summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/InductionVars.cpp
blob: cab778e025b529127d7e7a36e21d9a80fd13d046 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
//===- InductionVars.cpp - Induction Variable Cannonicalization code --------=//
//
// This file implements induction variable cannonicalization of loops.
//
// Specifically, after this executes, the following is true:
//   - There is a single induction variable for each loop (at least loops that
//     used to contain at least one induction variable)
//   * This induction variable starts at 0 and steps by 1 per iteration
//   * This induction variable is represented by the first PHI node in the
//     Header block, allowing it to be found easily.
//   - All other preexisting induction variables are adjusted to operate in
//     terms of this primary induction variable
//   - Induction variables with a step size of 0 have been eliminated.
//
// This code assumes the following is true to perform its full job:
//   - The CFG has been simplified to not have multiple entrances into an
//     interval header.  Interval headers should only have two predecessors,
//     one from inside of the loop and one from outside of the loop.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/InductionVars.h"
#include "llvm/ConstantVals.h"
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/SymbolTable.h"
#include "llvm/iPHINode.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <iostream>
using std::cerr;

#include "llvm/Analysis/LoopDepth.h"

using namespace opt;

// isLoopInvariant - Return true if the specified value/basic block source is 
// an interval invariant computation.
//
static bool isLoopInvariant(cfg::Interval *Int, Value *V) {
  assert(isa<Constant>(V) || isa<Instruction>(V) || isa<MethodArgument>(V));

  if (!isa<Instruction>(V))
    return true;  // Constants and arguments are always loop invariant

  BasicBlock *ValueBlock = cast<Instruction>(V)->getParent();
  assert(ValueBlock && "Instruction not embedded in basic block!");

  // For now, only consider values from outside of the interval, regardless of
  // whether the expression could be lifted out of the loop by some LICM.
  //
  // TODO: invoke LICM library if we find out it would be useful.
  //
  return !Int->contains(ValueBlock);
}


// isLinearInductionVariableH - Return isLIV if the expression V is a linear
// expression defined in terms of loop invariant computations, and a single
// instance of the PHI node PN.  Return isLIC if the expression V is a loop
// invariant computation.  Return isNLIV if the expression is a negated linear
// induction variable.  Return isOther if it is neither.
//
// Currently allowed operators are: ADD, SUB, NEG
// TODO: This should allow casts!
//
enum LIVType { isLIV, isLIC, isNLIV, isOther };
//
// neg - Negate the sign of a LIV expression.
inline LIVType neg(LIVType T) { 
  assert(T == isLIV || T == isNLIV && "Negate Only works on LIV expressions");
  return T == isLIV ? isNLIV : isLIV; 
}
//
static LIVType isLinearInductionVariableH(cfg::Interval *Int, Value *V,
					  PHINode *PN) {
  if (V == PN) { return isLIV; }  // PHI node references are (0+PHI)
  if (isLoopInvariant(Int, V)) return isLIC;

  // loop variant computations must be instructions!
  Instruction *I = cast<Instruction>(V);
  switch (I->getOpcode()) {       // Handle each instruction seperately
  case Instruction::Add:
  case Instruction::Sub: {
    Value *SubV1 = cast<BinaryOperator>(I)->getOperand(0);
    Value *SubV2 = cast<BinaryOperator>(I)->getOperand(1);
    LIVType SubLIVType1 = isLinearInductionVariableH(Int, SubV1, PN);
    if (SubLIVType1 == isOther) return isOther;  // Early bailout
    LIVType SubLIVType2 = isLinearInductionVariableH(Int, SubV2, PN);

    switch (SubLIVType2) {
    case isOther: return isOther;      // Unknown subexpression type
    case isLIC:   return SubLIVType1;  // Constant offset, return type #1
    case isLIV:
    case isNLIV:
      // So now we know that we have a linear induction variable on the RHS of
      // the ADD or SUB instruction.  SubLIVType1 cannot be isOther, so it is
      // either a Loop Invariant computation, or a LIV type.
      if (SubLIVType1 == isLIC) {
	// Loop invariant computation, we know this is a LIV then.
	return (I->getOpcode() == Instruction::Add) ? 
	               SubLIVType2 : neg(SubLIVType2);
      }

