summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/FunctionResolution.cpp
blob: 93e1745b6d425c9ebbae60d15985a59fa3eb4119 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//===- FunctionResolution.cpp - Resolve declarations to implementations ---===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// Loop over the functions that are in the module and look for functions that
// have the same name.  More often than not, there will be things like:
//
//    declare void %foo(...)
//    void %foo(int, int) { ... }
//
// because of the way things are declared in C.  If this is the case, patch
// things up.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Pass.h"
#include "llvm/iOther.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "Support/Statistic.h"
#include <algorithm>

namespace {
  Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved");
  Statistic<> NumGlobals("funcresolve", "Number of global variables resolved");

  struct FunctionResolvingPass : public Pass {
    bool run(Module &M);
  };
  RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions");
}

Pass *createFunctionResolvingPass() {
  return new FunctionResolvingPass();
}

static bool ResolveFunctions(Module &M, std::vector<GlobalValue*> &Globals,
                             Function *Concrete) {
  bool Changed = false;
  for (unsigned i = 0; i != Globals.size(); ++i)
    if (Globals[i] != Concrete) {
      Function *Old = cast<Function>(Globals[i]);
      const FunctionType *OldMT = Old->getFunctionType();
      const FunctionType *ConcreteMT = Concrete->getFunctionType();
      
      if (OldMT->getParamTypes().size() > ConcreteMT->getParamTypes().size() &&
          !ConcreteMT->isVarArg())
        if (!Old->use_empty()) {
          std::cerr << "WARNING: Linking function '" << Old->getName()
                    << "' is causing arguments to be dropped.\n";
          std::cerr << "WARNING: Prototype: ";
          WriteAsOperand(std::cerr, Old);
          std::cerr << " resolved to ";
          WriteAsOperand(std::cerr, Concrete);
          std::cerr << "\n";
        }
      
      // Check to make sure that if there are specified types, that they
      // match...
      //
      unsigned NumArguments = std::min(OldMT->getParamTypes().size(),
                                       ConcreteMT->getParamTypes().size());

      if (!Old->use_empty() && !Concrete->use_empty())
        for (unsigned i = 0; i < NumArguments; ++i)
          if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i])
            if (OldMT->getParamTypes()[i]->getPrimitiveID() != 
                ConcreteMT->getParamTypes()[i]->getPrimitiveID()) {
              std::cerr << "WARNING: Function [" << Old->getName()
                        << "]: Parameter types conflict for: '" << OldMT
                        << "' and '" << ConcreteMT << "'\n";
              return Changed;
            }
      
      // Attempt to convert all of the uses of the old function to the concrete
      // form of the function.  If there is a use of the fn that we don't
      // understand here we punt to avoid making a bad transformation.
      //
      // At this point, we know that the return values are the same for our two
      // functions and that the Old function has no varargs fns specified.  In
      // otherwords it's just <retty> (...)
      //
      if (!Old->use_empty()) {  // Avoid making the CPR unless we really need it
        Value *Replacement = Concrete;
        if (Concrete->getType() != Old->getType())
          Replacement = ConstantExpr::getCast(ConstantPointerRef::get(Concrete),
                                              Old->getType());
        NumResolved += Old->use_size();
        Old->replaceAllUsesWith(Replacement);
      }

      // Since there are no uses of Old anymore, remove it from the module.
      M.getFunctionList().erase(Old);
    }
  return Changed;
}


static bool ResolveGlobalVariables(Module &M,
                                   std::vector<GlobalValue*> &Globals,
                                   GlobalVariable *Concrete) {
  bool Changed = false;
  assert(isa<ArrayType>(Concrete->getType()->getElementType()) &&
         "Concrete version should be an array type!");

  // Get the type of the things that may be resolved to us...
  const ArrayType *CATy =cast<ArrayType>(Concrete->getType()->getElementType());
  const Type *AETy = CATy->getElementType();

  Constant *CCPR = ConstantPointerRef::get(Concrete);

  for (unsigned i = 0; i != Globals.size(); ++i)
    if (Globals[i] != Concrete) {
      GlobalVariable *Old = cast<GlobalVariable>(Globals[i]);
      const ArrayType *OATy = cast<ArrayType>(Old->getType()->getElementType());
      if (OATy->getElementType() != AETy || OATy->getNumElements() != 0) {
        std::cerr << "WARNING: Two global variables exist with the same name "
                  << "that cannot be resolved!\n";
        return false;
      }

      Old->replaceAllUsesWith(ConstantExpr::getCast(CCPR, Old->getType()));

      // Since there are no uses of Old anymore, remove it from the module.
      M.getGlobalList().erase(Old);

      ++NumGlobals;
      Changed = true;
    }
  return Changed;
}

static bool ProcessGlobalsWithSameName(Module &M,
                                       std::vector<GlobalValue*> &Globals) {
  assert(!Globals.empty() && "Globals list shouldn't be empty here!");

  bool isFunction = isa<Function>(Globals[0]);   // Is this group all functions?
  GlobalValue *Concrete = 0;  // The most concrete implementation to resolve to

  assert((isFunction ^ isa<GlobalVariable>(Globals[0])) &&
         "Should either be function or gvar!");

  for (unsigned i = 0; i != Globals.size(); ) {
    if (isa<Function>(Globals[i]) != isFunction) {
      std::cerr << "WARNING: Found function and global variable with the "
                << "same name: '" << Globals[i]->getName() << "'.\n";
      return false;                 // Don't know how to handle this, bail out!
    }

    if (isFunction) {
      // For functions, we look to merge functions definitions of "int (...)"
      // to 'int (int)' or 'int ()' or whatever else is not completely generic.
      //
      Function *F = cast<Function>(Globals[i]);
      if (!F->isExternal()) {
        if (Concrete && !Concrete->isExternal())
          return false;   // Found two different functions types.  Can't choose!
        
