summaryrefslogtreecommitdiff
path: root/lib/Transforms/Instrumentation/AddressSanitizer.cpp
blob: b8ead89a8fa0e1f098d6103bb19c59a31301056e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
// Details of the algorithm:
//  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "asan"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Type.h"

#include <string>
#include <algorithm>

using namespace llvm;

static const uint64_t kDefaultShadowScale = 3;
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;

static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;

static const char *kAsanModuleCtorName = "asan.module_ctor";
static const char *kAsanModuleDtorName = "asan.module_dtor";
static const int   kAsanCtorAndCtorPriority = 1;
static const char *kAsanReportErrorTemplate = "__asan_report_";
static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals";
static const char *kAsanInitName = "__asan_init";
static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
static const char *kAsanMappingScaleName = "__asan_mapping_scale";
static const char *kAsanStackMallocName = "__asan_stack_malloc";
static const char *kAsanStackFreeName = "__asan_stack_free";

static const int kAsanStackLeftRedzoneMagic = 0xf1;
static const int kAsanStackMidRedzoneMagic = 0xf2;
static const int kAsanStackRightRedzoneMagic = 0xf3;
static const int kAsanStackPartialRedzoneMagic = 0xf4;

// Command-line flags.

// This flag may need to be replaced with -f[no-]asan-reads.
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
       cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
       cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
// This flag may need to be replaced with -f[no]asan-stack.
static cl::opt<bool> ClStack("asan-stack",
       cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
// This flag may need to be replaced with -f[no]asan-use-after-return.
static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
       cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
// This flag may need to be replaced with -f[no]asan-globals.
static cl::opt<bool> ClGlobals("asan-globals",
       cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClMemIntrin("asan-memintrin",
       cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
// This flag may need to be replaced with -fasan-blacklist.
static cl::opt<std::string>  ClBlackListFile("asan-blacklist",
       cl::desc("File containing the list of functions to ignore "
                "during instrumentation"), cl::Hidden);

// These flags allow to change the shadow mapping.
// The shadow mapping looks like
//    Shadow = (Mem >> scale) + (1 << offset_log)
static cl::opt<int> ClMappingScale("asan-mapping-scale",
       cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
       cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));

// Optimization flags. Not user visible, used mostly for testing
// and benchmarking the tool.
static cl::opt<bool> ClOpt("asan-opt",
       cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
       cl::desc("Instrument the same temp just once"), cl::Hidden,
       cl::init(true));
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
       cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));

// Debug flags.
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
                            cl::init(0));
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
                                 cl::Hidden, cl::init(0));
static cl::opt<std::string> ClDebugFunc("asan-debug-func",
                                        cl::Hidden, cl::desc("Debug func"));
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
                               cl::Hidden, cl::init(-1));
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
                               cl::Hidden, cl::init(-1));

namespace {

// Blacklisted functions are not instrumented.
// The blacklist file contains one or more lines like this:
// ---
// fun:FunctionWildCard
// ---
// This is similar to the "ignore" feature of ThreadSanitizer.
// http://code.google.com/p/data-race-test/wiki/ThreadSanitizerIgnores
class BlackList {
 public:
  BlackList(const std::string &Path);
  bool isIn(const Function &F);
 private:
  Regex *Functions;
};

/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer : public ModulePass {
  AddressSanitizer();
  virtual const char *getPassName() const;
  void instrumentMop(Instruction *I);
  void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB,
                         Value *Addr, uint32_t TypeSize, bool IsWrite);
  Instruction *generateCrashCode(IRBuilder<> &IRB, Value *Addr,
                                 bool IsWrite, uint32_t TypeSize);
  bool instrumentMemIntrinsic(MemIntrinsic *MI);
  void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
                                  Value *Size,
                                   Instruction *InsertBefore, bool IsWrite);
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
  bool handleFunction(Module &M, Function &F);
  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
  bool poisonStackInFunction(Module &M, Function &F);
  virtual bool runOnModule(Module &M);
  bool insertGlobalRedzones(Module &M);
  BranchInst *splitBlockAndInsertIfThen(Instruction *SplitBefore, Value *Cmp);
  static char ID;  // Pass identification, replacement for typeid

