);
    Res = new FreeInst(NewVal);
    break;


  case Instruction::Load: {
    assert(I->getOperand(0) == OldVal && isa<PointerType>(NewVal->getType()));
    const Type *LoadedTy =
      cast<PointerType>(NewVal->getType())->getElementType();

    Value *Src = NewVal;

    if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
      std::vector<Value*> Indices;
      Indices.push_back(Constant::getNullValue(Type::UIntTy));

      unsigned Offset = 0;   // No offset, get first leaf.
      LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
      assert(LoadedTy->isFirstClassType());

      if (Indices.size() != 1) {     // Do not generate load X, 0
        // Insert the GEP instruction before this load.
        Src = new GetElementPtrInst(Src, Indices, Name+".idx", I);
      }
    }
    
    Res = new LoadInst(Src, Name);
    assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
    break;
  }

  case Instruction::Store: {
    if (I->getOperand(0) == OldVal) {  // Replace the source value
      // Check to see if operand #1 has already been converted...
      ValueMapCache::ExprMapTy::iterator VMCI =
        VMC.ExprMap.find(I->getOperand(1));
      if (VMCI != VMC.ExprMap.end()) {
        // Comments describing this stuff are in the OperandConvertibleToType
        // switch statement for Store...
        //
        const Type *ElTy =
          cast<PointerType>(VMCI->second->getType())->getElementType();
        
        Value *SrcPtr = VMCI->second;

        if (ElTy != NewTy) {
          // We check that this is a struct in the initial scan...
          const StructType *SElTy = cast<StructType>(ElTy);
          
          std::vector<Value*> Indices;
          Indices.push_back(Constant::getNullValue(Type::UIntTy));

          unsigned Offset = 0;
          const Type *Ty = getStructOffsetType(ElTy, Offset, Indices, TD,false);
          assert(Offset == 0 && "Offset changed!");
          assert(NewTy == Ty && "Did not convert to correct type!");

          // Insert the GEP instruction before this store.
          SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
                                         SrcPtr->getName()+".idx", I);
        }
        Res = new StoreInst(NewVal, SrcPtr);

        VMC.ExprMap[I] = Res;
      } else {
        // Otherwise, we haven't converted Operand #1 over yet...
        const PointerType *NewPT = PointerType::get(NewTy);
        Res = new StoreInst(NewVal, Constant::getNullValue(NewPT));
        VMC.ExprMap[I] = Res;
        Res->setOperand(1, ConvertExpressionToType(I->getOperand(1),
                                                   NewPT, VMC, TD));
      }
    } else {                           // Replace the source pointer
      const Type *ValTy = cast<PointerType>(NewTy)->getElementType();

      Value *SrcPtr = NewVal;

      if (isa<StructType>(ValTy)) {
        std::vector<Value*> Indices;
        Indices.push_back(Constant::getNullValue(Type::UIntTy));

        unsigned Offset = 0;
        ValTy = getStructOffsetType(ValTy, Offset, Indices, TD, false);

        assert(Offset == 0 && ValTy);

        // Insert the GEP instruction before this store.
        SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
                                       SrcPtr->getName()+".idx", I);
      }

      Res = new StoreInst(Constant::getNullValue(ValTy), SrcPtr);
      VMC.ExprMap[I] = Res;
      Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
                                                 ValTy, VMC, TD));
    }
    break;
  }


  case Instruction::GetElementPtr: {
    // Convert a one index getelementptr into just about anything that is
    // desired.
    //
    BasicBlock::iterator It = I;
    const Type *OldElTy = cast<PointerType>(I->getType())->getElementType();
    unsigned DataSize = TD.getTypeSize(OldElTy);
    Value *Index = I->getOperand(1);

    if (DataSize != 1) {
      // Insert a multiply of the old element type is not a unit size...
      Value *CST;
      if (Index->getType()->isSigned())
        CST = ConstantSInt::get(Index->getType(), DataSize);
      else
        CST = ConstantUInt::get(Index->getType(), DataSize);

      Index = BinaryOperator::create(Instruction::Mul, Index, CST, "scale", It);
    }

    // Perform the conversion now...
    //
    std::vector<Value*> Indices;
    const Type *ElTy = ConvertibleToGEP(NewVal->getType(),Index,Indices,TD,&It);
    assert(ElTy != 0 && "GEP Conversion Failure!");
    Res = new GetElementPtrInst(NewVal, Indices, Name);
    assert(Res->getType() == PointerType::get(ElTy) &&
           "ConvertibleToGet failed!");
  }
#if 0
    if (I->getType() == PointerType::get(Type::SByteTy)) {
      // Convert a getelementptr sbyte * %reg111, uint 16 freely back to
      // anything that is a pointer type...
      //
      BasicBlock::iterator It = I;
    
      // Check to see if the second argument is an expression that can
      // be converted to the appropriate size... if so, allow it.
      //
      std::vector<Value*> Indices;
      const Type *ElTy = ConvertibleToGEP(NewVal->getType(), I->getOperand(1),
                                          Indices, TD, &It);
      assert(ElTy != 0 && "GEP Conversion Failure!");
      
