summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
blob: 7c1f1161f59f96cca49898557ec2e544231143d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation make the following changes to each loop with an
// identifiable induction variable:
//   1. All loops are transformed to have a SINGLE canonical induction variable
//      which starts at zero and steps by one.
//   2. The canonical induction variable is guaranteed to be the first PHI node
//      in the loop header block.
//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
//   1. The exit condition for the loop is canonicalized to compare the
//      induction value against the exit value.  This turns loops like:
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
//   2. Any use outside of the loop of an expression derived from the indvar
//      is changed to compute the derived value outside of the loop, eliminating
//      the dependence on the exit value of the induction variable.  If the only
//      purpose of the loop is to compute the exit value of some derived
//      expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.  Additionally, on targets
// where it is profitable, the loop could be transformed to count down to zero
// (the "do loop" optimization).
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
using namespace llvm;

namespace {
  /// SCEVExpander - This class uses information about analyze scalars to
  /// rewrite expressions in canonical form.
  ///
  /// Clients should create an instance of this class when rewriting is needed,
  /// and destroying it when finished to allow the release of the associated
  /// memory.
  struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
    ScalarEvolution &SE;
    LoopInfo &LI;
    std::map<SCEVHandle, Value*> InsertedExpressions;
    std::set<Instruction*> InsertedInstructions;

    Instruction *InsertPt;

    friend class SCEVVisitor<SCEVExpander, Value*>;
  public:
    SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}

    /// isInsertedInstruction - Return true if the specified instruction was
    /// inserted by the code rewriter.  If so, the client should not modify the
    /// instruction.
    bool isInsertedInstruction(Instruction *I) const {
      return InsertedInstructions.count(I);
    }
    
    /// getOrInsertCanonicalInductionVariable - This method returns the
    /// canonical induction variable of the specified type for the specified
    /// loop (inserting one if there is none).  A canonical induction variable
    /// starts at zero and steps by one on each iteration.
    Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
      assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
             "Can only insert integer or floating point induction variables!");
      SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
                                         SCEVUnknown::getIntegerSCEV(1, Ty), L);
      return expand(H);
    }

    /// addInsertedValue - Remember the specified instruction as being the
    /// canonical form for the specified SCEV.
    void addInsertedValue(Instruction *I, SCEV *S) {
      InsertedExpressions[S] = (Value*)I;
      InsertedInstructions.insert(I);
    }

    /// expandCodeFor - Insert code to directly compute the specified SCEV
    /// expression into the program.  The inserted code is inserted into the
    /// specified block.
    ///
    /// If a particular value sign is required, a type may be specified for the
    /// result.
    Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
      // Expand the code for this SCEV.
      this->InsertPt = IP;
      return expandInTy(SH, Ty);
    }

  protected:
    Value *expand(SCEV *S) {
      // Check to see if we already expanded this.
      std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
      if (I != InsertedExpressions.end())
        return I->second;

      Value *V = visit(S);
      InsertedExpressions[S] = V;
      return V;
    }

    Value *expandInTy(SCEV *S, const Type *Ty) {
      Value *V = expand(S);
      if (Ty && V->getType() != Ty) {
        // FIXME: keep track of the cast instruction.
        if (Constant *C = dyn_cast<Constant>(V))
          return ConstantExpr::getCast(C, Ty);
        else if (Instruction *I = dyn_cast<Instruction>(V)) {
          // Check to see if there is already a cast.  If there is, use it.
          for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 
               UI != E; ++UI) {
            if ((*UI)->getType() == Ty)
              if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
                BasicBlock::iterator It = I; ++It;
                while (isa<PHINode>(It)) ++It;
                if (It != BasicBlock::iterator(CI)) {
                  // Splice the cast immediately after the operand in question.
                  I->getParent()->getInstList().splice(It,
                                                       CI->getParent()->getInstList(),
                                                       CI);
                }
                return CI;
              }
          }
          BasicBlock::iterator IP = I; ++IP;
          if (InvokeInst *II = dyn_cast<InvokeInst>(I))
            IP = II->getNormalDest()->begin();
          while (isa<PHINode>(IP)) ++IP;
          return new CastInst(V, Ty, V->getName(), IP);
        } else {
          // FIXME: check to see if there is already a cast!
          return new CastInst(V, Ty, V->getName(), InsertPt);
        }
      }
      return V;
    }