 private:

  uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
    Type *Ty = AI->getAllocatedType();
    uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8;
    return SizeInBytes;
  }
  uint64_t getAlignedSize(uint64_t SizeInBytes) {
    return ((SizeInBytes + RedzoneSize - 1)
            / RedzoneSize) * RedzoneSize;
  }
  uint64_t getAlignedAllocaSize(AllocaInst *AI) {
    uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
    return getAlignedSize(SizeInBytes);
  }

  void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
                   Value *ShadowBase, bool DoPoison);
  bool LooksLikeCodeInBug11395(Instruction *I);

  Module      *CurrentModule;
  LLVMContext *C;
  TargetData *TD;
  uint64_t MappingOffset;
  int MappingScale;
  size_t RedzoneSize;
  int LongSize;
  Type *IntptrTy;
  Type *IntptrPtrTy;
  Function *AsanCtorFunction;
  Function *AsanInitFunction;
  Instruction *CtorInsertBefore;
  OwningPtr<BlackList> BL;
};
}  // namespace

char AddressSanitizer::ID = 0;
INITIALIZE_PASS(AddressSanitizer, "asan",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
    false, false)
AddressSanitizer::AddressSanitizer() : ModulePass(ID) { }
ModulePass *llvm::createAddressSanitizerPass() {
  return new AddressSanitizer();
}

const char *AddressSanitizer::getPassName() const {
  return "AddressSanitizer";
}

// Create a constant for Str so that we can pass it to the run-time lib.
static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
  return new GlobalVariable(M, StrConst->getType(), true,
                            GlobalValue::PrivateLinkage, StrConst, "");
}

// Split the basic block and insert an if-then code.
// Before:
//   Head
//   SplitBefore
//   Tail
// After:
//   Head
//   if (Cmp)
//     NewBasicBlock
//   SplitBefore
//   Tail
//
// Returns the NewBasicBlock's terminator.
BranchInst *AddressSanitizer::splitBlockAndInsertIfThen(
    Instruction *SplitBefore, Value *Cmp) {
  BasicBlock *Head = SplitBefore->getParent();
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
  TerminatorInst *HeadOldTerm = Head->getTerminator();
  BasicBlock *NewBasicBlock =
      BasicBlock::Create(*C, "", Head->getParent());
  BranchInst *HeadNewTerm = BranchInst::Create(/*ifTrue*/NewBasicBlock,
                                               /*ifFalse*/Tail,
                                               Cmp);
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);

  BranchInst *CheckTerm = BranchInst::Create(Tail, NewBasicBlock);
  return CheckTerm;
}

Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
  // Shadow >> scale
  Shadow = IRB.CreateLShr(Shadow, MappingScale);
  if (MappingOffset == 0)
    return Shadow;
  // (Shadow >> scale) | offset
  return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy,
                                               MappingOffset));
}

void AddressSanitizer::instrumentMemIntrinsicParam(Instruction *OrigIns,
    Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
  // Check the first byte.
  {
    IRBuilder<> IRB(InsertBefore);
    instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite);
  }
  // Check the last byte.
  {
    IRBuilder<> IRB(InsertBefore);
    Value *SizeMinusOne = IRB.CreateSub(
        Size, ConstantInt::get(Size->getType(), 1));
    SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false);
    Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
    Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne);
    instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
  }
}

// Instrument memset/memmove/memcpy
bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
  Value *Dst = MI->getDest();
  MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
  Value *Src = MemTran ? MemTran->getSource() : NULL;
  Value *Length = MI->getLength();