      Res = new GetElementPtrInst(NewVal, Indices, Name);
    } else {
      // Convert a getelementptr ulong * %reg123, uint %N
      // to        getelementptr  long * %reg123, uint %N
      // ... where the type must simply stay the same size...
      //
      GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
      std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
      Res = new GetElementPtrInst(NewVal, Indices, Name);
    }
#endif
    break;

  case Instruction::PHI: {
    PHINode *OldPN = cast<PHINode>(I);
    PHINode *NewPN = new PHINode(NewTy, Name);
    VMC.ExprMap[I] = NewPN;

    while (OldPN->getNumOperands()) {
      BasicBlock *BB = OldPN->getIncomingBlock(0);
      Value *OldVal = OldPN->getIncomingValue(0);
      ValueHandle OldValHandle(VMC, OldVal);
      OldPN->removeIncomingValue(BB, false);
      Value *V = ConvertExpressionToType(OldVal, NewTy, VMC, TD);
      NewPN->addIncoming(V, BB);
    }
    Res = NewPN;
    break;
  }

  case Instruction::Call: {
    Value *Meth = I->getOperand(0);
    std::vector<Value*> Params(I->op_begin()+1, I->op_end());

    if (Meth == OldVal) {   // Changing the function pointer?
      const PointerType *NewPTy = cast<PointerType>(NewVal->getType());
      const FunctionType *NewTy = cast<FunctionType>(NewPTy->getElementType());

      if (NewTy->getReturnType() == Type::VoidTy)
        Name = "";  // Make sure not to name a void call!

      // Get an iterator to the call instruction so that we can insert casts for
      // operands if need be.  Note that we do not require operands to be
      // convertible, we can insert casts if they are convertible but not
      // compatible.  The reason for this is that we prefer to have resolved
      // functions but casted arguments if possible.
      //
      BasicBlock::iterator It = I;

      // Convert over all of the call operands to their new types... but only
      // convert over the part that is not in the vararg section of the call.
      //
      for (unsigned i = 0; i != NewTy->getNumParams(); ++i)
        if (Params[i]->getType() != NewTy->getParamType(i)) {
          // Create a cast to convert it to the right type, we know that this
          // is a lossless cast...
          //
          Params[i] = new CastInst(Params[i], NewTy->getParamType(i),
                                   "callarg.cast." +
                                   Params[i]->getName(), It);
        }
      Meth = NewVal;  // Update call destination to new value

    } else {                   // Changing an argument, must be in vararg area
      std::vector<Value*>::iterator OI =
        find(Params.begin(), Params.end(), OldVal);
      assert (OI != Params.end() && "Not using value!");

      *OI = NewVal;
    }

    Res = new CallInst(Meth, Params, Name);
    break;
  }
  default:
    assert(0 && "Expression convertible, but don't know how to convert?");
    return;
  }

  // If the instruction was newly created, insert it into the instruction
  // stream.
  //
  BasicBlock::iterator It = I;
  assert(It != BB->end() && "Instruction not in own basic block??");
  BB->getInstList().insert(It, Res);   // Keep It pointing to old instruction

  DEBUG(std::cerr << "COT CREATED: "  << (void*)Res << " " << *Res
                  << "In: " << (void*)I << " " << *I << "Out: " << (void*)Res
                  << " " << *Res);

  // Add the instruction to the expression map
  VMC.ExprMap[I] = Res;

  if (I->getType() != Res->getType())
    ConvertValueToNewType(I, Res, VMC, TD);
  else {
    bool FromStart = true;
    Value::use_iterator UI;
    while (1) {
      if (FromStart) UI = I->use_begin();
      if (UI == I->use_end()) break;
      
      if (isa<ValueHandle>(*UI)) {
        ++UI;
        FromStart = false;
      } else {
        User *U = *UI;
        if (!FromStart) --UI;
        U->replaceUsesOfWith(I, Res);
        if (!FromStart) ++UI;
      }
    }
  }
}


ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V)
  : Instruction(Type::VoidTy, UserOp1, ""), Cache(VMC) {
  //DEBUG(std::cerr << "VH AQUIRING: " << (void*)V << " " << V);
  Operands.push_back(Use(V, this));
}

ValueHandle::ValueHandle(const ValueHandle &VH)
  : Instruction(Type::VoidTy, UserOp1, ""), Cache(VH.Cache) {
  //DEBUG(std::cerr << "VH AQUIRING: " << (void*)V << " " << V);
  Operands.push_back(Use((Value*)VH.getOperand(0), this));
}

static void RecursiveDelete(ValueMapCache &Cache, Instruction *I) {
  if (!I || !I->use_empty()) return;

  assert(I->getParent() && "Inst not in basic block!");

  //DEBUG(std::cerr << "VH DELETING: " << (void*)I << " " << I);

  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); 
       OI != OE; ++OI)
    if (Instruction *U = dyn_cast<Instruction>(OI)) {
      *OI = 0;
      RecursiveDelete(Cache, U);
    }

  I->getParent()->getInstList().remove(I);

  Cache.OperandsMapped.erase(I);
  Cache.ExprMap.erase(I);
  delete I;
}

ValueHandle::~ValueHandle() {
  if (Operands[0]->hasOneUse()) {
    Value *V = Operands[0];
    Operands[0] = 0;   // Drop use!

    // Now we just need to remove the old instruction so we don't get infinite
    // loops.  Note that we cannot use DCE because DCE won't remove a store
    // instruction, for example.
    //
    RecursiveDelete(Cache, dyn_cast<Instruction>(V));
  } else {
    //DEBUG(std::cerr << "VH RELEASING: " << (void*)Operands[0].get() << " "
    //                << Operands[0]->use_size() << " " << Operands[0]);
  }
}