    Value *visitConstant(SCEVConstant *S) {
      return S->getValue();
    }

    Value *visitTruncateExpr(SCEVTruncateExpr *S) {
      Value *V = expand(S->getOperand());
      return new CastInst(V, S->getType(), "tmp.", InsertPt);
    }

    Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
      Value *V = expandInTy(S->getOperand(),S->getType()->getUnsignedVersion());
      return new CastInst(V, S->getType(), "tmp.", InsertPt);
    }

    Value *visitAddExpr(SCEVAddExpr *S) {
      const Type *Ty = S->getType();
      Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);

      // Emit a bunch of add instructions
      for (int i = S->getNumOperands()-2; i >= 0; --i)
        V = BinaryOperator::createAdd(V, expandInTy(S->getOperand(i), Ty),
                                      "tmp.", InsertPt);
      return V;
    }

    Value *visitMulExpr(SCEVMulExpr *S);

    Value *visitUDivExpr(SCEVUDivExpr *S) {
      const Type *Ty = S->getType();
      Value *LHS = expandInTy(S->getLHS(), Ty);
      Value *RHS = expandInTy(S->getRHS(), Ty);
      return BinaryOperator::createDiv(LHS, RHS, "tmp.", InsertPt);
    }

    Value *visitAddRecExpr(SCEVAddRecExpr *S);

    Value *visitUnknown(SCEVUnknown *S) {
      return S->getValue();
    }
  };
}

Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
  const Type *Ty = S->getType();
  int FirstOp = 0;  // Set if we should emit a subtract.
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
    if (SC->getValue()->isAllOnesValue())
      FirstOp = 1;
    
  int i = S->getNumOperands()-2;
  Value *V = expandInTy(S->getOperand(i+1), Ty);
    
  // Emit a bunch of multiply instructions
  for (; i >= FirstOp; --i)
    V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
                                  "tmp.", InsertPt);
  // -1 * ...  --->  0 - ...
  if (FirstOp == 1)
    V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
  return V;
}

Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
  const Type *Ty = S->getType();
  const Loop *L = S->getLoop();
  // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
  assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");

  // {X,+,F} --> X + {0,+,F}
  if (!isa<SCEVConstant>(S->getStart()) ||
      !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
    Value *Start = expandInTy(S->getStart(), Ty);
    std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
    NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
    Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);

    // FIXME: look for an existing add to use.
    return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
  }

  // {0,+,1} --> Insert a canonical induction variable into the loop!
  if (S->getNumOperands() == 2 &&
      S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
    // Create and insert the PHI node for the induction variable in the
    // specified loop.
    BasicBlock *Header = L->getHeader();
    PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());

    pred_iterator HPI = pred_begin(Header);
    assert(HPI != pred_end(Header) && "Loop with zero preds???");
    if (!L->contains(*HPI)) ++HPI;
    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
           "No backedge in loop?");

    // Insert a unit add instruction right before the terminator corresponding
    // to the back-edge.
    Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
                                          : ConstantInt::get(Ty, 1);
    Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
                                                 (*HPI)->getTerminator());

    pred_iterator PI = pred_begin(Header);
    if (*PI == L->getLoopPreheader())
      ++PI;
    PN->addIncoming(Add, *PI);
    return PN;
  }

  // Get the canonical induction variable I for this loop.
  Value *I = getOrInsertCanonicalInductionVariable(L, Ty);

  if (S->getNumOperands() == 2) {   // {0,+,F} --> i*F
    Value *F = expandInTy(S->getOperand(1), Ty);
    return BinaryOperator::createMul(I, F, "tmp.", InsertPt);
  }

  // If this is a chain of recurrences, turn it into a closed form, using the
  // folders, then expandCodeFor the closed form.  This allows the folders to
  // simplify the expression without having to build a bunch of special code
  // into this folder.
  SCEVHandle IH = SCEVUnknown::get(I);   // Get I as a "symbolic" SCEV.

