summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopDeletion.cpp
blob: f68a5f7125a064520692c20181f3bac4d269e2af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dead Loop Deletion Pass. This pass is responsible
// for eliminating loops with non-infinite computable trip counts that have no
// side effects or volatile instructions, and do not contribute to the
// computation of the function's return value.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-delete"

#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"

using namespace llvm;

STATISTIC(NumDeleted, "Number of loops deleted");

namespace {
  class VISIBILITY_HIDDEN LoopDeletion : public LoopPass {
  public:
    static char ID; // Pass ID, replacement for typeid
    LoopDeletion() : LoopPass((intptr_t)&ID) { }
    
    // Possibly eliminate loop L if it is dead.
    bool runOnLoop(Loop* L, LPPassManager& LPM);
    
    bool SingleDominatingExit(Loop* L,
                              SmallVector<BasicBlock*, 4>& exitingBlocks);
    bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
                    SmallVector<BasicBlock*, 4>& exitBlocks);
    bool IsLoopInvariantInst(Instruction *I, Loop* L);
    
    virtual void getAnalysisUsage(AnalysisUsage& AU) const {
      AU.addRequired<ScalarEvolution>();
      AU.addRequired<DominatorTree>();
      AU.addRequired<LoopInfo>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      
      AU.addPreserved<ScalarEvolution>();
      AU.addPreserved<DominatorTree>();
      AU.addPreserved<LoopInfo>();
      AU.addPreservedID(LoopSimplifyID);
      AU.addPreservedID(LCSSAID);
    }
  };
}
  
char LoopDeletion::ID = 0;
static RegisterPass<LoopDeletion> X("loop-deletion", "Delete dead loops");

LoopPass* llvm::createLoopDeletionPass() {
  return new LoopDeletion();
}

/// SingleDominatingExit - Checks that there is only a single blocks that 
/// branches out of the loop, and that it also g the latch block.  Loops
/// with multiple or non-latch-dominating exiting blocks could be dead, but we'd
/// have to do more extensive analysis to make sure, for instance, that the 
/// control flow logic involved was or could be made loop-invariant.
bool LoopDeletion::SingleDominatingExit(Loop* L,
                                   SmallVector<BasicBlock*, 4>& exitingBlocks) {
  
  if (exitingBlocks.size() != 1)
    return false;
  
  BasicBlock* latch = L->getLoopLatch();
  if (!latch)
    return false;
  
  DominatorTree& DT = getAnalysis<DominatorTree>();
  return DT.dominates(exitingBlocks[0], latch);
}

/// IsLoopInvariantInst - Checks if an instruction is invariant with respect to
/// a loop, which is defined as being true if all of its operands are defined
/// outside of the loop.  These instructions can be hoisted out of the loop
/// if their results are needed.  This could be made more aggressive by
/// recursively checking the operands for invariance, but it's not clear that
/// it's worth it.
bool LoopDeletion::IsLoopInvariantInst(Instruction *I, Loop* L)  {
  // PHI nodes are not loop invariant if defined in  the loop.
  if (isa<PHINode>(I) && L->contains(I->getParent()))
    return false;
    
  // The instruction is loop invariant if all of its operands are loop-invariant
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (!L->isLoopInvariant(I->getOperand(i)))
      return false;
  
  // If we got this far, the instruction is loop invariant!
  return true;
}

/// IsLoopDead - Determined if a loop is dead.  This assumes that we've already
/// checked for unique exit and exiting blocks, and that the code is in LCSSA
/// form.
bool LoopDeletion::IsLoopDead(Loop* L,
                              SmallVector<BasicBlock*, 4>& exitingBlocks,
                              SmallVector<BasicBlock*, 4>& exitBlocks) {
  BasicBlock* exitingBlock = exitingBlocks[0];
  BasicBlock* exitBlock = exitBlocks[0];
  
  // Make sure that all PHI entries coming from the loop are loop invariant.
  // Because the code is in LCSSA form, any values used outside of the loop
  // must pass through a PHI in the exit block, meaning that this check is
  // sufficient to guarantee that no loop-variant values are used outside
  // of the loop.
  BasicBlock::iterator BI = exitBlock->begin();
  while (PHINode* P = dyn_cast<PHINode>(BI)) {
    Value* incoming = P->getIncomingValueForBlock(exitingBlock);
    if (Instruction* I = dyn_cast<Instruction>(incoming))
      if (!IsLoopInvariantInst(I, L))
        return false;
      
