summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/GCSE.cpp
blob: 56bb191e16dd474a16323ca177b39ce0e4a5e15d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===//
//
// This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function.  It does this by
// examining the SSA value graph of the function, instead of doing slow, dense,
// bit-vector computations.
//
// This pass works best if it is proceeded with a simple constant propogation
// pass and an instruction combination pass because this pass does not do any
// value numbering (in order to be speedy).
//
// This pass does not attempt to CSE load instructions, because it does not use
// pointer analysis to determine when it is safe.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/InstrTypes.h"
#include "llvm/iMemory.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/CFG.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
using std::set;
using std::map;


static Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed");
static Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed");

namespace {
  class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> {
    set<Instruction*>       WorkList;
    DominatorSet           *DomSetInfo;
    ImmediateDominators    *ImmDominator;

    // BBContainsStore - Contains a value that indicates whether a basic block
    // has a store or call instruction in it.  This map is demand populated, so
    // not having an entry means that the basic block has not been scanned yet.
    //
    map<BasicBlock*, bool>  BBContainsStore;
  public:
    const char *getPassName() const {
      return "Global Common Subexpression Elimination";
    }

    virtual bool runOnFunction(Function &F);

    // Visitation methods, these are invoked depending on the type of
    // instruction being checked.  They should return true if a common
    // subexpression was folded.
    //
    bool visitUnaryOperator(Instruction &I);
    bool visitBinaryOperator(Instruction &I);
    bool visitGetElementPtrInst(GetElementPtrInst &I);
    bool visitCastInst(CastInst &I){return visitUnaryOperator((Instruction&)I);}
    bool visitShiftInst(ShiftInst &I) {
      return visitBinaryOperator((Instruction&)I);
    }
    bool visitLoadInst(LoadInst &LI);
    bool visitInstruction(Instruction &) { return false; }

  private:
    void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
    void CommonSubExpressionFound(Instruction *I, Instruction *Other);

    // TryToRemoveALoad - Try to remove one of L1 or L2.  The problem with
    // removing loads is that intervening stores might make otherwise identical
    // load's yield different values.  To ensure that this is not the case, we
    // check that there are no intervening stores or calls between the
    // instructions.
    //
    bool TryToRemoveALoad(LoadInst *L1, LoadInst *L2);

    // CheckForInvalidatingInst - Return true if BB or any of the predecessors
    // of BB (until DestBB) contain a store (or other invalidating) instruction.
    //
    bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
                                  set<BasicBlock*> &VisitedSet);

    // This transformation requires dominator and immediate dominator info
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.preservesCFG();
      AU.addRequired(DominatorSet::ID);
      AU.addRequired(ImmediateDominators::ID); 
    }
  };
}

// createGCSEPass - The public interface to this file...
Pass *createGCSEPass() { return new GCSE(); }


// GCSE::runOnFunction - This is the main transformation entry point for a
// function.
//
bool GCSE::runOnFunction(Function &F) {
  bool Changed = false;

  DomSetInfo = &getAnalysis<DominatorSet>();
  ImmDominator = &getAnalysis<ImmediateDominators>();

  // Step #1: Add all instructions in the function to the worklist for
  // processing.  All of the instructions are considered to be our
  // subexpressions to eliminate if possible.
  //
  WorkList.insert(inst_begin(F), inst_end(F));

  // Step #2: WorkList processing.  Iterate through all of the instructions,
  // checking to see if there are any additionally defined subexpressions in the
  // program.  If so, eliminate them!
  //
  while (!WorkList.empty()) {
    Instruction &I = **WorkList.begin(); // Get an instruction from the worklist
    WorkList.erase(WorkList.begin());

    // Visit the instruction, dispatching to the correct visit function based on
    // the instruction type.  This does the checking.
    //
    Changed |= visit(I);
  }

  // Clear out data structure so that next function starts fresh
  BBContainsStore.clear();
  
  // When the worklist is empty, return whether or not we changed anything...
  return Changed;
}


// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
// uses of the instruction use First now instead.
//
void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
  Instruction &Second = *SI;
  
  //cerr << "DEL " << (void*)Second << Second;

  // Add the first instruction back to the worklist
  WorkList.insert(First);

  // Add all uses of the second instruction to the worklist
  for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end();
       UI != UE; ++UI)
    WorkList.insert(cast<Instruction>(*UI));
    
  // Make all users of 'Second' now use 'First'
  Second.replaceAllUsesWith(First);

  // Erase the second instruction from the program
  Second.getParent()->getInstList().erase(SI);
}

// CommonSubExpressionFound - The two instruction I & Other have been found to
// be common subexpressions.  This function is responsible for eliminating one
// of them, and for fixing the worklist to be correct.
//
void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
  assert(I != Other);

  WorkList.erase(I);
  WorkList.erase(Other); // Other may not actually be on the worklist anymore...