  SCEVHandle V = S->evaluateAtIteration(IH);
  //std::cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";

  return expandInTy(V, Ty);
}


namespace {
  Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
  Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
  Statistic<> NumInserted("indvars", "Number of canonical indvars added");
  Statistic<> NumReplaced("indvars", "Number of exit values replaced");
  Statistic<> NumLFTR    ("indvars", "Number of loop exit tests replaced");

  class IndVarSimplify : public FunctionPass {
    LoopInfo        *LI;
    ScalarEvolution *SE;
    bool Changed;
  public:
    virtual bool runOnFunction(Function &) {
      LI = &getAnalysis<LoopInfo>();
      SE = &getAnalysis<ScalarEvolution>();
      Changed = false;

      // Induction Variables live in the header nodes of loops
      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
        runOnLoop(*I);
      return Changed;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<ScalarEvolution>();
      AU.addRequired<LoopInfo>();
      AU.addPreservedID(LoopSimplifyID);
      AU.setPreservesCFG();
    }
  private:
    void runOnLoop(Loop *L);
    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
                                    std::set<Instruction*> &DeadInsts);
    void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
                                   SCEVExpander &RW);
    void RewriteLoopExitValues(Loop *L);

    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
  };
  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
}

Pass *llvm::createIndVarSimplifyPass() {
  return new IndVarSimplify();
}

/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void IndVarSimplify::
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
  while (!Insts.empty()) {
    Instruction *I = *Insts.begin();
    Insts.erase(Insts.begin());
    if (isInstructionTriviallyDead(I)) {
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
          Insts.insert(U);
      SE->deleteInstructionFromRecords(I);
      I->getParent()->getInstList().erase(I);
      Changed = true;
    }
  }
}


/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
/// recurrence.  If so, change it into an integer recurrence, permitting
/// analysis by the SCEV routines.
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, 
                                                BasicBlock *Preheader,
                                            std::set<Instruction*> &DeadInsts) {
  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
  unsigned BackedgeIdx = PreheaderIdx^1;
  if (GetElementPtrInst *GEPI =
      dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
    if (GEPI->getOperand(0) == PN) {
      assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
          
      // Okay, we found a pointer recurrence.  Transform this pointer
      // recurrence into an integer recurrence.  Compute the value that gets
      // added to the pointer at every iteration.
      Value *AddedVal = GEPI->getOperand(1);

      // Insert a new integer PHI node into the top of the block.
      PHINode *NewPhi = new PHINode(AddedVal->getType(),
                                    PN->getName()+".rec", PN);
      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);

      // Create the new add instruction.
      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
                                                GEPI->getName()+".rec", GEPI);
      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
          
      // Update the existing GEP to use the recurrence.
      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
          
      // Update the GEP to use the new recurrence we just inserted.
      GEPI->setOperand(1, NewAdd);

      // Finally, if there are any other users of the PHI node, we must
      // insert a new GEP instruction that uses the pre-incremented version
      // of the induction amount.
      if (!PN->use_empty()) {
        BasicBlock::iterator InsertPos = PN; ++InsertPos;
        while (isa<PHINode>(InsertPos)) ++InsertPos;
        std::string Name = PN->getName(); PN->setName("");
        Value *PreInc =
          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
                                std::vector<Value*>(1, NewPhi), Name,
                                InsertPos);
        PN->replaceAllUsesWith(PreInc);
      }

      // Delete the old PHI for sure, and the GEP if its otherwise unused.
      DeadInsts.insert(PN);

      ++NumPointer;
      Changed = true;
    }
}

/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable.  This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
                                               SCEVExpander &RW) {
  // Find the exit block for the loop.  We can currently only handle loops with
  // a single exit.
  std::vector<BasicBlock*> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() != 1) return;
  BasicBlock *ExitBlock = ExitBlocks[0];

  // Make sure there is only one predecessor block in the loop.
  BasicBlock *ExitingBlock = 0;
  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
       PI != PE; ++PI)
    if (L->contains(*PI)) {
      if (ExitingBlock == 0)
        ExitingBlock = *PI;
      else
        return;  // Multiple exits from loop to this block.
    }
  assert(ExitingBlock && "Loop info is broken");

  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
    return;  // Can't rewrite non-branch yet
  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
  assert(BI->isConditional() && "Must be conditional to be part of loop!");

  std::set<Instruction*> InstructionsToDelete;
  if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
    InstructionsToDelete.insert(Cond);

  // If the exiting block is not the same as the backedge block, we must compare
  // against the preincremented value, otherwise we prefer to compare against
  // the post-incremented value.
  BasicBlock *Header = L->getHeader();
  pred_iterator HPI = pred_begin(Header);
  assert(HPI != pred_end(Header) && "Loop with zero preds???");
  if (!L->contains(*HPI)) ++HPI;
  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
         "No backedge in loop?");