  Constant *ConstLength = dyn_cast<Constant>(Length);
  Instruction *InsertBefore = MI;
  if (ConstLength) {
    if (ConstLength->isNullValue()) return false;
  } else {
    // The size is not a constant so it could be zero -- check at run-time.
    IRBuilder<> IRB(InsertBefore);

    Value *Cmp = IRB.CreateICmpNE(Length,
                                   Constant::getNullValue(Length->getType()));
    InsertBefore = splitBlockAndInsertIfThen(InsertBefore, Cmp);
  }

  instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
  if (Src)
    instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
  return true;
}

static Value *getLDSTOperand(Instruction *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    return LI->getPointerOperand();
  }
  return cast<StoreInst>(*I).getPointerOperand();
}

void AddressSanitizer::instrumentMop(Instruction *I) {
  int IsWrite = isa<StoreInst>(*I);
  Value *Addr = getLDSTOperand(I);
  if (ClOpt && ClOptGlobals && isa<GlobalVariable>(Addr)) {
    // We are accessing a global scalar variable. Nothing to catch here.
    return;
  }
  Type *OrigPtrTy = Addr->getType();
  Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();

  assert(OrigTy->isSized());
  uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);

  if (TypeSize != 8  && TypeSize != 16 &&
      TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
    // Ignore all unusual sizes.
    return;
  }

  IRBuilder<> IRB(I);
  instrumentAddress(I, IRB, Addr, TypeSize, IsWrite);
}

Instruction *AddressSanitizer::generateCrashCode(
    IRBuilder<> &IRB, Value *Addr, bool IsWrite, uint32_t TypeSize) {
  // IsWrite and TypeSize are encoded in the function name.
  std::string FunctionName = std::string(kAsanReportErrorTemplate) +
      (IsWrite ? "store" : "load") + itostr(TypeSize / 8);
  Value *ReportWarningFunc = CurrentModule->getOrInsertFunction(
      FunctionName, IRB.getVoidTy(), IntptrTy, NULL);
  CallInst *Call = IRB.CreateCall(ReportWarningFunc, Addr);
  Call->setDoesNotReturn();
  return Call;
}

void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
                                         IRBuilder<> &IRB, Value *Addr,
                                         uint32_t TypeSize, bool IsWrite) {
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);

  Type *ShadowTy  = IntegerType::get(
      *C, std::max(8U, TypeSize >> MappingScale));
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
  Value *CmpVal = Constant::getNullValue(ShadowTy);
  Value *ShadowValue = IRB.CreateLoad(
      IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));

  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);

  Instruction *CheckTerm = splitBlockAndInsertIfThen(
      cast<Instruction>(Cmp)->getNextNode(), Cmp);
  IRBuilder<> IRB2(CheckTerm);

  size_t Granularity = 1 << MappingScale;
  if (TypeSize < 8 * Granularity) {
    // Addr & (Granularity - 1)
    Value *Lower3Bits = IRB2.CreateAnd(
        AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
    // (Addr & (Granularity - 1)) + size - 1
    Value *LastAccessedByte = IRB2.CreateAdd(
        Lower3Bits, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
    // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
    LastAccessedByte = IRB2.CreateIntCast(
        LastAccessedByte, IRB.getInt8Ty(), false);
    // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
    Value *Cmp2 = IRB2.CreateICmpSGE(LastAccessedByte, ShadowValue);

    CheckTerm = splitBlockAndInsertIfThen(CheckTerm, Cmp2);
  }

  IRBuilder<> IRB1(CheckTerm);
  Instruction *Crash = generateCrashCode(IRB1, AddrLong, IsWrite, TypeSize);
  Crash->setDebugLoc(OrigIns->getDebugLoc());
  ReplaceInstWithInst(CheckTerm, new UnreachableInst(*C));
}

// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
bool AddressSanitizer::insertGlobalRedzones(Module &M) {
  SmallVector<GlobalVariable *, 16> GlobalsToChange;

  for (Module::GlobalListType::iterator G = M.getGlobalList().begin(),
       E = M.getGlobalList().end(); G != E; ++G) {
    Type *Ty = cast<PointerType>(G->getType())->getElementType();
    DEBUG(dbgs() << "GLOBAL: " << *G);

    if (!Ty->isSized()) continue;
    if (!G->hasInitializer()) continue;
    // Touch only those globals that will not be defined in other modules.
    // Don't handle ODR type linkages since other modules may be built w/o asan.
    if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
        G->getLinkage() != GlobalVariable::PrivateLinkage &&
        G->getLinkage() != GlobalVariable::InternalLinkage)
      continue;
    // Two problems with thread-locals:
    //   - The address of the main thread's copy can't be computed at link-time.
    //   - Need to poison all copies, not just the main thread's one.
    if (G->isThreadLocal())
      continue;
    // For now, just ignore this Alloca if the alignment is large.
    if (G->getAlignment() > RedzoneSize) continue;

    // Ignore all the globals with the names starting with "\01L_OBJC_".
    // Many of those are put into the .cstring section. The linker compresses
    // that section by removing the spare \0s after the string terminator, so
    // our redzones get broken.
    if ((G->getName().find("\01L_OBJC_") == 0) ||
        (G->getName().find("\01l_OBJC_") == 0)) {
      DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
      continue;
    }

    if (G->hasSection()) {
      StringRef Section(G->getSection());
      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
      // them.
      if ((Section.find("__OBJC,") == 0) ||
          (Section.find("__DATA, __objc_") == 0)) {
        DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
        continue;
      }
      // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
      // Constant CFString instances are compiled in the following way:
      //  -- the string buffer is emitted into
      //     __TEXT,__cstring,cstring_literals
      //  -- the constant NSConstantString structure referencing that buffer
      //     is placed into __DATA,__cfstring
      // Therefore there's no point in placing redzones into __DATA,__cfstring.
      // Moreover, it causes the linker to crash on OS X 10.7
      if (Section.find("__DATA,__cfstring") == 0) {
        DEBUG(dbgs() << "Ignoring CFString: " << *G);
        continue;
      }
    }

    GlobalsToChange.push_back(G);
  }

  size_t n = GlobalsToChange.size();
  if (n == 0) return false;

  // A global is described by a structure
  //   size_t beg;
  //   size_t size;
  //   size_t size_with_redzone;
  //   const char *name;
  // We initialize an array of such structures and pass it to a run-time call.
  StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
                                               IntptrTy, IntptrTy, NULL);
  SmallVector<Constant *, 16> Initializers(n);

  IRBuilder<> IRB(CtorInsertBefore);

  for (size_t i = 0; i < n; i++) {
    GlobalVariable *G = GlobalsToChange[i];
    PointerType *PtrTy = cast<PointerType>(G->getType());
    Type *Ty = PtrTy->getElementType();
    uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8;
    uint64_t RightRedzoneSize = RedzoneSize +
        (RedzoneSize - (SizeInBytes % RedzoneSize));
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);

    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
    Constant *NewInitializer = ConstantStruct::get(
        NewTy, G->getInitializer(),
        Constant::getNullValue(RightRedZoneTy), NULL);

    SmallString<2048> DescriptionOfGlobal = G->getName();
    DescriptionOfGlobal += " (";
    DescriptionOfGlobal += M.getModuleIdentifier();
    DescriptionOfGlobal += ")";
    GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal);

    // Create a new global variable with enough space for a redzone.
    GlobalVariable *NewGlobal = new GlobalVariable(
        M, NewTy, G->isConstant(), G->getLinkage(),
        NewInitializer, "", G, G->isThreadLocal());
    NewGlobal->copyAttributesFrom(G);
    NewGlobal->setAlignment(RedzoneSize);

    Value *Indices2[2];
    Indices2[0] = IRB.getInt32(0);
    Indices2[1] = IRB.getInt32(0);

    G->replaceAllUsesWith(
        ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
    NewGlobal->takeName(G);
    G->eraseFromParent();

