summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/SCCP.cpp
blob: 4d752e9589e3a97fd0a1bf84074d4b99bd726d41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
//
// This file implements sparse conditional constant propogation and merging:
//
// Specifically, this:
//   * Assumes values are constant unless proven otherwise
//   * Assumes BasicBlocks are dead unless proven otherwise
//   * Proves values to be constant, and replaces them with constants
//   * Proves conditional branches constant, and unconditionalizes them
//   * Folds multiple identical constants in the constant pool together
//
// Notice that:
//   * This pass has a habit of making definitions be dead.  It is a good idea
//     to to run a DCE pass sometime after running this pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/ConstantHandling.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iPHINode.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/STLExtras.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
#include <set>
#include <iostream>
using std::cerr;

static Statistic<> NumInstRemoved("sccp\t\t- Number of instructions removed");

// InstVal class - This class represents the different lattice values that an 
// instruction may occupy.  It is a simple class with value semantics.
//
namespace {
class InstVal {
  enum { 
    undefined,           // This instruction has no known value
    constant,            // This instruction has a constant value
    // Range,            // This instruction is known to fall within a range
    overdefined          // This instruction has an unknown value
  } LatticeValue;        // The current lattice position
  Constant *ConstantVal; // If Constant value, the current value
public:
  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}

  // markOverdefined - Return true if this is a new status to be in...
  inline bool markOverdefined() {
    if (LatticeValue != overdefined) {
      LatticeValue = overdefined;
      return true;
    }
    return false;
  }

  // markConstant - Return true if this is a new status for us...
  inline bool markConstant(Constant *V) {
    if (LatticeValue != constant) {
      LatticeValue = constant;
      ConstantVal = V;
      return true;
    } else {
      assert(ConstantVal == V && "Marking constant with different value");
    }
    return false;
  }

  inline bool isUndefined()   const { return LatticeValue == undefined; }
  inline bool isConstant()    const { return LatticeValue == constant; }
  inline bool isOverdefined() const { return LatticeValue == overdefined; }

  inline Constant *getConstant() const { return ConstantVal; }
};

} // end anonymous namespace


//===----------------------------------------------------------------------===//
// SCCP Class
//
// This class does all of the work of Sparse Conditional Constant Propogation.
//
namespace {
class SCCP : public FunctionPass, public InstVisitor<SCCP> {
  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
  std::map<Value*, InstVal> ValueState;  // The state each value is in...

  std::vector<Instruction*> InstWorkList;// The instruction work list
  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
public:

  const char *getPassName() const {
    return "Sparse Conditional Constant Propogation";
  }

  // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm,
  // and return true if the function was modified.
  //
  bool runOnFunction(Function &F);

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.preservesCFG();
  }


  //===--------------------------------------------------------------------===//
  // The implementation of this class
  //
private:
  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor

  // markValueOverdefined - Make a value be marked as "constant".  If the value
  // is not already a constant, add it to the instruction work list so that 
  // the users of the instruction are updated later.
  //
  inline bool markConstant(Instruction *I, Constant *V) {
    DEBUG(cerr << "markConstant: " << V << " = " << I);

    if (ValueState[I].markConstant(V)) {
      InstWorkList.push_back(I);
      return true;
    }
    return false;
  }

  // markValueOverdefined - Make a value be marked as "overdefined". If the
  // value is not already overdefined, add it to the instruction work list so
  // that the users of the instruction are updated later.
  //
  inline bool markOverdefined(Value *V) {
    if (ValueState[V].markOverdefined()) {
      if (Instruction *I = dyn_cast<Instruction>(V)) {
	DEBUG(cerr << "markOverdefined: " << V);
	InstWorkList.push_back(I);  // Only instructions go on the work list
      }
      return true;
    }
    return false;
  }

