summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/ADCE.cpp
blob: 35189e36838b68eb98e5febb47ba4782cca50b54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
//
// This file implements "aggressive" dead code elimination.  ADCE is DCe where
// values are assumed to be dead until proven otherwise.  This is similar to 
// SCCP, except applied to the liveness of values.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Writer.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
#include "Support/STLExtras.h"
#include "Support/DepthFirstIterator.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
#include <iostream>
using std::cerr;
using std::vector;

static Statistic<> NumBlockRemoved("adce\t\t- Number of basic blocks removed");
static Statistic<> NumInstRemoved ("adce\t\t- Number of instructions removed");

namespace {

//===----------------------------------------------------------------------===//
// ADCE Class
//
// This class does all of the work of Aggressive Dead Code Elimination.
// It's public interface consists of a constructor and a doADCE() method.
//
class ADCE : public FunctionPass {
  Function *Func;                       // The function that we are working on
  std::vector<Instruction*> WorkList;   // Instructions that just became live
  std::set<Instruction*>    LiveSet;    // The set of live instructions

  //===--------------------------------------------------------------------===//
  // The public interface for this class
  //
public:
  const char *getPassName() const { return "Aggressive Dead Code Elimination"; }
  
  // Execute the Aggressive Dead Code Elimination Algorithm
  //
  virtual bool runOnFunction(Function &F) {
    Func = &F;
    bool Changed = doADCE();
    assert(WorkList.empty());
    LiveSet.clear();
    return Changed;
  }
  // getAnalysisUsage - We require post dominance frontiers (aka Control
  // Dependence Graph)
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired(DominatorTree::PostDomID);
    AU.addRequired(DominanceFrontier::PostDomID);
  }


  //===--------------------------------------------------------------------===//
  // The implementation of this class
  //
private:
  // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
  // true if the function was modified.
  //
  bool doADCE();

  void markBlockAlive(BasicBlock *BB);

  inline void markInstructionLive(Instruction *I) {
    if (LiveSet.count(I)) return;
    DEBUG(cerr << "Insn Live: " << I);
    LiveSet.insert(I);
    WorkList.push_back(I);
  }

  inline void markTerminatorLive(const BasicBlock *BB) {
    DEBUG(cerr << "Terminat Live: " << BB->getTerminator());
    markInstructionLive((Instruction*)BB->getTerminator());
  }
};

} // End of anonymous namespace

Pass *createAggressiveDCEPass() { return new ADCE(); }


void ADCE::markBlockAlive(BasicBlock *BB) {
  // Mark the basic block as being newly ALIVE... and mark all branches that
  // this block is control dependant on as being alive also...
  //
  DominanceFrontier &CDG =
    getAnalysis<DominanceFrontier>(DominanceFrontier::PostDomID);

  DominanceFrontier::const_iterator It = CDG.find(BB);
  if (It != CDG.end()) {
    // Get the blocks that this node is control dependant on...
    const DominanceFrontier::DomSetType &CDB = It->second;
    for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
             bind_obj(this, &ADCE::markTerminatorLive));
  }
  
  // If this basic block is live, then the terminator must be as well!
  markTerminatorLive(BB);
}


// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
// true if the function was modified.
//
bool ADCE::doADCE() {
  bool MadeChanges = false;

  // Iterate over all of the instructions in the function, eliminating trivially
  // dead instructions, and marking instructions live that are known to be 
  // needed.  Perform the walk in depth first order so that we avoid marking any
  // instructions live in basic blocks that are unreachable.  These blocks will
  // be eliminated later, along with the instructions inside.
  //
  for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
       BBI != BBE; ++BBI) {
    BasicBlock *BB = *BBI;
    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
      if (II->hasSideEffects() || II->getOpcode() == Instruction::Ret) {
	markInstructionLive(II);
        ++II;  // Increment the inst iterator if the inst wasn't deleted
      } else if (isInstructionTriviallyDead(II)) {
        // Remove the instruction from it's basic block...
        II = BB->getInstList().erase(II);
        ++NumInstRemoved;
        MadeChanges = true;
      } else {
        ++II;  // Increment the inst iterator if the inst wasn't deleted
      }
    }
  }

  DEBUG(cerr << "Processing work list\n");

  // AliveBlocks - Set of basic blocks that we know have instructions that are
  // alive in them...
  //
  std::set<BasicBlock*> AliveBlocks;

  // Process the work list of instructions that just became live... if they
  // became live, then that means that all of their operands are neccesary as
  // well... make them live as well.
  //
  while (!WorkList.empty()) {
    Instruction *I = WorkList.back(); // Get an instruction that became live...
    WorkList.pop_back();

    BasicBlock *BB = I->getParent();
    if (!AliveBlocks.count(BB)) {     // Basic block not alive yet...
      AliveBlocks.insert(BB);         // Block is now ALIVE!
      markBlockAlive(BB);             // Make it so now!
    }

    // PHI nodes are a special case, because the incoming values are actually
    // defined in the predecessor nodes of this block, meaning that the PHI
    // makes the predecessors alive.
    //
    if (PHINode *PN = dyn_cast<PHINode>(I))
      for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
        if (!AliveBlocks.count(*PI)) {
          AliveBlocks.insert(BB);         // Block is now ALIVE!
          markBlockAlive(*PI);
        }

