summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/ScalarReplAggregates.cpp
blob: c1071797b986ad94d8eda46c2eff7b3bf6e5f880 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation implements the well known scalar replacement of
// aggregates transformation.  This xform breaks up alloca instructions of
// aggregate type (structure or array) into individual alloca instructions for
// each member (if possible).  Then, if possible, it transforms the individual
// alloca instructions into nice clean scalar SSA form.
//
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
// often interact, especially for C++ programs.  As such, iterating between
// SRoA, then Mem2Reg until we run out of things to promote works well.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <iostream>
using namespace llvm;

namespace {
  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
  Statistic<> NumConverted("scalarrepl",
                           "Number of aggregates converted to scalar");

  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
    bool runOnFunction(Function &F);

    bool performScalarRepl(Function &F);
    bool performPromotion(Function &F);

    // getAnalysisUsage - This pass does not require any passes, but we know it
    // will not alter the CFG, so say so.
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();
      AU.addRequired<TargetData>();
      AU.setPreservesCFG();
    }

  private:
    int isSafeElementUse(Value *Ptr);
    int isSafeUseOfAllocation(Instruction *User);
    int isSafeAllocaToScalarRepl(AllocationInst *AI);
    void CanonicalizeAllocaUsers(AllocationInst *AI);
    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
    
    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
  };

  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
}

// Public interface to the ScalarReplAggregates pass
FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }


bool SROA::runOnFunction(Function &F) {
  bool Changed = performPromotion(F);
  while (1) {
    bool LocalChange = performScalarRepl(F);
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
    Changed = true;
    LocalChange = performPromotion(F);
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
  }

  return Changed;
}


bool SROA::performPromotion(Function &F) {
  std::vector<AllocaInst*> Allocas;
  const TargetData &TD = getAnalysis<TargetData>();
  DominatorTree     &DT = getAnalysis<DominatorTree>();
  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();

  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function

  bool Changed = false;

  while (1) {
    Allocas.clear();

    // Find allocas that are safe to promote, by looking at all instructions in
    // the entry node
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
        if (isAllocaPromotable(AI, TD))
          Allocas.push_back(AI);

    if (Allocas.empty()) break;

    PromoteMemToReg(Allocas, DT, DF, TD);
    NumPromoted += Allocas.size();
    Changed = true;
  }

  return Changed;
}

// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the malloc/alloca instructions in the function, removing
// them if they are only used by getelementptr instructions.
//
bool SROA::performScalarRepl(Function &F) {
  std::vector<AllocationInst*> WorkList;

  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
  BasicBlock &BB = F.getEntryBlock();
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
      WorkList.push_back(A);

  // Process the worklist
  bool Changed = false;
  while (!WorkList.empty()) {
    AllocationInst *AI = WorkList.back();
    WorkList.pop_back();
    
    // If we can turn this aggregate value (potentially with casts) into a
    // simple scalar value that can be mem2reg'd into a register value.
    bool IsNotTrivial = false;
    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
      if (IsNotTrivial && ActualType != Type::VoidTy) {
        ConvertToScalar(AI, ActualType);
        Changed = true;
        continue;
      }

    // We cannot transform the allocation instruction if it is an array
    // allocation (allocations OF arrays are ok though), and an allocation of a
    // scalar value cannot be decomposed at all.
    //
    if (AI->isArrayAllocation() ||
        (!isa<StructType>(AI->getAllocatedType()) &&
         !isa<ArrayType>(AI->getAllocatedType()))) continue;

    // Check that all of the users of the allocation are capable of being
    // transformed.
    switch (isSafeAllocaToScalarRepl(AI)) {
    default: assert(0 && "Unexpected value!");
    case 0:  // Not safe to scalar replace.
      continue;
    case 1:  // Safe, but requires cleanup/canonicalizations first
      CanonicalizeAllocaUsers(AI);
    case 3:  // Safe to scalar replace.
      break;
    }

    DEBUG(std::cerr << "Found inst to xform: " << *AI);
    Changed = true;

    std::vector<AllocaInst*> ElementAllocas;
    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
      ElementAllocas.reserve(ST->getNumContainedTypes());
      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
                                        AI->getAlignment(),
                                        AI->getName() + "." + utostr(i), AI);
        ElementAllocas.push_back(NA);
        WorkList.push_back(NA);  // Add to worklist for recursive processing
      }
    } else {
      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
      ElementAllocas.reserve(AT->getNumElements());
      const Type *ElTy = AT->getElementType();
      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
                                        AI->getName() + "." + utostr(i), AI);
        ElementAllocas.push_back(NA);
        WorkList.push_back(NA);  // Add to worklist for recursive processing
      }
    }