    Initializers[i] = ConstantStruct::get(
        GlobalStructTy,
        ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
        ConstantInt::get(IntptrTy, SizeInBytes),
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
        ConstantExpr::getPointerCast(Name, IntptrTy),
        NULL);
    DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal);
  }

  ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
  GlobalVariable *AllGlobals = new GlobalVariable(
      M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
      ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");

  Function *AsanRegisterGlobals = cast<Function>(M.getOrInsertFunction(
      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);

  IRB.CreateCall2(AsanRegisterGlobals,
                  IRB.CreatePointerCast(AllGlobals, IntptrTy),
                  ConstantInt::get(IntptrTy, n));

  // We also need to unregister globals at the end, e.g. when a shared library
  // gets closed.
  Function *AsanDtorFunction = Function::Create(
      FunctionType::get(Type::getVoidTy(*C), false),
      GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
  Function *AsanUnregisterGlobals = cast<Function>(M.getOrInsertFunction(
      kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);

  IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
                       IRB.CreatePointerCast(AllGlobals, IntptrTy),
                       ConstantInt::get(IntptrTy, n));
  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);

  DEBUG(dbgs() << M);
  return true;
}

// virtual
bool AddressSanitizer::runOnModule(Module &M) {
  // Initialize the private fields. No one has accessed them before.
  TD = getAnalysisIfAvailable<TargetData>();
  if (!TD)
    return false;
  BL.reset(new BlackList(ClBlackListFile));

  CurrentModule = &M;
  C = &(M.getContext());
  LongSize = TD->getPointerSizeInBits();
  IntptrTy = Type::getIntNTy(*C, LongSize);
  IntptrPtrTy = PointerType::get(IntptrTy, 0);

  AsanCtorFunction = Function::Create(
      FunctionType::get(Type::getVoidTy(*C), false),
      GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
  BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
  CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB);

  // call __asan_init in the module ctor.
  IRBuilder<> IRB(CtorInsertBefore);
  AsanInitFunction = cast<Function>(
      M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
  AsanInitFunction->setLinkage(Function::ExternalLinkage);
  IRB.CreateCall(AsanInitFunction);

  MappingOffset = LongSize == 32
      ? kDefaultShadowOffset32 : kDefaultShadowOffset64;
  if (ClMappingOffsetLog >= 0) {
    if (ClMappingOffsetLog == 0) {
      // special case
      MappingOffset = 0;
    } else {
      MappingOffset = 1ULL << ClMappingOffsetLog;
    }
  }
  MappingScale = kDefaultShadowScale;
  if (ClMappingScale) {
    MappingScale = ClMappingScale;
  }
  // Redzone used for stack and globals is at least 32 bytes.
  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
  RedzoneSize = std::max(32, (int)(1 << MappingScale));

  bool Res = false;

  if (ClGlobals)
    Res |= insertGlobalRedzones(M);

  // Tell the run-time the current values of mapping offset and scale.
  GlobalValue *asan_mapping_offset =
      new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
                     ConstantInt::get(IntptrTy, MappingOffset),
                     kAsanMappingOffsetName);
  GlobalValue *asan_mapping_scale =
      new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
                         ConstantInt::get(IntptrTy, MappingScale),
                         kAsanMappingScaleName);
  // Read these globals, otherwise they may be optimized away.
  IRB.CreateLoad(asan_mapping_scale, true);
  IRB.CreateLoad(asan_mapping_offset, true);


  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
    if (F->isDeclaration()) continue;
    Res |= handleFunction(M, *F);
  }

  appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);

  return Res;
}

bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
  // For each NSObject descendant having a +load method, this method is invoked
  // by the ObjC runtime before any of the static constructors is called.
  // Therefore we need to instrument such methods with a call to __asan_init
  // at the beginning in order to initialize our runtime before any access to
  // the shadow memory.
  // We cannot just ignore these methods, because they may call other
  // instrumented functions.
  if (F.getName().find(" load]") != std::string::npos) {
    IRBuilder<> IRB(F.begin()->begin());
    IRB.CreateCall(AsanInitFunction);
    return true;
  }
  return false;
}

bool AddressSanitizer::handleFunction(Module &M, Function &F) {
  if (BL->isIn(F)) return false;
  if (&F == AsanCtorFunction) return false;