  // getValueState - Return the InstVal object that corresponds to the value.
  // This function is neccesary because not all values should start out in the
  // underdefined state... Argument's should be overdefined, and
  // constants should be marked as constants.  If a value is not known to be an
  // Instruction object, then use this accessor to get its value from the map.
  //
  inline InstVal &getValueState(Value *V) {
    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
    if (I != ValueState.end()) return I->second;  // Common case, in the map
      
    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
      ValueState[CPV].markConstant(CPV);
    } else if (isa<Argument>(V)) {                // Arguments are overdefined
      ValueState[V].markOverdefined();
    } 
    // All others are underdefined by default...
    return ValueState[V];
  }

  // markExecutable - Mark a basic block as executable, adding it to the BB 
  // work list if it is not already executable...
  // 
  void markExecutable(BasicBlock *BB) {
    if (BBExecutable.count(BB)) return;
    DEBUG(cerr << "Marking BB Executable: " << *BB);
    BBExecutable.insert(BB);   // Basic block is executable!
    BBWorkList.push_back(BB);  // Add the block to the work list!
  }


  // visit implementations - Something changed in this instruction... Either an 
  // operand made a transition, or the instruction is newly executable.  Change
  // the value type of I to reflect these changes if appropriate.
  //
  void visitPHINode(PHINode &I);

  // Terminators
  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
  void visitTerminatorInst(TerminatorInst &TI);

  void visitUnaryOperator(Instruction &I);
  void visitCastInst(CastInst &I) { visitUnaryOperator(I); }
  void visitBinaryOperator(Instruction &I);
  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }

  // Instructions that cannot be folded away...
  void visitStoreInst     (Instruction &I) { /*returns void*/ }
  void visitMemAccessInst (Instruction &I) { markOverdefined(&I); }
  void visitCallInst      (Instruction &I) { markOverdefined(&I); }
  void visitInvokeInst    (Instruction &I) { markOverdefined(&I); }
  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
  void visitFreeInst      (Instruction &I) { /*returns void*/ }

  void visitInstruction(Instruction &I) {
    // If a new instruction is added to LLVM that we don't handle...
    cerr << "SCCP: Don't know how to handle: " << I;
    markOverdefined(&I);   // Just in case
  }

  // getFeasibleSuccessors - Return a vector of booleans to indicate which
  // successors are reachable from a given terminator instruction.
  //
  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);

  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
  // block to the 'To' basic block is currently feasible...
  //
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);

  // OperandChangedState - This method is invoked on all of the users of an
  // instruction that was just changed state somehow....  Based on this
  // information, we need to update the specified user of this instruction.
  //
  void OperandChangedState(User *U) {
    // Only instructions use other variable values!
    Instruction &I = cast<Instruction>(*U);
    if (!BBExecutable.count(I.getParent())) return;// Inst not executable yet!
    visit(I);
  }
};
} // end anonymous namespace


// createSCCPPass - This is the public interface to this file...
//
Pass *createSCCPPass() {
  return new SCCP();
}



//===----------------------------------------------------------------------===//
// SCCP Class Implementation


// runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm,
// and return true if the function was modified.
//
bool SCCP::runOnFunction(Function &F) {
  // Mark the first block of the function as being executable...
  markExecutable(&F.front());

  // Process the work lists until their are empty!
  while (!BBWorkList.empty() || !InstWorkList.empty()) {
    // Process the instruction work list...
    while (!InstWorkList.empty()) {
      Instruction *I = InstWorkList.back();
      InstWorkList.pop_back();

      DEBUG(cerr << "\nPopped off I-WL: " << I);

      
      // "I" got into the work list because it either made the transition from
      // bottom to constant, or to Overdefined.
      //
      // Update all of the users of this instruction's value...
      //
      for_each(I->use_begin(), I->use_end(),
	       bind_obj(this, &SCCP::OperandChangedState));
    }

    // Process the basic block work list...
    while (!BBWorkList.empty()) {
      BasicBlock *BB = BBWorkList.back();
      BBWorkList.pop_back();

      DEBUG(cerr << "\nPopped off BBWL: " << BB);