    // Now that we have created the alloca instructions that we want to use,
    // expand the getelementptr instructions to use them.
    //
    while (!AI->use_empty()) {
      Instruction *User = cast<Instruction>(AI->use_back());
      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
      unsigned Idx =
         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();

      assert(Idx < ElementAllocas.size() && "Index out of range?");
      AllocaInst *AllocaToUse = ElementAllocas[Idx];

      Value *RepValue;
      if (GEPI->getNumOperands() == 3) {
        // Do not insert a new getelementptr instruction with zero indices, only
        // to have it optimized out later.
        RepValue = AllocaToUse;
      } else {
        // We are indexing deeply into the structure, so we still need a
        // getelement ptr instruction to finish the indexing.  This may be
        // expanded itself once the worklist is rerun.
        //
        std::string OldName = GEPI->getName();  // Steal the old name.
        std::vector<Value*> NewArgs;
        NewArgs.push_back(Constant::getNullValue(Type::IntTy));
        NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
        GEPI->setName("");
        RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
      }

      // Move all of the users over to the new GEP.
      GEPI->replaceAllUsesWith(RepValue);
      // Delete the old GEP
      GEPI->eraseFromParent();
    }

    // Finally, delete the Alloca instruction
    AI->getParent()->getInstList().erase(AI);
    NumReplaced++;
  }

  return Changed;
}


/// isSafeElementUse - Check to see if this use is an allowed use for a
/// getelementptr instruction of an array aggregate allocation.
///
int SROA::isSafeElementUse(Value *Ptr) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I) {
    Instruction *User = cast<Instruction>(*I);
    switch (User->getOpcode()) {
    case Instruction::Load:  break;
    case Instruction::Store:
      // Store is ok if storing INTO the pointer, not storing the pointer
      if (User->getOperand(0) == Ptr) return 0;
      break;
    case Instruction::GetElementPtr: {
      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
      if (GEP->getNumOperands() > 1) {
        if (!isa<Constant>(GEP->getOperand(1)) ||
            !cast<Constant>(GEP->getOperand(1))->isNullValue())
          return 0;  // Using pointer arithmetic to navigate the array...
      }
      if (!isSafeElementUse(GEP)) return 0;
      break;
    }
    default:
      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
      return 0;
    }
  }
  return 3;  // All users look ok :)
}

/// AllUsersAreLoads - Return true if all users of this value are loads.
static bool AllUsersAreLoads(Value *Ptr) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I)
    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
      return false;
  return true;
}

/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
/// aggregate allocation.
///
int SROA::isSafeUseOfAllocation(Instruction *User) {
  if (!isa<GetElementPtrInst>(User)) return 0;

  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);

  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
  if (I == E ||
      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
    return 0;

  ++I;
  if (I == E) return 0;  // ran out of GEP indices??

  // If this is a use of an array allocation, do a bit more checking for sanity.
  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
    uint64_t NumElements = AT->getNumElements();

    if (isa<ConstantInt>(I.getOperand())) {
      // Check to make sure that index falls within the array.  If not,
      // something funny is going on, so we won't do the optimization.
      //
      if (cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue() >= NumElements)
        return 0;

      // We cannot scalar repl this level of the array unless any array
      // sub-indices are in-range constants.  In particular, consider:
      // A[0][i].  We cannot know that the user isn't doing invalid things like
      // allowing i to index an out-of-range subscript that accesses A[1].
      //
      // Scalar replacing *just* the outer index of the array is probably not
      // going to be a win anyway, so just give up.
      for (++I; I != E && (isa<ArrayType>(*I) || isa<PackedType>(*I)); ++I) {
        uint64_t NumElements;
        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
          NumElements = SubArrayTy->getNumElements();
        else
          NumElements = cast<PackedType>(*I)->getNumElements();
        
        if (!isa<ConstantInt>(I.getOperand())) return 0;
        if (cast<ConstantInt>(I.getOperand())->getZExtValue() >= NumElements)
          return 0;
      }
      
    } else {
      // If this is an array index and the index is not constant, we cannot
      // promote... that is unless the array has exactly one or two elements in
      // it, in which case we CAN promote it, but we have to canonicalize this
      // out if this is the only problem.
      if ((NumElements == 1 || NumElements == 2) &&
          AllUsersAreLoads(GEPI))
        return 1;  // Canonicalization required!
      return 0;
    }
  }

  // If there are any non-simple uses of this getelementptr, make sure to reject
  // them.
  return isSafeElementUse(GEPI);
}

/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
/// or 1 if safe after canonicalization has been performed.
///
int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
  // Loop over the use list of the alloca.  We can only transform it if all of
  // the users are safe to transform.
  //
  int isSafe = 3;
  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
       I != E; ++I) {
    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
    if (isSafe == 0) {
      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
            << **I);
      return 0;
    }
  }
  // If we require cleanup, isSafe is now 1, otherwise it is 3.
  return isSafe;
}