  // If needed, insert __asan_init before checking for AddressSafety attr.
  maybeInsertAsanInitAtFunctionEntry(F);

  if (!F.hasFnAttr(Attribute::AddressSafety)) return false;

  if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
    return false;
  // We want to instrument every address only once per basic block
  // (unless there are calls between uses).
  SmallSet<Value*, 16> TempsToInstrument;
  SmallVector<Instruction*, 16> ToInstrument;

  // Fill the set of memory operations to instrument.
  for (Function::iterator FI = F.begin(), FE = F.end();
       FI != FE; ++FI) {
    TempsToInstrument.clear();
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
         BI != BE; ++BI) {
      if (LooksLikeCodeInBug11395(BI)) return false;
      if ((isa<LoadInst>(BI) && ClInstrumentReads) ||
          (isa<StoreInst>(BI) && ClInstrumentWrites)) {
        Value *Addr = getLDSTOperand(BI);
        if (ClOpt && ClOptSameTemp) {
          if (!TempsToInstrument.insert(Addr))
            continue;  // We've seen this temp in the current BB.
        }
      } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
        // ok, take it.
      } else {
        if (isa<CallInst>(BI)) {
          // A call inside BB.
          TempsToInstrument.clear();
        }
        continue;
      }
      ToInstrument.push_back(BI);
    }
  }

  // Instrument.
  int NumInstrumented = 0;
  for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
    Instruction *Inst = ToInstrument[i];
    if (ClDebugMin < 0 || ClDebugMax < 0 ||
        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
      if (isa<StoreInst>(Inst) || isa<LoadInst>(Inst))
        instrumentMop(Inst);
      else
        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
    }
    NumInstrumented++;
  }

  DEBUG(dbgs() << F);

  bool ChangedStack = poisonStackInFunction(M, F);
  return NumInstrumented > 0 || ChangedStack;
}

static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
  if (ShadowRedzoneSize == 1) return PoisonByte;
  if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
  if (ShadowRedzoneSize == 4)
    return (PoisonByte << 24) + (PoisonByte << 16) +
        (PoisonByte << 8) + (PoisonByte);
  assert(0 && "ShadowRedzoneSize is either 1, 2 or 4");
  return 0;
}

static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
                                            size_t Size,
                                            size_t RedzoneSize,
                                            size_t ShadowGranularity,
                                            uint8_t Magic) {
  for (size_t i = 0; i < RedzoneSize;
       i+= ShadowGranularity, Shadow++) {
    if (i + ShadowGranularity <= Size) {
      *Shadow = 0;  // fully addressable
    } else if (i >= Size) {
      *Shadow = Magic;  // unaddressable
    } else {
      *Shadow = Size - i;  // first Size-i bytes are addressable
    }
  }
}

void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
                                   IRBuilder<> IRB,
                                   Value *ShadowBase, bool DoPoison) {
  size_t ShadowRZSize = RedzoneSize >> MappingScale;
  assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
  Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
  Type *RZPtrTy = PointerType::get(RZTy, 0);

  Value *PoisonLeft  = ConstantInt::get(RZTy,
    ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
  Value *PoisonMid   = ConstantInt::get(RZTy,
    ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
  Value *PoisonRight = ConstantInt::get(RZTy,
    ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));

  // poison the first red zone.
  IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));

  // poison all other red zones.
  uint64_t Pos = RedzoneSize;
  for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
    AllocaInst *AI = AllocaVec[i];
    uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
    uint64_t AlignedSize = getAlignedAllocaSize(AI);
    assert(AlignedSize - SizeInBytes < RedzoneSize);
    Value *Ptr = NULL;

