summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/InlineSimple.cpp
blob: 7d36e379bca48865221fe05a6b0fc295ccbdabad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
//
// This file implements inlining of functions.
//
// Specifically, this:
//   * Exports functionality to inline any function call
//   * Inlines functions that consist of a single basic block
//   * Is able to inline ANY function call
//   . Has a smart heuristic for when to inline a function
//
// Notice that:
//   * This pass opens up a lot of opportunities for constant propogation.  It
//     is a good idea to to run a constant propogation pass, then a DCE pass 
//     sometime after running this pass.
//
// FIXME: This pass should transform alloca instructions in the called function
//        into malloc/free pairs!
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/FunctionInlining.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Type.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
#include <iostream>

static Statistic<> NumInlined("inline\t\t- Number of functions inlined");
using std::cerr;

// RemapInstruction - Convert the instruction operands from referencing the 
// current values into those specified by ValueMap.
//
static inline void RemapInstruction(Instruction *I, 
				    std::map<const Value *, Value*> &ValueMap) {

  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
    const Value *Op = I->getOperand(op);
    Value *V = ValueMap[Op];
    if (!V && (isa<GlobalValue>(Op) || isa<Constant>(Op)))
      continue;  // Globals and constants don't get relocated

    if (!V) {
      cerr << "Val = \n" << Op << "Addr = " << (void*)Op;
      cerr << "\nInst = " << I;
    }
    assert(V && "Referenced value not in value map!");
    I->setOperand(op, V);
  }
}

// InlineFunction - This function forcibly inlines the called function into the
// basic block of the caller.  This returns false if it is not possible to
// inline this call.  The program is still in a well defined state if this 
// occurs though.
//
// Note that this only does one level of inlining.  For example, if the 
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 
// exists in the instruction stream.  Similiarly this will inline a recursive
// function by one level.
//
bool InlineFunction(CallInst *CI) {
  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
  assert(CI->getParent() && "Instruction not embedded in basic block!");
  assert(CI->getParent()->getParent() && "Instruction not in function!");

  const Function *CalledFunc = CI->getCalledFunction();
  if (CalledFunc == 0 ||   // Can't inline external function or indirect call!
      CalledFunc->isExternal()) return false;

  //cerr << "Inlining " << CalledFunc->getName() << " into " 
  //     << CurrentMeth->getName() << "\n";

  BasicBlock *OrigBB = CI->getParent();

  // Call splitBasicBlock - The original basic block now ends at the instruction
  // immediately before the call.  The original basic block now ends with an
  // unconditional branch to NewBB, and NewBB starts with the call instruction.
  //
  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
  NewBB->setName("InlinedFunctionReturnNode");

  // Remove (unlink) the CallInst from the start of the new basic block.  
  NewBB->getInstList().remove(CI);

  // If we have a return value generated by this call, convert it into a PHI 
  // node that gets values from each of the old RET instructions in the original
  // function.
  //
  PHINode *PHI = 0;
  if (CalledFunc->getReturnType() != Type::VoidTy) {
    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName());

    // The PHI node should go at the front of the new basic block to merge all 
    // possible incoming values.
    //
    NewBB->getInstList().push_front(PHI);

    // Anything that used the result of the function call should now use the PHI
    // node as their operand.
    //
    CI->replaceAllUsesWith(PHI);
  }

  // Keep a mapping between the original function's values and the new
  // duplicated code's values.  This includes all of: Function arguments,
  // instruction values, constant pool entries, and basic blocks.
  //
  std::map<const Value *, Value*> ValueMap;

  // Add the function arguments to the mapping: (start counting at 1 to skip the
  // function reference itself)
  //
  Function::const_aiterator PTI = CalledFunc->abegin();
  for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI)
    ValueMap[PTI] = CI->getOperand(a);
  
  ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB

  // Loop over all of the basic blocks in the function, inlining them as 
  // appropriate.  Keep track of the first basic block of the function...
  //
  for (Function::const_iterator BB = CalledFunc->begin(); 
       BB != CalledFunc->end(); ++BB) {
    assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
    
    // Create a new basic block to copy instructions into!
    BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
    if (BB->hasName()) IBB->setName(BB->getName()+".i");  // .i = inlined once

    ValueMap[BB] = IBB;                       // Add basic block mapping.