  SCEVHandle TripCount = IterationCount;
  Value *IndVar;
  if (*HPI == ExitingBlock) {
    // The IterationCount expression contains the number of times that the
    // backedge actually branches to the loop header.  This is one less than the
    // number of times the loop executes, so add one to it.
    Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
    TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
    IndVar = L->getCanonicalInductionVariableIncrement();
  } else {
    // We have to use the preincremented value...
    IndVar = L->getCanonicalInductionVariable();
  }

  // Expand the code for the iteration count into the preheader of the loop.
  BasicBlock *Preheader = L->getLoopPreheader();
  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
                                    IndVar->getType());

  // Insert a new setne or seteq instruction before the branch.
  Instruction::BinaryOps Opcode;
  if (L->contains(BI->getSuccessor(0)))
    Opcode = Instruction::SetNE;
  else
    Opcode = Instruction::SetEQ;

  Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
  BI->setCondition(Cond);
  ++NumLFTR;
  Changed = true;

  DeleteTriviallyDeadInstructions(InstructionsToDelete);
}


/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count.  If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
  BasicBlock *Preheader = L->getLoopPreheader();

  // Scan all of the instructions in the loop, looking at those that have
  // extra-loop users and which are recurrences.
  SCEVExpander Rewriter(*SE, *LI);

  // We insert the code into the preheader of the loop if the loop contains
  // multiple exit blocks, or in the exit block if there is exactly one.
  BasicBlock *BlockToInsertInto;
  std::vector<BasicBlock*> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() == 1)
    BlockToInsertInto = ExitBlocks[0];
  else
    BlockToInsertInto = Preheader;
  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
  while (isa<PHINode>(InsertPt)) ++InsertPt;

  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));

  std::set<Instruction*> InstructionsToDelete;
  
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
      BasicBlock *BB = L->getBlocks()[i];
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (I->getType()->isInteger()) {      // Is an integer instruction
          SCEVHandle SH = SE->getSCEV(I);
          if (SH->hasComputableLoopEvolution(L) ||    // Varies predictably
              HasConstantItCount) {
            // Find out if this predictably varying value is actually used
            // outside of the loop.  "extra" as opposed to "intra".
            std::vector<User*> ExtraLoopUsers;
            for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
                 UI != E; ++UI)
              if (!L->contains(cast<Instruction>(*UI)->getParent()))
                ExtraLoopUsers.push_back(*UI);
            if (!ExtraLoopUsers.empty()) {
              // Okay, this instruction has a user outside of the current loop
              // and varies predictably in this loop.  Evaluate the value it
              // contains when the loop exits, and insert code for it.
              SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
              if (!isa<SCEVCouldNotCompute>(ExitValue)) {
                Changed = true;
                ++NumReplaced;
                Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
                                                       I->getType());

                // Rewrite any users of the computed value outside of the loop
                // with the newly computed value.
                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
                  ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);

                // If this instruction is dead now, schedule it to be removed.
                if (I->use_empty())
                  InstructionsToDelete.insert(I);
              }
            }
          }
        }
    }

  DeleteTriviallyDeadInstructions(InstructionsToDelete);
}


void IndVarSimplify::runOnLoop(Loop *L) {
  // First step.  Check to see if there are any trivial GEP pointer recurrences.
  // If there are, change them into integer recurrences, permitting analysis by
  // the SCEV routines.
  //
  BasicBlock *Header    = L->getHeader();
  BasicBlock *Preheader = L->getLoopPreheader();
  
  std::set<Instruction*> DeadInsts;
  for (BasicBlock::iterator I = Header->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
    if (isa<PointerType>(PN->getType()))
      EliminatePointerRecurrence(PN, Preheader, DeadInsts);

  if (!DeadInsts.empty())
    DeleteTriviallyDeadInstructions(DeadInsts);


  // Next, transform all loops nesting inside of this loop.
  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
    runOnLoop(*I);

  // Check to see if this loop has a computable loop-invariant execution count.
  // If so, this means that we can compute the final value of any expressions
  // that are recurrent in the loop, and substitute the exit values from the
  // loop into any instructions outside of the loop that use the final values of
  // the current expressions.
  //
  SCEVHandle IterationCount = SE->getIterationCount(L);
  if (!isa<SCEVCouldNotCompute>(IterationCount))
    RewriteLoopExitValues(L);

