summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/InlineSimple.cpp
blob: b4542ead3e30d8b2b943ff28af90361e15edacc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
//
// This file implements inlining of functions.
//
// Specifically, this:
//   * Exports functionality to inline any function call
//   * Inlines functions that consist of a single basic block
//   * Is able to inline ANY function call
//   . Has a smart heuristic for when to inline a function
//
// Notice that:
//   * This pass opens up a lot of opportunities for constant propogation.  It
//     is a good idea to to run a constant propogation pass, then a DCE pass 
//     sometime after running this pass.
//
// FIXME: This pass should transform alloca instructions in the called function
//        into malloc/free pairs!
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Type.h"
#include "Support/Statistic.h"
#include <algorithm>

static Statistic<> NumInlined("inline", "Number of functions inlined");
using std::cerr;

// InlineFunction - This function forcibly inlines the called function into the
// basic block of the caller.  This returns false if it is not possible to
// inline this call.  The program is still in a well defined state if this 
// occurs though.
//
// Note that this only does one level of inlining.  For example, if the 
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 
// exists in the instruction stream.  Similiarly this will inline a recursive
// function by one level.
//
bool InlineFunction(CallInst *CI) {
  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
  assert(CI->getParent() && "Instruction not embedded in basic block!");
  assert(CI->getParent()->getParent() && "Instruction not in function!");

  const Function *CalledFunc = CI->getCalledFunction();
  if (CalledFunc == 0 ||   // Can't inline external function or indirect call!
      CalledFunc->isExternal()) return false;

  //cerr << "Inlining " << CalledFunc->getName() << " into " 
  //     << CurrentMeth->getName() << "\n";

  BasicBlock *OrigBB = CI->getParent();

  // Call splitBasicBlock - The original basic block now ends at the instruction
  // immediately before the call.  The original basic block now ends with an
  // unconditional branch to NewBB, and NewBB starts with the call instruction.
  //
  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
  NewBB->setName("InlinedFunctionReturnNode");

  // Remove (unlink) the CallInst from the start of the new basic block.  
  NewBB->getInstList().remove(CI);

  // If we have a return value generated by this call, convert it into a PHI 
  // node that gets values from each of the old RET instructions in the original
  // function.
  //
  PHINode *PHI = 0;
  if (!CI->use_empty()) {
    // The PHI node should go at the front of the new basic block to merge all 
    // possible incoming values.
    //
    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
                      NewBB->begin());

    // Anything that used the result of the function call should now use the PHI
    // node as their operand.
    //
    CI->replaceAllUsesWith(PHI);
  }

  // Get a pointer to the last basic block in the function, which will have the
  // new function inlined after it.
  //
  Function::iterator LastBlock = &OrigBB->getParent()->back();

  // Calculate the vector of arguments to pass into the function cloner...
  std::vector<Value*> ArgVector;
  for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
    ArgVector.push_back(CI->getOperand(i));

  // Since we are now done with the CallInst, we can delete it.
  delete CI;

  // Make a vector to capture the return instructions in the cloned function...
  std::vector<ReturnInst*> Returns;

  // Do all of the hard part of cloning the callee into the caller...
  CloneFunctionInto(OrigBB->getParent(), CalledFunc, ArgVector, Returns, ".i");

  // Loop over all of the return instructions, turning them into unconditional
  // branches to the merge point now...
  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
    ReturnInst *RI = Returns[i];
    BasicBlock *BB = RI->getParent();

    // Add a branch to the merge point where the PHI node would live...
    new BranchInst(NewBB, RI);

    if (PHI) {   // The PHI node should include this value!
      assert(RI->getReturnValue() && "Ret should have value!");
      assert(RI->getReturnValue()->getType() == PHI->getType() && 
             "Ret value not consistent in function!");
      PHI->addIncoming(RI->getReturnValue(), BB);
    }

    // Delete the return instruction now
    BB->getInstList().erase(RI);
  }

  // Check to see if the PHI node only has one argument.  This is a common
  // case resulting from there only being a single return instruction in the
  // function call.  Because this is so common, eliminate the PHI node.
  //
  if (PHI && PHI->getNumIncomingValues() == 1) {
    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
    PHI->getParent()->getInstList().erase(PHI);
  }

  // Change the branch that used to go to NewBB to branch to the first basic 
  // block of the inlined function.
  //
  TerminatorInst *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br && 
	 "splitBasicBlock broken!");
  Br->setOperand(0, ++LastBlock);
  return true;
}

static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
  assert(CI->getParent() && CI->getParent()->getParent() && 
	 "Call not embedded into a function!");

  // Don't inline a recursive call.
  if (CI->getParent()->getParent() == F) return false;

  // Don't inline something too big.  This is a really crappy heuristic
  if (F->size() > 3) return false;

  // Don't inline into something too big. This is a **really** crappy heuristic
  if (CI->getParent()->getParent()->size() > 10) return false;

  // Go ahead and try just about anything else.
  return true;
}


static inline bool DoFunctionInlining(BasicBlock *BB) {
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
    if (CallInst *CI = dyn_cast<CallInst>(&*I)) {
      // Check to see if we should inline this function
      Function *F = CI->getCalledFunction();
      if (F && ShouldInlineFunction(CI, F)) {
	return InlineFunction(CI);
      }
    }
  }
  return false;
}

// doFunctionInlining - Use a heuristic based approach to inline functions that
// seem to look good.
//
static bool doFunctionInlining(Function &F) {
  bool Changed = false;

  // Loop through now and inline instructions a basic block at a time...
  for (Function::iterator I = F.begin(); I != F.end(); )
    if (DoFunctionInlining(I)) {
      ++NumInlined;
      Changed = true;
    } else {
      ++I;
    }

  return Changed;
}

namespace {
  struct FunctionInlining : public FunctionPass {
    virtual bool runOnFunction(Function &F) {
      return doFunctionInlining(F);
    }
  };
  RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
}

Pass *createFunctionInliningPass() { return new FunctionInlining(); }