      // If this block only has a single successor, mark it as executable as
      // well... if not, terminate the do loop.
      //
      if (BB->getTerminator()->getNumSuccessors() == 1)
        markExecutable(BB->getTerminator()->getSuccessor(0));

      // Notify all instructions in this basic block that they are newly
      // executable.
      visit(BB);
    }
  }

  if (DebugFlag) {
    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
      if (!BBExecutable.count(I))
        cerr << "BasicBlock Dead:" << *I;
  }

  // Iterate over all of the instructions in a function, replacing them with
  // constants if we have found them to be of constant values.
  //
  bool MadeChanges = false;
  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
      Instruction &Inst = *BI;
      InstVal &IV = ValueState[&Inst];
      if (IV.isConstant()) {
        Constant *Const = IV.getConstant();
        DEBUG(cerr << "Constant: " << Const << " = " << Inst);

        // Replaces all of the uses of a variable with uses of the constant.
        Inst.replaceAllUsesWith(Const);

        // Remove the operator from the list of definitions... and delete it.
        BI = BB->getInstList().erase(BI);

        // Hey, we just changed something!
        MadeChanges = true;
        ++NumInstRemoved;
      } else {
        ++BI;
      }
    }

  // Reset state so that the next invocation will have empty data structures
  BBExecutable.clear();
  ValueState.clear();

  return MadeChanges;
}


// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
//
void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
  assert(Succs.size() == TI.getNumSuccessors() && "Succs vector wrong size!");
  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    if (BI->isUnconditional()) {
      Succs[0] = true;
    } else {
      InstVal &BCValue = getValueState(BI->getCondition());
      if (BCValue.isOverdefined()) {
        // Overdefined condition variables mean the branch could go either way.
        Succs[0] = Succs[1] = true;
      } else if (BCValue.isConstant()) {
        // Constant condition variables mean the branch can only go a single way
        Succs[BCValue.getConstant() == ConstantBool::False] = true;
      }
    }
  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
    // Invoke instructions successors are always executable.
    Succs[0] = Succs[1] = true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    InstVal &SCValue = getValueState(SI->getCondition());
    if (SCValue.isOverdefined()) {  // Overdefined condition?
      // All destinations are executable!
      Succs.assign(TI.getNumSuccessors(), true);
    } else if (SCValue.isConstant()) {
      Constant *CPV = SCValue.getConstant();
      // Make sure to skip the "default value" which isn't a value
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
          Succs[i] = true;
          return;
        }
      }

      // Constant value not equal to any of the branches... must execute
      // default branch then...
      Succs[0] = true;
    }
  } else {
    cerr << "SCCP: Don't know how to handle: " << TI;
    Succs.assign(TI.getNumSuccessors(), true);
  }
}


// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible...
//
bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
  assert(BBExecutable.count(To) && "Dest should always be alive!");

  // Make sure the source basic block is executable!!
  if (!BBExecutable.count(From)) return false;
  
  // Check to make sure this edge itself is actually feasible now...
  TerminatorInst *FT = From->getTerminator();
  std::vector<bool> SuccFeasible(FT->getNumSuccessors());
  getFeasibleSuccessors(*FT, SuccFeasible);

  // Check all edges from From to To.  If any are feasible, return true.
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (FT->getSuccessor(i) == To && SuccFeasible[i])
      return true;
    
  // Otherwise, none of the edges are actually feasible at this time...
  return false;
}

// visit Implementations - Something changed in this instruction... Either an
// operand made a transition, or the instruction is newly executable.  Change
// the value type of I to reflect these changes if appropriate.  This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
//    from different branches, or if the PHI node merges in an overdefined
//    value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
//    PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
//    destination executable
// 7. If a conditional branch has a value that is overdefined, make all
//    successors executable.
//

void SCCP::visitPHINode(PHINode &PN) {
  unsigned NumValues = PN.getNumIncomingValues(), i;
  InstVal *OperandIV = 0;