      // If the LHS is also a LIV Expression, we cannot add two LIVs together
      if (I->getOpcode() == Instruction::Add) return isOther;

      // We can only subtract two LIVs if they are the same type, which yields
      // a LIC, because the LIVs cancel each other out.
      return (SubLIVType1 == SubLIVType2) ? isLIC : isOther;
    }
    // NOT REACHED
  }

  default:            // Any other instruction is not a LINEAR induction var
    return isOther;
  }
}

// isLinearInductionVariable - Return true if the specified expression is a
// "linear induction variable", which is an expression involving a single 
// instance of the PHI node and a loop invariant value that is added or
// subtracted to the PHI node.  This is calculated by walking the SSA graph
//
static inline bool isLinearInductionVariable(cfg::Interval *Int, Value *V,
					     PHINode *PN) {
  return isLinearInductionVariableH(Int, V, PN) == isLIV;
}


// isSimpleInductionVar - Return true iff the cannonical induction variable PN
// has an initializer of the constant value 0, and has a step size of constant 
// 1.
static inline bool isSimpleInductionVar(PHINode *PN) {
  assert(PN->getNumIncomingValues() == 2 && "Must have cannonical PHI node!");
  Value *Initializer = PN->getIncomingValue(0);
  if (!isa<Constant>(Initializer)) return false;

  if (Initializer->getType()->isSigned()) {  // Signed constant value...
    if (((ConstantSInt*)Initializer)->getValue() != 0) return false;
  } else if (Initializer->getType()->isUnsigned()) {  // Unsigned constant value
    if (((ConstantUInt*)Initializer)->getValue() != 0) return false;
  } else {
    return false;   // Not signed or unsigned?  Must be FP type or something
  }

  Value *StepExpr = PN->getIncomingValue(1);
  if (!isa<Instruction>(StepExpr) ||
      cast<Instruction>(StepExpr)->getOpcode() != Instruction::Add)
    return false;

  BinaryOperator *I = cast<BinaryOperator>(StepExpr);
  assert(isa<PHINode>(I->getOperand(0)) && 
	 "PHI node should be first operand of ADD instruction!");

  // Get the right hand side of the ADD node.  See if it is a constant 1.
  Value *StepSize = I->getOperand(1);
  if (!isa<Constant>(StepSize)) return false;

  if (StepSize->getType()->isSigned()) {  // Signed constant value...
    if (((ConstantSInt*)StepSize)->getValue() != 1) return false;
  } else if (StepSize->getType()->isUnsigned()) {  // Unsigned constant value
    if (((ConstantUInt*)StepSize)->getValue() != 1) return false;
  } else {
    return false;   // Not signed or unsigned?  Must be FP type or something
  }

  // At this point, we know the initializer is a constant value 0 and the step
  // size is a constant value 1.  This is our simple induction variable!
  return true;
}

// InjectSimpleInductionVariable - Insert a cannonical induction variable into
// the interval header Header.  This assumes that the flow graph is in 
// simplified form (so we know that the header block has exactly 2 predecessors)
//
// TODO: This should inherit the largest type that is being used by the already
// present induction variables (instead of always using uint)
//
static PHINode *InjectSimpleInductionVariable(cfg::Interval *Int) {
  std::string PHIName, AddName;

  BasicBlock *Header = Int->getHeaderNode();
  Method *M = Header->getParent();

  if (M->hasSymbolTable()) {
    // Only name the induction variable if the method isn't stripped.
    PHIName = M->getSymbolTable()->getUniqueName(Type::UIntTy, "ind_var");
    AddName = M->getSymbolTable()->getUniqueName(Type::UIntTy, "ind_var_next");
  }

  // Create the neccesary instructions...
  PHINode        *PN      = new PHINode(Type::UIntTy, PHIName);
  Constant       *One     = ConstantUInt::get(Type::UIntTy, 1);
  Constant       *Zero    = ConstantUInt::get(Type::UIntTy, 0);
  BinaryOperator *AddNode = BinaryOperator::create(Instruction::Add, 
						   PN, One, AddName);