  ++NumInstRemoved;   // Keep track of number of instructions eliminated

  // Handle the easy case, where both instructions are in the same basic block
  BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
  if (BB1 == BB2) {
    // Eliminate the second occuring instruction.  Add all uses of the second
    // instruction to the worklist.
    //
    // Scan the basic block looking for the "first" instruction
    BasicBlock::iterator BI = BB1->begin();
    while (&*BI != I && &*BI != Other) {
      ++BI;
      assert(BI != BB1->end() && "Instructions not found in parent BB!");
    }

    // Keep track of which instructions occurred first & second
    Instruction *First = BI;
    Instruction *Second = I != First ? I : Other; // Get iterator to second inst
    BI = Second;

    // Destroy Second, using First instead.
    ReplaceInstWithInst(First, BI);    

    // Otherwise, the two instructions are in different basic blocks.  If one
    // dominates the other instruction, we can simply use it
    //
  } else if (DomSetInfo->dominates(BB1, BB2)) {    // I dom Other?
    ReplaceInstWithInst(I, Other);
  } else if (DomSetInfo->dominates(BB2, BB1)) {    // Other dom I?
    ReplaceInstWithInst(Other, I);
  } else {
    // Handle the most general case now.  In this case, neither I dom Other nor
    // Other dom I.  Because we are in SSA form, we are guaranteed that the
    // operands of the two instructions both dominate the uses, so we _know_
    // that there must exist a block that dominates both instructions (if the
    // operands of the instructions are globals or constants, worst case we
    // would get the entry node of the function).  Search for this block now.
    //

    // Search up the immediate dominator chain of BB1 for the shared dominator
    BasicBlock *SharedDom = (*ImmDominator)[BB1];
    while (!DomSetInfo->dominates(SharedDom, BB2))
      SharedDom = (*ImmDominator)[SharedDom];

    // At this point, shared dom must dominate BOTH BB1 and BB2...
    assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) &&
           DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!");

    // Rip 'I' out of BB1, and move it to the end of SharedDom.
    BB1->getInstList().remove(I);
    SharedDom->getInstList().insert(--SharedDom->end(), I);

    // Eliminate 'Other' now.
    ReplaceInstWithInst(I, Other);
  }
}

//===----------------------------------------------------------------------===//
//
// Visitation methods, these are invoked depending on the type of instruction
// being checked.  They should return true if a common subexpression was folded.
//
//===----------------------------------------------------------------------===//

bool GCSE::visitUnaryOperator(Instruction &I) {
  Value *Op = I.getOperand(0);
  Function *F = I.getParent()->getParent();
  
  for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
       UI != UE; ++UI)
    if (Instruction *Other = dyn_cast<Instruction>(*UI))
      // Check to see if this new binary operator is not I, but same operand...
      if (Other != &I && Other->getOpcode() == I.getOpcode() &&
          Other->getOperand(0) == Op &&     // Is the operand the same?
          // Is it embeded in the same function?  (This could be false if LHS
          // is a constant or global!)
          Other->getParent()->getParent() == F &&

          // Check that the types are the same, since this code handles casts...
          Other->getType() == I.getType()) {
        
        // These instructions are identical.  Handle the situation.
        CommonSubExpressionFound(&I, Other);
        return true;   // One instruction eliminated!
      }
  
  return false;
}

// isIdenticalBinaryInst - Return true if the two binary instructions are
// identical.
//
static inline bool isIdenticalBinaryInst(const Instruction &I1,
                                         const Instruction *I2) {
  // Is it embeded in the same function?  (This could be false if LHS
  // is a constant or global!)
  if (I1.getOpcode() != I2->getOpcode() ||
      I1.getParent()->getParent() != I2->getParent()->getParent())
    return false;
  
  // They are identical if both operands are the same!
  if (I1.getOperand(0) == I2->getOperand(0) &&
      I1.getOperand(1) == I2->getOperand(1))
    return true;
  
  // If the instruction is commutative and associative, the instruction can
  // match if the operands are swapped!
  //
  if ((I1.getOperand(0) == I2->getOperand(1) &&
       I1.getOperand(1) == I2->getOperand(0)) &&
      (I1.getOpcode() == Instruction::Add || 
       I1.getOpcode() == Instruction::Mul ||
       I1.getOpcode() == Instruction::And || 
       I1.getOpcode() == Instruction::Or  ||
       I1.getOpcode() == Instruction::Xor))
    return true;

  return false;
}

bool GCSE::visitBinaryOperator(Instruction &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Function *F = I.getParent()->getParent();
  
  for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
       UI != UE; ++UI)
    if (Instruction *Other = dyn_cast<Instruction>(*UI))
      // Check to see if this new binary operator is not I, but same operand...
      if (Other != &I && isIdenticalBinaryInst(I, Other)) {        
        // These instructions are identical.  Handle the situation.
        CommonSubExpressionFound(&I, Other);
        return true;   // One instruction eliminated!
      }
  
  return false;
}

// IdenticalComplexInst - Return true if the two instructions are the same, by
// using a brute force comparison.
//
static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) {
  assert(I1->getOpcode() == I2->getOpcode());
  // Equal if they are in the same function...
  return I1->getParent()->getParent() == I2->getParent()->getParent() &&
    // And return the same type...
    I1->getType() == I2->getType() &&
    // And have the same number of operands...
    I1->getNumOperands() == I2->getNumOperands() &&
    // And all of the operands are equal.
    std::equal(I1->op_begin(), I1->op_end(), I2->op_begin());
}