  // Look at all of the executable operands of the PHI node.  If any of them
  // are overdefined, the PHI becomes overdefined as well.  If they are all
  // constant, and they agree with each other, the PHI becomes the identical
  // constant.  If they are constant and don't agree, the PHI is overdefined.
  // If there are no executable operands, the PHI remains undefined.
  //
  for (i = 0; i < NumValues; ++i) {
    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
      InstVal &IV = getValueState(PN.getIncomingValue(i));
      if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
        markOverdefined(&PN);
        return;
      }

      if (OperandIV == 0) {   // Grab the first value...
        OperandIV = &IV;
      } else {                // Another value is being merged in!
        // There is already a reachable operand.  If we conflict with it,
        // then the PHI node becomes overdefined.  If we agree with it, we
        // can continue on.

        // Check to see if there are two different constants merging...
        if (IV.getConstant() != OperandIV->getConstant()) {
          // Yes there is.  This means the PHI node is not constant.
          // You must be overdefined poor PHI.
          //
          markOverdefined(&PN);         // The PHI node now becomes overdefined
          return;    // I'm done analyzing you
        }
      }
    }
  }

  // If we exited the loop, this means that the PHI node only has constant
  // arguments that agree with each other(and OperandIV is a pointer to one
  // of their InstVal's) or OperandIV is null because there are no defined
  // incoming arguments.  If this is the case, the PHI remains undefined.
  //
  if (OperandIV) {
    assert(OperandIV->isConstant() && "Should only be here for constants!");
    markConstant(&PN, OperandIV->getConstant());  // Aquire operand value
  }
}

void SCCP::visitTerminatorInst(TerminatorInst &TI) {
  std::vector<bool> SuccFeasible(TI.getNumSuccessors());
  getFeasibleSuccessors(TI, SuccFeasible);

  // Mark all feasible successors executable...
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (SuccFeasible[i]) {
      BasicBlock *Succ = TI.getSuccessor(i);
      markExecutable(Succ);

      // Visit all of the PHI nodes that merge values from this block...
      // Because this edge may be new executable, and PHI nodes that used to be
      // constant now may not be.
      //
      for (BasicBlock::iterator I = Succ->begin();
           PHINode *PN = dyn_cast<PHINode>(&*I); ++I)
        visitPHINode(*PN);
    }
}

void SCCP::visitUnaryOperator(Instruction &I) {
  Value *V = I.getOperand(0);
  InstVal &VState = getValueState(V);
  if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
    markOverdefined(&I);
  } else if (VState.isConstant()) {    // Propogate constant value
    Constant *Result = isa<CastInst>(I)
      ? ConstantFoldCastInstruction(VState.getConstant(), I.getType())
      : ConstantFoldUnaryInstruction(I.getOpcode(), VState.getConstant());

    if (Result) {
      // This instruction constant folds!
      markConstant(&I, Result);
    } else {
      markOverdefined(&I);   // Don't know how to fold this instruction.  :(
    }
  }
}

// Handle BinaryOperators and Shift Instructions...
void SCCP::visitBinaryOperator(Instruction &I) {
  InstVal &V1State = getValueState(I.getOperand(0));
  InstVal &V2State = getValueState(I.getOperand(1));
  if (V1State.isOverdefined() || V2State.isOverdefined()) {
    markOverdefined(&I);
  } else if (V1State.isConstant() && V2State.isConstant()) {
    Constant *Result = 0;
    if (isa<BinaryOperator>(I))
      Result = ConstantFoldBinaryInstruction(I.getOpcode(),
                                             V1State.getConstant(),
                                             V2State.getConstant());
    else if (isa<ShiftInst>(I))
      Result = ConstantFoldShiftInstruction(I.getOpcode(),
                                            V1State.getConstant(),
                                            V2State.getConstant());
    if (Result)
      markConstant(&I, Result);      // This instruction constant folds!
    else
      markOverdefined(&I);   // Don't know how to fold this instruction.  :(
  }
}