  // Figure out which predecessors I have to play with... there should be
  // exactly two... one of which is a loop predecessor, and one of which is not.
  //
  BasicBlock::pred_iterator PI = Header->pred_begin();
  assert(PI != Header->pred_end() && "Header node should have 2 preds!");
  BasicBlock *Pred1 = *PI; ++PI;
  assert(PI != Header->pred_end() && "Header node should have 2 preds!");
  BasicBlock *Pred2 = *PI;
  assert(++PI == Header->pred_end() && "Header node should have 2 preds!");

  // Make Pred1 be the loop entrance predecessor, Pred2 be the Loop predecessor
  if (Int->contains(Pred1)) std::swap(Pred1, Pred2);

  assert(!Int->contains(Pred1) && "Pred1 should be loop entrance!");
  assert( Int->contains(Pred2) && "Pred2 should be looping edge!");

  // Link the instructions into the PHI node...
  PN->addIncoming(Zero, Pred1);     // The initializer is first argument
  PN->addIncoming(AddNode, Pred2);  // The step size is second PHI argument
  
  // Insert the PHI node into the Header of the loop.  It shall be the first
  // instruction, because the "Simple" Induction Variable must be first in the
  // block.
  //
  BasicBlock::InstListType &IL = Header->getInstList();
  IL.push_front(PN);

  // Insert the Add instruction as the first (non-phi) instruction in the 
  // header node's basic block.
  BasicBlock::iterator I = IL.begin();
  while (isa<PHINode>(*I)) ++I;
  IL.insert(I, AddNode);
  return PN;
}

// ProcessInterval - This function is invoked once for each interval in the 
// IntervalPartition of the program.  It looks for auxilliary induction
// variables in loops.  If it finds one, it:
// * Cannonicalizes the induction variable.  This consists of:
//   A. Making the first element of the PHI node be the loop invariant 
//      computation, and the second element be the linear induction portion.
//   B. Changing the first element of the linear induction portion of the PHI 
//      node to be of the form ADD(PHI, <loop invariant expr>).
// * Add the induction variable PHI to a list of induction variables found.
//
// After this, a list of cannonical induction variables is known.  This list
// is searched to see if there is an induction variable that counts from 
// constant 0 with a step size of constant 1.  If there is not one, one is
// injected into the loop.  Thus a "simple" induction variable is always known
//
// One a simple induction variable is known, all other induction variables are
// modified to refer to the "simple" induction variable.
//
static bool ProcessInterval(cfg::Interval *Int) {
  if (!Int->isLoop()) return false;  // Not a loop?  Ignore it!

  std::vector<PHINode *> InductionVars;

  BasicBlock *Header = Int->getHeaderNode();
  // Loop over all of the PHI nodes in the interval header...
  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); 
       I != E && isa<PHINode>(*I); ++I) {
    PHINode *PN = cast<PHINode>(*I);
    if (PN->getNumIncomingValues() != 2) { // These should be eliminated by now.
      cerr << "Found interval header with more than 2 predecessors! Ignoring\n";
      return false;    // Todo, make an assertion.
    }

    // For this to be an induction variable, one of the arguments must be a
    // loop invariant expression, and the other must be an expression involving
    // the PHI node, along with possible additions and subtractions of loop
    // invariant values.
    //
    BasicBlock *BB1 = PN->getIncomingBlock(0);
    Value      *V1  = PN->getIncomingValue(0);
    BasicBlock *BB2 = PN->getIncomingBlock(1);
    Value      *V2  = PN->getIncomingValue(1);

    // Figure out which computation is loop invariant...
    if (!isLoopInvariant(Int, V1)) {
      // V1 is *not* loop invariant.  Check to see if V2 is:
      if (isLoopInvariant(Int, V2)) {
	// They *are* loop invariant.  Exchange BB1/BB2 and V1/V2 so that
	// V1 is always the loop invariant computation.
	std::swap(V1, V2); std::swap(BB1, BB2);
      } else {
	// Neither value is loop invariant.  Must not be an induction variable.
	// This case can happen if there is an unreachable loop in the CFG that
	// has two tail loops in it that was not split by the cleanup phase
	// before.
	continue;
      }      
    }