    // Loop over all of the operands of the live instruction, making sure that
    // they are known to be alive as well...
    //
    for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
      if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
	markInstructionLive(Operand);
  }

  if (DebugFlag) {
    cerr << "Current Function: X = Live\n";
    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
      for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
        if (LiveSet.count(BI)) cerr << "X ";
        cerr << *BI;
      }
  }

  // Find the first postdominator of the entry node that is alive.  Make it the
  // new entry node...
  //
  DominatorTree &DT = getAnalysis<DominatorTree>(DominatorTree::PostDomID);

  // If there are some blocks dead...
  if (AliveBlocks.size() != Func->size()) {
    // Insert a new entry node to eliminate the entry node as a special case.
    BasicBlock *NewEntry = new BasicBlock();
    NewEntry->getInstList().push_back(new BranchInst(&Func->front()));
    Func->getBasicBlockList().push_front(NewEntry);
    AliveBlocks.insert(NewEntry);    // This block is always alive!
    
    // Loop over all of the alive blocks in the function.  If any successor
    // blocks are not alive, we adjust the outgoing branches to branch to the
    // first live postdominator of the live block, adjusting any PHI nodes in
    // the block to reflect this.
    //
    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
      if (AliveBlocks.count(I)) {
        BasicBlock *BB = I;
        TerminatorInst *TI = BB->getTerminator();
      
        // Loop over all of the successors, looking for ones that are not alive
        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
          if (!AliveBlocks.count(TI->getSuccessor(i))) {
            // Scan up the postdominator tree, looking for the first
            // postdominator that is alive, and the last postdominator that is
            // dead...
            //
            DominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
            DominatorTree::Node *NextNode = LastNode->getIDom();
            while (!AliveBlocks.count(NextNode->getNode())) {
              LastNode = NextNode;
              NextNode = NextNode->getIDom();
            }
            
            // Get the basic blocks that we need...
            BasicBlock *LastDead = LastNode->getNode();
            BasicBlock *NextAlive = NextNode->getNode();
            
            // Make the conditional branch now go to the next alive block...
            TI->getSuccessor(i)->removePredecessor(BB);
            TI->setSuccessor(i, NextAlive);
            
            // If there are PHI nodes in NextAlive, we need to add entries to
            // the PHI nodes for the new incoming edge.  The incoming values
            // should be identical to the incoming values for LastDead.
            //
            for (BasicBlock::iterator II = NextAlive->begin();
                 PHINode *PN = dyn_cast<PHINode>(&*II); ++II) {
              // Get the incoming value for LastDead...
              int OldIdx = PN->getBasicBlockIndex(LastDead);
              assert(OldIdx != -1 && "LastDead is not a pred of NextAlive!");
              Value *InVal = PN->getIncomingValue(OldIdx);
              
              // Add an incoming value for BB now...
              PN->addIncoming(InVal, BB);
            }
          }

        // Now loop over all of the instructions in the basic block, telling
        // dead instructions to drop their references.  This is so that the next
        // sweep over the program can safely delete dead instructions without
        // other dead instructions still refering to them.
        //
        for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
          if (!LiveSet.count(I))                // Is this instruction alive?
            I->dropAllReferences();             // Nope, drop references... 
      }
  }

  // Loop over all of the basic blocks in the function, dropping references of
  // the dead basic blocks
  //
  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) {
    if (!AliveBlocks.count(BB)) {
      // Remove all outgoing edges from this basic block and convert the
      // terminator into a return instruction.
      vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
      
      if (!Succs.empty()) {
        // Loop over all of the successors, removing this block from PHI node
        // entries that might be in the block...
        while (!Succs.empty()) {
          Succs.back()->removePredecessor(BB);
          Succs.pop_back();
        }
        
        // Delete the old terminator instruction...
        BB->getInstList().pop_back();
        const Type *RetTy = Func->getReturnType();
        Instruction *New = new ReturnInst(RetTy != Type::VoidTy ?
                                          Constant::getNullValue(RetTy) : 0);
        BB->getInstList().push_back(New);
      }

      BB->dropAllReferences();
      ++NumBlockRemoved;
      MadeChanges = true;
    }
  }

  // Now loop through all of the blocks and delete the dead ones.  We can safely
  // do this now because we know that there are no references to dead blocks
  // (because they have dropped all of their references...  we also remove dead
  // instructions from alive blocks.
  //
  for (Function::iterator BI = Func->begin(); BI != Func->end(); )
    if (!AliveBlocks.count(BI))
      BI = Func->getBasicBlockList().erase(BI);
    else {
      for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
        if (!LiveSet.count(II)) {             // Is this instruction alive?
          // Nope... remove the instruction from it's basic block...
          II = BI->getInstList().erase(II);
          ++NumInstRemoved;
          MadeChanges = true;
        } else {
          ++II;
        }

      ++BI;                                           // Increment iterator...
    }

  return MadeChanges;
}