        Concrete = Globals[i];
      } else if (Concrete) {
        if (Concrete->isExternal()) // If we have multiple external symbols...x
          if (F->getFunctionType()->getNumParams() > 
              cast<Function>(Concrete)->getFunctionType()->getNumParams())
            Concrete = F;  // We are more concrete than "Concrete"!

      } else {
        Concrete = F;
      }
    } else {
      // For global variables, we have to merge C definitions int A[][4] with
      // int[6][4].  A[][4] is represented as A[0][4] by the CFE.
      GlobalVariable *GV = cast<GlobalVariable>(Globals[i]);
      if (!isa<ArrayType>(GV->getType()->getElementType())) {
        Concrete = 0;
        break;  // Non array's cannot be compatible with other types.
      } else if (Concrete == 0) {
        Concrete = GV;
      } else {
        // Must have different types... allow merging A[0][4] w/ A[6][4] if
        // A[0][4] is external.
        const ArrayType *NAT = cast<ArrayType>(GV->getType()->getElementType());
        const ArrayType *CAT =
          cast<ArrayType>(Concrete->getType()->getElementType());

        if (NAT->getElementType() != CAT->getElementType()) {
          Concrete = 0;  // Non-compatible types
          break;
        } else if (NAT->getNumElements() == 0 && GV->isExternal()) {
          // Concrete remains the same
        } else if (CAT->getNumElements() == 0 && Concrete->isExternal()) {
          Concrete = GV;   // Concrete becomes GV
        } else {
          Concrete = 0;    // Cannot merge these types...
          break;
        }
      }
    }
    ++i;
  }

  if (Globals.size() > 1) {         // Found a multiply defined global...
    // If there are no external declarations, and there is at most one
    // externally visible instance of the global, then there is nothing to do.
    //
    bool HasExternal = false;
    unsigned NumInstancesWithExternalLinkage = 0;

    for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
      if (Globals[i]->isExternal())
        HasExternal = true;
      else if (!Globals[i]->hasInternalLinkage())
        NumInstancesWithExternalLinkage++;
    }
    
    if (!HasExternal && NumInstancesWithExternalLinkage <= 1)
      return false;  // Nothing to do?  Must have multiple internal definitions.


    // We should find exactly one concrete function definition, which is
    // probably the implementation.  Change all of the function definitions and
    // uses to use it instead.
    //
    if (!Concrete) {
      std::cerr << "WARNING: Found global types that are not compatible:\n";
      for (unsigned i = 0; i < Globals.size(); ++i) {
        std::cerr << "\t" << Globals[i]->getType()->getDescription() << " %"
                  << Globals[i]->getName() << "\n";
      }
      std::cerr << "  No linkage of globals named '" << Globals[0]->getName()
                << "' performed!\n";
      return false;
    }

    if (isFunction)
      return ResolveFunctions(M, Globals, cast<Function>(Concrete));
    else
      return ResolveGlobalVariables(M, Globals,
                                    cast<GlobalVariable>(Concrete));
  }
  return false;
}

bool FunctionResolvingPass::run(Module &M) {
  SymbolTable &ST = M.getSymbolTable();

  std::map<std::string, std::vector<GlobalValue*> > Globals;

  // Loop over the entries in the symbol table. If an entry is a func pointer,
  // then add it to the Functions map.  We do a two pass algorithm here to avoid
  // problems with iterators getting invalidated if we did a one pass scheme.
  //
  for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
    if (const PointerType *PT = dyn_cast<PointerType>(I->first)) {
      SymbolTable::VarMap &Plane = I->second;
      for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
           PI != PE; ++PI) {
        GlobalValue *GV = cast<GlobalValue>(PI->second);
        assert(PI->first == GV->getName() &&
               "Global name and symbol table do not agree!");
        Globals[PI->first].push_back(GV);
      }
    }

  bool Changed = false;

  // Now we have a list of all functions with a particular name.  If there is
  // more than one entry in a list, merge the functions together.
  //
  for (std::map<std::string, std::vector<GlobalValue*> >::iterator
         I = Globals.begin(), E = Globals.end(); I != E; ++I)
    Changed |= ProcessGlobalsWithSameName(M, I->second);

  // Now loop over all of the globals, checking to see if any are trivially
  // dead.  If so, remove them now.

  for (Module::iterator I = M.begin(), E = M.end(); I != E; )
    if (I->isExternal() && I->use_empty()) {
      Function *F = I;
      ++I;
      M.getFunctionList().erase(F);
      ++NumResolved;
      Changed = true;
    } else {
      ++I;
    }

  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; )
    if (I->isExternal() && I->use_empty()) {
      GlobalVariable *GV = I;
      ++I;
      M.getGlobalList().erase(GV);
      ++NumGlobals;
      Changed = true;
    } else {
      ++I;
    }

  return Changed;
}