    Pos += AlignedSize;

    assert(ShadowBase->getType() == IntptrTy);
    if (SizeInBytes < AlignedSize) {
      // Poison the partial redzone at right
      Ptr = IRB.CreateAdd(
          ShadowBase, ConstantInt::get(IntptrTy,
                                       (Pos >> MappingScale) - ShadowRZSize));
      size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes);
      uint32_t Poison = 0;
      if (DoPoison) {
        PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
                                        RedzoneSize,
                                        1ULL << MappingScale,
                                        kAsanStackPartialRedzoneMagic);
      }
      Value *PartialPoison = ConstantInt::get(RZTy, Poison);
      IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
    }

    // Poison the full redzone at right.
    Ptr = IRB.CreateAdd(ShadowBase,
                        ConstantInt::get(IntptrTy, Pos >> MappingScale));
    Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
    IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));

    Pos += RedzoneSize;
  }
}

// Workaround for bug 11395: we don't want to instrument stack in functions
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
// FIXME: remove once the bug 11395 is fixed.
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
  if (LongSize != 32) return false;
  CallInst *CI = dyn_cast<CallInst>(I);
  if (!CI || !CI->isInlineAsm()) return false;
  if (CI->getNumArgOperands() <= 5) return false;
  // We have inline assembly with quite a few arguments.
  return true;
}

// Find all static Alloca instructions and put
// poisoned red zones around all of them.
// Then unpoison everything back before the function returns.
//
// Stack poisoning does not play well with exception handling.
// When an exception is thrown, we essentially bypass the code
// that unpoisones the stack. This is why the run-time library has
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
// stack in the interceptor. This however does not work inside the
// actual function which catches the exception. Most likely because the
// compiler hoists the load of the shadow value somewhere too high.
// This causes asan to report a non-existing bug on 453.povray.
// It sounds like an LLVM bug.
bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
  if (!ClStack) return false;
  SmallVector<AllocaInst*, 16> AllocaVec;
  SmallVector<Instruction*, 8> RetVec;
  uint64_t TotalSize = 0;

  // Filter out Alloca instructions we want (and can) handle.
  // Collect Ret instructions.
  for (Function::iterator FI = F.begin(), FE = F.end();
       FI != FE; ++FI) {
    BasicBlock &BB = *FI;
    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
         BI != BE; ++BI) {
      if (isa<ReturnInst>(BI)) {
          RetVec.push_back(BI);
          continue;
      }

      AllocaInst *AI = dyn_cast<AllocaInst>(BI);
      if (!AI) continue;
      if (AI->isArrayAllocation()) continue;
      if (!AI->isStaticAlloca()) continue;
      if (!AI->getAllocatedType()->isSized()) continue;
      if (AI->getAlignment() > RedzoneSize) continue;
      AllocaVec.push_back(AI);
      uint64_t AlignedSize =  getAlignedAllocaSize(AI);
      TotalSize += AlignedSize;
    }
  }

  if (AllocaVec.empty()) return false;

  uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize;

  bool DoStackMalloc = ClUseAfterReturn
      && LocalStackSize <= kMaxStackMallocSize;

  Instruction *InsBefore = AllocaVec[0];
  IRBuilder<> IRB(InsBefore);


  Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
  AllocaInst *MyAlloca =
      new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
  MyAlloca->setAlignment(RedzoneSize);
  assert(MyAlloca->isStaticAlloca());
  Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
  Value *LocalStackBase = OrigStackBase;

  if (DoStackMalloc) {
    Value *AsanStackMallocFunc = M.getOrInsertFunction(
        kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL);
    LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
        ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
  }