  // Next, analyze all of the induction variables in the loop, canonicalizing
  // auxillary induction variables.
  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;

  for (BasicBlock::iterator I = Header->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
    if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
      SCEVHandle SCEV = SE->getSCEV(PN);
      if (SCEV->hasComputableLoopEvolution(L))
        // FIXME: Without a strength reduction pass, it is an extremely bad idea
        // to indvar substitute anything more complex than a linear induction
        // variable.  Doing so will put expensive multiply instructions inside
        // of the loop.  For now just disable indvar subst on anything more
        // complex than a linear addrec.
        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
          if (AR->getNumOperands() == 2 && isa<SCEVConstant>(AR->getOperand(1)))
            IndVars.push_back(std::make_pair(PN, SCEV));
    }

  // If there are no induction variables in the loop, there is nothing more to
  // do.
  if (IndVars.empty()) {
    // Actually, if we know how many times the loop iterates, lets insert a
    // canonical induction variable to help subsequent passes.
    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
      SCEVExpander Rewriter(*SE, *LI);
      Rewriter.getOrInsertCanonicalInductionVariable(L,
                                                     IterationCount->getType());
      LinearFunctionTestReplace(L, IterationCount, Rewriter);
    }
    return;
  }

  // Compute the type of the largest recurrence expression.
  //
  const Type *LargestType = IndVars[0].first->getType();
  bool DifferingSizes = false;
  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
    const Type *Ty = IndVars[i].first->getType();
    DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
    if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
      LargestType = Ty;
  }

  // Create a rewriter object which we'll use to transform the code with.
  SCEVExpander Rewriter(*SE, *LI);

  // Now that we know the largest of of the induction variables in this loop,
  // insert a canonical induction variable of the largest size.
  LargestType = LargestType->getUnsignedVersion();
  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
  ++NumInserted;
  Changed = true;

  if (!isa<SCEVCouldNotCompute>(IterationCount))
    LinearFunctionTestReplace(L, IterationCount, Rewriter);

  // Now that we have a canonical induction variable, we can rewrite any
  // recurrences in terms of the induction variable.  Start with the auxillary
  // induction variables, and recursively rewrite any of their uses.
  BasicBlock::iterator InsertPt = Header->begin();
  while (isa<PHINode>(InsertPt)) ++InsertPt;

  // If there were induction variables of other sizes, cast the primary
  // induction variable to the right size for them, avoiding the need for the
  // code evaluation methods to insert induction variables of different sizes.
  if (DifferingSizes) {
    bool InsertedSizes[17] = { false };
    InsertedSizes[LargestType->getPrimitiveSize()] = true;
    for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
      if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
        PHINode *PN = IndVars[i].first;
        InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
        Instruction *New = new CastInst(IndVar,
                                        PN->getType()->getUnsignedVersion(),
                                        "indvar", InsertPt);
        Rewriter.addInsertedValue(New, SE->getSCEV(New));
      }
  }

  // If there were induction variables of other sizes, cast the primary
  // induction variable to the right size for them, avoiding the need for the
  // code evaluation methods to insert induction variables of different sizes.
  std::map<unsigned, Value*> InsertedSizes;
  while (!IndVars.empty()) {
    PHINode *PN = IndVars.back().first;
    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
                                           PN->getType());
    std::string Name = PN->getName();
    PN->setName("");
    NewVal->setName(Name);

    // Replace the old PHI Node with the inserted computation.
    PN->replaceAllUsesWith(NewVal);
    DeadInsts.insert(PN);
    IndVars.pop_back();
    ++NumRemoved;
    Changed = true;
  }

#if 0
  // Now replace all derived expressions in the loop body with simpler
  // expressions.
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
      BasicBlock *BB = L->getBlocks()[i];
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (I->getType()->isInteger() &&      // Is an integer instruction
            !I->use_empty() &&
            !Rewriter.isInsertedInstruction(I)) {
          SCEVHandle SH = SE->getSCEV(I);
          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
          if (V != I) {
            if (isa<Instruction>(V)) {
              std::string Name = I->getName();
              I->setName("");
              V->setName(Name);
            }
            I->replaceAllUsesWith(V);
            DeadInsts.insert(I);
            ++NumRemoved;
            Changed = true;
          }          
        }
    }
#endif

  DeleteTriviallyDeadInstructions(DeadInsts);
}