    // At this point, we know that BB1/V1 are loop invariant.  We don't know
    // anything about BB2/V2.  Check now to see if V2 is a linear induction
    // variable.
    //
    cerr << "Found loop invariant computation: " << V1 << "\n";
    
    if (!isLinearInductionVariable(Int, V2, PN))
      continue;         // No, it is not a linear ind var, ignore the PHI node.
    cerr << "Found linear induction variable: " << V2;

    // TODO: Cannonicalize V2

    // Add this PHI node to the list of induction variables found...
    InductionVars.push_back(PN);    
  }

  // No induction variables found?
  if (InductionVars.empty()) return false;

  // Search to see if there is already a "simple" induction variable.
  std::vector<PHINode*>::iterator It = 
    find_if(InductionVars.begin(), InductionVars.end(), isSimpleInductionVar);
  
  PHINode *PrimaryIndVar;

  // A simple induction variable was not found, inject one now...
  if (It == InductionVars.end()) {
    PrimaryIndVar = InjectSimpleInductionVariable(Int);
  } else {
    // Move the PHI node for this induction variable to the start of the PHI
    // list in HeaderNode... we do not need to do this for the inserted case
    // because the inserted node will always be placed at the beginning of
    // HeaderNode.
    //
    PrimaryIndVar = *It;
    BasicBlock::iterator i =
      find(Header->begin(), Header->end(), PrimaryIndVar);
    assert(i != Header->end() && 
	   "How could Primary IndVar not be in the header!?!!?");

    if (i != Header->begin())
      std::iter_swap(i, Header->begin());
  }

  // Now we know that there is a simple induction variable PrimaryIndVar.
  // Simplify all of the other induction variables to use this induction 
  // variable as their counter, and destroy the PHI nodes that correspond to
  // the old indvars.
  //
  // TODO


  cerr << "Found Interval Header with indvars (primary indvar should be first "
       << "phi): \n" << Header << "\nPrimaryIndVar: " << PrimaryIndVar;

  return false;  // TODO: true;
}


// ProcessIntervalPartition - This function loops over the interval partition
// processing each interval with ProcessInterval
//
static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) {
  // This currently just prints out information about the interval structure
  // of the method...
#if 0
  static unsigned N = 0;
  cerr << "\n***********Interval Partition #" << (++N) << "************\n\n";
  copy(IP.begin(), IP.end(), ostream_iterator<cfg::Interval*>(cerr, "\n"));

  cerr << "\n*********** PERFORMING WORK ************\n\n";
#endif
  // Loop over all of the intervals in the partition and look for induction
  // variables in intervals that represent loops.
  //
  return reduce_apply(IP.begin(), IP.end(), bitwise_or<bool>(), false,
		      std::ptr_fun(ProcessInterval));
}

// DoInductionVariableCannonicalize - Simplify induction variables in loops.
// This function loops over an interval partition of a program, reducing it
// until the graph is gone.
//
bool opt::InductionVariableCannonicalize::doIt(Method *M) {
  // TODO: REMOVE
  if (0) {   // Print basic blocks with their depth
    LoopDepthCalculator LDC(M);
    for (Method::iterator I = M->begin(); I != M->end(); ++I) {
      cerr << "Basic Block Depth: " << LDC.getLoopDepth(*I) << *I;
    }
  }


  cfg::IntervalPartition *IP = new cfg::IntervalPartition(M);
  bool Changed = false;

  while (!IP->isDegeneratePartition()) {
    Changed |= ProcessIntervalPartition(*IP);

    // Calculate the reduced version of this graph until we get to an 
    // irreducible graph or a degenerate graph...
    //
    cfg::IntervalPartition *NewIP = new cfg::IntervalPartition(*IP, false);
    if (NewIP->size() == IP->size()) {
      cerr << "IRREDUCIBLE GRAPH FOUND!!!\n";
      return Changed;
    }
    delete IP;
    IP = NewIP;
  }

  delete IP;
  return Changed;
}