  // This string will be parsed by the run-time (DescribeStackAddress).
  SmallString<2048> StackDescriptionStorage;
  raw_svector_ostream StackDescription(StackDescriptionStorage);
  StackDescription << F.getName() << " " << AllocaVec.size() << " ";

  uint64_t Pos = RedzoneSize;
  // Replace Alloca instructions with base+offset.
  for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
    AllocaInst *AI = AllocaVec[i];
    uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
    StringRef Name = AI->getName();
    StackDescription << Pos << " " << SizeInBytes << " "
                     << Name.size() << " " << Name << " ";
    uint64_t AlignedSize = getAlignedAllocaSize(AI);
    assert((AlignedSize % RedzoneSize) == 0);
    AI->replaceAllUsesWith(
        IRB.CreateIntToPtr(
            IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
            AI->getType()));
    Pos += AlignedSize + RedzoneSize;
  }
  assert(Pos == LocalStackSize);

  // Write the Magic value and the frame description constant to the redzone.
  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
                  BasePlus0);
  Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
                                   ConstantInt::get(IntptrTy, LongSize/8));
  BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
  Value *Description = IRB.CreatePointerCast(
      createPrivateGlobalForString(M, StackDescription.str()),
      IntptrTy);
  IRB.CreateStore(Description, BasePlus1);

  // Poison the stack redzones at the entry.
  Value *ShadowBase = memToShadow(LocalStackBase, IRB);
  PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);

  Value *AsanStackFreeFunc = NULL;
  if (DoStackMalloc) {
    AsanStackFreeFunc = M.getOrInsertFunction(
        kAsanStackFreeName, IRB.getVoidTy(),
        IntptrTy, IntptrTy, IntptrTy, NULL);
  }

  // Unpoison the stack before all ret instructions.
  for (size_t i = 0, n = RetVec.size(); i < n; i++) {
    Instruction *Ret = RetVec[i];
    IRBuilder<> IRBRet(Ret);

    // Mark the current frame as retired.
    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
                       BasePlus0);
    // Unpoison the stack.
    PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);

    if (DoStackMalloc) {
      IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
                         ConstantInt::get(IntptrTy, LocalStackSize),
                         OrigStackBase);
    }
  }

  if (ClDebugStack) {
    DEBUG(dbgs() << F);
  }

  return true;
}

BlackList::BlackList(const std::string &Path) {
  Functions = NULL;
  const char *kFunPrefix = "fun:";
  if (!ClBlackListFile.size()) return;
  std::string Fun;

  OwningPtr<MemoryBuffer> File;
  if (error_code EC = MemoryBuffer::getFile(ClBlackListFile.c_str(), File)) {
    report_fatal_error("Can't open blacklist file " + ClBlackListFile + ": " +
                       EC.message());
  }
  MemoryBuffer *Buff = File.take();
  const char *Data = Buff->getBufferStart();
  size_t DataLen = Buff->getBufferSize();
  SmallVector<StringRef, 16> Lines;
  SplitString(StringRef(Data, DataLen), Lines, "\n\r");
  for (size_t i = 0, numLines = Lines.size(); i < numLines; i++) {
    if (Lines[i].startswith(kFunPrefix)) {
      std::string ThisFunc = Lines[i].substr(strlen(kFunPrefix));
      std::string ThisFuncRE;
      // add ThisFunc replacing * with .*
      for (size_t j = 0, n = ThisFunc.size(); j < n; j++) {
        if (ThisFunc[j] == '*')
          ThisFuncRE += '.';
        ThisFuncRE += ThisFunc[j];
      }
      // Check that the regexp is valid.
      Regex CheckRE(ThisFuncRE);
      std::string Error;
      if (!CheckRE.isValid(Error))
        report_fatal_error("malformed blacklist regex: " + ThisFunc +
                           ": " + Error);
      // Append to the final regexp.
      if (Fun.size())
        Fun += "|";
      Fun += ThisFuncRE;
    }
  }
  if (Fun.size()) {
    Functions = new Regex(Fun);
  }
}

bool BlackList::isIn(const Function &F) {
  if (Functions) {
    bool Res = Functions->match(F.getName());
    return Res;
  }
  return false;
}