    BI++;
  }
  
  // Make sure that no instructions in the block have potential side-effects.
  // This includes instructions that could write to memory, and loads that are
  // marked volatile.  This could be made more aggressive by using aliasing
  // information to identify readonly and readnone calls.
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI) {
    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
         BI != BE; ++BI) {
      if (BI->mayWriteToMemory())
        return false;
      else if (LoadInst* L = dyn_cast<LoadInst>(BI))
        if (L->isVolatile())
          return false;
    }
  }
  
  return true;
}

/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
/// observable behavior of the program other than finite running time.  Note 
/// we do ensure that this never remove a loop that might be infinite, as doing
/// so could change the halting/non-halting nature of a program.
/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
/// in order to make various safety checks work.
bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
  // We can only remove the loop if there is a preheader that we can 
  // branch from after removing it.
  BasicBlock* preheader = L->getLoopPreheader();
  if (!preheader)
    return false;
  
  // We can't remove loops that contain subloops.  If the subloops were dead,
  // they would already have been removed in earlier executions of this pass.
  if (L->begin() != L->end())
    return false;
  
  SmallVector<BasicBlock*, 4> exitingBlocks;
  L->getExitingBlocks(exitingBlocks);
  
  SmallVector<BasicBlock*, 4> exitBlocks;
  L->getUniqueExitBlocks(exitBlocks);
  
  // We require that the loop only have a single exit block.  Otherwise, we'd
  // be in the situation of needing to be able to solve statically which exit
  // block will be branched to, or trying to preserve the branching logic in
  // a loop invariant manner.
  if (exitBlocks.size() != 1)
    return false;
  
  // Loops with multiple exits or exits that don't dominate the latch
  // are too complicated to handle correctly.
  if (!SingleDominatingExit(L, exitingBlocks))
    return false;
  
  // Finally, we have to check that the loop really is dead.
  if (!IsLoopDead(L, exitingBlocks, exitBlocks))
    return false;
  
  // Don't remove loops for which we can't solve the trip count.
  // They could be infinite, in which case we'd be changing program behavior.
  ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
  SCEVHandle S = SE.getIterationCount(L);
  if (isa<SCEVCouldNotCompute>(S))
    return false;
  
  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.  
  BasicBlock* exitBlock = exitBlocks[0];
  BasicBlock* exitingBlock = exitingBlocks[0];
  
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.  Don't
  // mess with this unless you have good reason and know what you're doing.
  
  // Move simple loop-invariant expressions out of the loop, since they
  // might be needed by the exit phis.
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI)
    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
         BI != BE; ) {
      Instruction* I = BI++;
      if (!I->use_empty() && IsLoopInvariantInst(I, L))
        I->moveBefore(preheader->getTerminator());
    }
  
  // Connect the preheader directly to the exit block.
  TerminatorInst* TI = preheader->getTerminator();
  TI->replaceUsesOfWith(L->getHeader(), exitBlock);

  // Rewrite phis in the exit block to get their inputs from
  // the preheader instead of the exiting block.
  BasicBlock::iterator BI = exitBlock->begin();
  while (PHINode* P = dyn_cast<PHINode>(BI)) {
    P->replaceUsesOfWith(exitingBlock, preheader);
    BI++;
  }
  
  // Update the dominator tree and remove the instructions and blocks that will
  // be deleted from the reference counting scheme.
  DominatorTree& DT = getAnalysis<DominatorTree>();
  SmallPtrSet<DomTreeNode*, 8> ChildNodes;
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI) {
    // Move all of the block's children to be children of the preheader, which
    // allows us to remove the domtree entry for the block.
    ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
    for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
         DE = ChildNodes.end(); DI != DE; ++DI)
      DT.changeImmediateDominator(*DI, DT[preheader]);
    
    ChildNodes.clear();
    DT.eraseNode(*LI);
    
    // Remove instructions that we're deleting from ScalarEvolution.
    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
         BI != BE; ++BI)
      SE.deleteValueFromRecords(BI);
    
    SE.deleteValueFromRecords(*LI);
    
    // Remove the block from the reference counting scheme, so that we can
    // delete it freely later.
    (*LI)->dropAllReferences();
  }
  
  // Erase the instructions and the blocks without having to worry
  // about ordering because we already dropped the references.
  // NOTE: This iteration is safe because erasing the block does not remove its
  // entry from the loop's block list.  We do that in the next section.
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI)
    (*LI)->eraseFromParent();
  
  // Finally, the blocks from loopinfo.  This has to happen late because
  // otherwise our loop iterators won't work.
  LoopInfo& loopInfo = getAnalysis<LoopInfo>();
  SmallPtrSet<BasicBlock*, 8> blocks;
  blocks.insert(L->block_begin(), L->block_end());
  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
       E = blocks.end(); I != E; ++I)
    loopInfo.removeBlock(*I);
  
  // The last step is to inform the loop pass manager that we've
  // eliminated this loop.
  LPM.deleteLoopFromQueue(L);
  
  NumDeleted++;
  
  return true;
}