/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
/// allocation, but only if cleaned up, perform the cleanups required.
void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
  // At this point, we know that the end result will be SROA'd and promoted, so
  // we can insert ugly code if required so long as sroa+mem2reg will clean it
  // up.
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
       UI != E; ) {
    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
    gep_type_iterator I = gep_type_begin(GEPI);
    ++I;

    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
      uint64_t NumElements = AT->getNumElements();

      if (!isa<ConstantInt>(I.getOperand())) {
        if (NumElements == 1) {
          GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
        } else {
          assert(NumElements == 2 && "Unhandled case!");
          // All users of the GEP must be loads.  At each use of the GEP, insert
          // two loads of the appropriate indexed GEP and select between them.
          Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
                              Constant::getNullValue(I.getOperand()->getType()),
                                                     "isone", GEPI);
          // Insert the new GEP instructions, which are properly indexed.
          std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
          Indices[1] = Constant::getNullValue(Type::IntTy);
          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
                                                 GEPI->getName()+".0", GEPI);
          Indices[1] = ConstantInt::get(Type::IntTy, 1);
          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
                                                GEPI->getName()+".1", GEPI);
          // Replace all loads of the variable index GEP with loads from both
          // indexes and a select.
          while (!GEPI->use_empty()) {
            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
            LI->replaceAllUsesWith(R);
            LI->eraseFromParent();
          }
          GEPI->eraseFromParent();
        }
      }
    }
  }
}

/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
/// types are incompatible, return true, otherwise update Accum and return
/// false.
///
/// There are two cases we handle here:
///   1) An effectively integer union, where the pieces are stored into as
///      smaller integers (common with byte swap and other idioms).
///   2) A union of a vector and its elements.  Here we turn element accesses
///      into insert/extract element operations.
static bool MergeInType(const Type *In, const Type *&Accum,
                        const TargetData &TD) {
  // If this is our first type, just use it.
  const PackedType *PTy;
  if (Accum == Type::VoidTy || In == Accum) {
    Accum = In;
  } else if (In->isIntegral() && Accum->isIntegral()) {   // integer union.
    // Otherwise pick whichever type is larger.
    if (In->getTypeID() > Accum->getTypeID())
      Accum = In;
  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
    // Pointer unions just stay as one of the pointers.
  } else if ((PTy = dyn_cast<PackedType>(Accum)) && 
             PTy->getElementType() == In) {
    // Accum is a vector, and we are accessing an element: ok.
  } else if ((PTy = dyn_cast<PackedType>(In)) && 
             PTy->getElementType() == Accum) {
    // In is a vector, and accum is an element: ok, remember In.
    Accum = In;
  } else if (isa<PointerType>(In) && Accum->isIntegral()) {
    // Pointer/Integer unions merge together as integers.
    return MergeInType(TD.getIntPtrType(), Accum, TD);
  } else if (isa<PointerType>(Accum) && In->isIntegral()) {
    // Pointer/Integer unions merge together as integers.
    Accum = TD.getIntPtrType();
    return MergeInType(In, Accum, TD);
  } else {
    return true;
  }
  return false;
}

/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
/// as big as the specified type.  If there is no suitable type, this returns
/// null.
const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
  if (NumBits > 64) return 0;
  if (NumBits > 32) return Type::ULongTy;
  if (NumBits > 16) return Type::UIntTy;
  if (NumBits > 8) return Type::UShortTy;
  return Type::UByteTy;    
}

/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
/// single scalar integer type, return that type.  Further, if the use is not
/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
/// there are no uses of this pointer, return Type::VoidTy to differentiate from
/// failure.
///
const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
  const TargetData &TD = getAnalysis<TargetData>();
  const PointerType *PTy = cast<PointerType>(V->getType());

  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      if (MergeInType(LI->getType(), UsedType, TD))
        return 0;
      
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      // Storing the pointer, not the into the value?
      if (SI->getOperand(0) == V) return 0;
      
      // NOTE: We could handle storing of FP imms into integers here!
      
      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
        return 0;
    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
      if (!isa<PointerType>(CI->getType())) return 0;
      IsNotTrivial = true;
      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      // Check to see if this is stepping over an element: GEP Ptr, int C
      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
        unsigned BitOffset = Idx*ElSize*8;
        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
        
        IsNotTrivial = true;
        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
        if (SubElt == 0) return 0;
        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
          const Type *NewTy = 
            getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
          continue;
        }
      } else if (GEP->getNumOperands() == 3 && 
                 isa<ConstantInt>(GEP->getOperand(1)) &&
                 isa<ConstantInt>(GEP->getOperand(2)) &&
                 cast<Constant>(GEP->getOperand(1))->isNullValue()) {
        // We are stepping into an element, e.g. a structure or an array:
        // GEP Ptr, int 0, uint C
        const Type *AggTy = PTy->getElementType();
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
        
        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
        } else if (const PackedType *PackedTy = dyn_cast<PackedType>(AggTy)) {
          // Getting an element of the packed vector.
          if (Idx >= PackedTy->getNumElements()) return 0;  // Out of range.