bool GCSE::visitGetElementPtrInst(GetElementPtrInst &I) {
  Value *Op = I.getOperand(0);
  Function *F = I.getParent()->getParent();
  
  for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
       UI != UE; ++UI)
    if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
      // Check to see if this new getelementptr is not I, but same operand...
      if (Other != &I && IdenticalComplexInst(&I, Other)) {
        // These instructions are identical.  Handle the situation.
        CommonSubExpressionFound(&I, Other);
        return true;   // One instruction eliminated!
      }
  
  return false;
}

bool GCSE::visitLoadInst(LoadInst &LI) {
  Value *Op = LI.getOperand(0);
  Function *F = LI.getParent()->getParent();
  
  for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
       UI != UE; ++UI)
    if (LoadInst *Other = dyn_cast<LoadInst>(*UI))
      // Check to see if this new load is not LI, but has the same operands...
      if (Other != &LI && IdenticalComplexInst(&LI, Other) &&
          TryToRemoveALoad(&LI, Other))
        return true;   // An instruction was eliminated!
  
  return false;
}

static inline bool isInvalidatingInst(const Instruction &I) {
  return I.getOpcode() == Instruction::Store ||
         I.getOpcode() == Instruction::Call ||
         I.getOpcode() == Instruction::Invoke;
}

// TryToRemoveALoad - Try to remove one of L1 or L2.  The problem with removing
// loads is that intervening stores might make otherwise identical load's yield
// different values.  To ensure that this is not the case, we check that there
// are no intervening stores or calls between the instructions.
//
bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) {
  // Figure out which load dominates the other one.  If neither dominates the
  // other we cannot eliminate one...
  //
  if (DomSetInfo->dominates(L2, L1)) 
    std::swap(L1, L2);   // Make L1 dominate L2
  else if (!DomSetInfo->dominates(L1, L2))
    return false;  // Neither instruction dominates the other one...

  BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent();

  BasicBlock::iterator L1I = L1;

  // L1 now dominates L2.  Check to see if the intervening instructions between
  // the two loads include a store or call...
  //
  if (BB1 == BB2) {  // In same basic block?
    // In this degenerate case, no checking of global basic blocks has to occur
    // just check the instructions BETWEEN L1 & L2...
    //
    for (++L1I; &*L1I != L2; ++L1I)
      if (isInvalidatingInst(*L1I))
        return false;   // Cannot eliminate load

    ++NumLoadRemoved;
    CommonSubExpressionFound(L1, L2);
    return true;
  } else {
    // Make sure that there are no store instructions between L1 and the end of
    // it's basic block...
    //
    for (++L1I; L1I != BB1->end(); ++L1I)
      if (isInvalidatingInst(*L1I)) {
        BBContainsStore[BB1] = true;
        return false;   // Cannot eliminate load
      }

    // Make sure that there are no store instructions between the start of BB2
    // and the second load instruction...
    //
    for (BasicBlock::iterator II = BB2->begin(); &*II != L2; ++II)
      if (isInvalidatingInst(*II)) {
        BBContainsStore[BB2] = true;
        return false;   // Cannot eliminate load
      }

    // Do a depth first traversal of the inverse CFG starting at L2's block,
    // looking for L1's block.  The inverse CFG is made up of the predecessor
    // nodes of a block... so all of the edges in the graph are "backward".
    //
    set<BasicBlock*> VisitedSet;
    for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI)
      if (CheckForInvalidatingInst(*PI, BB1, VisitedSet))
        return false;
    
    ++NumLoadRemoved;
    CommonSubExpressionFound(L1, L2);
    return true;
  }
  return false;
}

// CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB
// (until DestBB) contain a store (or other invalidating) instruction.
//
bool GCSE::CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
                                    set<BasicBlock*> &VisitedSet) {
  // Found the termination point!
  if (BB == DestBB || VisitedSet.count(BB)) return false;

  // Avoid infinite recursion!
  VisitedSet.insert(BB);

  // Have we already checked this block?
  map<BasicBlock*, bool>::iterator MI = BBContainsStore.find(BB);
  
  if (MI != BBContainsStore.end()) {
    // If this block is known to contain a store, exit the recursion early...
    if (MI->second) return true;
    // Otherwise continue checking predecessors...
  } else {
    // We don't know if this basic block contains an invalidating instruction.
    // Check now:
    bool HasStore = std::find_if(BB->begin(), BB->end(),
                                 isInvalidatingInst) != BB->end();
    if ((BBContainsStore[BB] = HasStore))   // Update map
      return true;   // Exit recursion early...
  }

  // Check all of our predecessor blocks...
  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
    if (CheckForInvalidatingInst(*PI, DestBB, VisitedSet))
      return true;

  // None of our predecessor blocks contain a store, and we don't either!
  return false;
}