    // Make sure to capture the mapping that a return will use...
    // TODO: This assumes that the RET is returning a value computed in the same
    //       basic block as the return was issued from!
    //
    const TerminatorInst *TI = BB->getTerminator();
   
    // Loop over all instructions copying them over...
    Instruction *NewInst;
    for (BasicBlock::const_iterator II = BB->begin();
	 II != --BB->end(); ++II) {
      IBB->getInstList().push_back((NewInst = II->clone()));
      ValueMap[II] = NewInst;                  // Add instruction map to value.
      if (II->hasName())
        NewInst->setName(II->getName()+".i");  // .i = inlined once
    }

    // Copy over the terminator now...
    switch (TI->getOpcode()) {
    case Instruction::Ret: {
      const ReturnInst *RI = cast<ReturnInst>(TI);

      if (PHI) {   // The PHI node should include this value!
	assert(RI->getReturnValue() && "Ret should have value!");
	assert(RI->getReturnValue()->getType() == PHI->getType() && 
	       "Ret value not consistent in function!");
	PHI->addIncoming((Value*)RI->getReturnValue(),
                         (BasicBlock*)cast<BasicBlock>(&*BB));
      }

      // Add a branch to the code that was after the original Call.
      IBB->getInstList().push_back(new BranchInst(NewBB));
      break;
    }
    case Instruction::Br:
      IBB->getInstList().push_back(TI->clone());
      break;

    default:
      cerr << "FunctionInlining: Don't know how to handle terminator: " << TI;
      abort();
    }
  }


  // Loop over all of the instructions in the function, fixing up operand 
  // references as we go.  This uses ValueMap to do all the hard work.
  //
  for (Function::const_iterator BB = CalledFunc->begin(); 
       BB != CalledFunc->end(); ++BB) {
    BasicBlock *NBB = (BasicBlock*)ValueMap[BB];

    // Loop over all instructions, fixing each one as we find it...
    //
    for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); ++II)
      RemapInstruction(II, ValueMap);
  }

  if (PHI) RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...

  // Change the branch that used to go to NewBB to branch to the first basic 
  // block of the inlined function.
  //
  TerminatorInst *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br && 
	 "splitBasicBlock broken!");
  Br->setOperand(0, ValueMap[&CalledFunc->front()]);

  // Since we are now done with the CallInst, we can finally delete it.
  delete CI;
  return true;
}

static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
  assert(CI->getParent() && CI->getParent()->getParent() && 
	 "Call not embedded into a function!");

  // Don't inline a recursive call.
  if (CI->getParent()->getParent() == F) return false;

  // Don't inline something too big.  This is a really crappy heuristic
  if (F->size() > 3) return false;

  // Don't inline into something too big. This is a **really** crappy heuristic
  if (CI->getParent()->getParent()->size() > 10) return false;

  // Go ahead and try just about anything else.
  return true;
}


static inline bool DoFunctionInlining(BasicBlock *BB) {
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
    if (CallInst *CI = dyn_cast<CallInst>(&*I)) {
      // Check to see if we should inline this function
      Function *F = CI->getCalledFunction();
      if (F && ShouldInlineFunction(CI, F)) {
	return InlineFunction(CI);
      }
    }
  }
  return false;
}

// doFunctionInlining - Use a heuristic based approach to inline functions that
// seem to look good.
//
static bool doFunctionInlining(Function &F) {
  bool Changed = false;

  // Loop through now and inline instructions a basic block at a time...
  for (Function::iterator I = F.begin(); I != F.end(); )
    if (DoFunctionInlining(I)) {
      ++NumInlined;
      Changed = true;
    } else {
      ++I;
    }

  return Changed;
}

namespace {
  struct FunctionInlining : public FunctionPass {
    const char *getPassName() const { return "Function Inlining"; }
    virtual bool runOnFunction(Function &F) {
      return doFunctionInlining(F);
    }
  };
}

Pass *createFunctionInliningPass() { return new FunctionInlining(); }