          // Merge in the packed type.
          if (MergeInType(PackedTy, UsedType, TD)) return 0;
          
          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
          if (SubTy == 0) return 0;
          
          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
            return 0;

          // We'll need to change this to an insert/extract element operation.
          IsNotTrivial = true;
          continue;    // Everything looks ok
          
        } else if (isa<StructType>(AggTy)) {
          // Structs are always ok.
        } else {
          return 0;
        }
        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
        if (SubTy == 0) return 0;
        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
          return 0;
        continue;    // Everything looks ok
      }
      return 0;
    } else {
      // Cannot handle this!
      return 0;
    }
  }
  
  return UsedType;
}

/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
/// predicate and is non-trivial.  Convert it to something that can be trivially
/// promoted into a register by mem2reg.
void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
  DEBUG(std::cerr << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
                  << *ActualTy << "\n");
  ++NumConverted;
  
  BasicBlock *EntryBlock = AI->getParent();
  assert(EntryBlock == &EntryBlock->getParent()->front() &&
         "Not in the entry block!");
  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
  
  if (ActualTy->isInteger())
    ActualTy = ActualTy->getUnsignedVersion();
  
  // Create and insert the alloca.
  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
                                     EntryBlock->begin());
  ConvertUsesToScalar(AI, NewAI, 0);
  delete AI;
}


/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
/// directly.  This happens when we are converting an "integer union" to a
/// single integer scalar, or when we are converting a "vector union" to a
/// vector with insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.  By the end of this, there should be no uses of Ptr.
void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
  bool isVectorInsert = isa<PackedType>(NewAI->getType()->getElementType());
  const TargetData &TD = getAnalysis<TargetData>();
  while (!Ptr->use_empty()) {
    Instruction *User = cast<Instruction>(Ptr->use_back());
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      // The load is a bit extract from NewAI shifted right by Offset bits.
      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
      if (NV->getType() != LI->getType()) {
        if (const PackedType *PTy = dyn_cast<PackedType>(NV->getType())) {
          // Must be an element access.
          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
          NV = new ExtractElementInst(NV, ConstantInt::get(Type::UIntTy, Elt),
                                      "tmp", LI);
        } else {
          if (Offset) {
            assert(NV->getType()->isInteger() && "Unknown promotion!");
            if (Offset < TD.getTypeSize(NV->getType())*8) {
              NV = new ShiftInst(Instruction::LShr, NV, 
                                 ConstantInt::get(Type::UByteTy, Offset), 
                                 LI->getName(), LI);
            }
          } else {
            assert((NV->getType()->isInteger() ||
                    isa<PointerType>(NV->getType())) && "Unknown promotion!");
          }
          NV = new CastInst(NV, LI->getType(), LI->getName(), LI);
        }
      }
      LI->replaceAllUsesWith(NV);
      LI->eraseFromParent();
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      assert(SI->getOperand(0) != Ptr && "Consistency error!");

      // Convert the stored type to the actual type, shift it left to insert
      // then 'or' into place.
      Value *SV = SI->getOperand(0);
      const Type *AllocaType = NewAI->getType()->getElementType();
      if (SV->getType() != AllocaType) {
        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
        
        if (const PackedType *PTy = dyn_cast<PackedType>(AllocaType)) {
          // Must be an element insertion.
          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
          SV = new InsertElementInst(Old, SV,
                                     ConstantInt::get(Type::UIntTy, Elt),
                                     "tmp", SI);
        } else {
          // If SV is signed, convert it to unsigned, so that the next cast zero
          // extends the value.
          if (SV->getType()->isSigned())
            SV = new CastInst(SV, SV->getType()->getUnsignedVersion(),
                              SV->getName(), SI);
          SV = new CastInst(SV, Old->getType(), SV->getName(), SI);
          if (Offset && Offset < TD.getTypeSize(SV->getType())*8)
            SV = new ShiftInst(Instruction::Shl, SV,
                               ConstantInt::get(Type::UByteTy, Offset),
                               SV->getName()+".adj", SI);
          // Mask out the bits we are about to insert from the old value.
          unsigned TotalBits = TD.getTypeSize(SV->getType())*8;
          unsigned InsertBits = TD.getTypeSize(SI->getOperand(0)->getType())*8;
          if (TotalBits != InsertBits) {
            assert(TotalBits > InsertBits);
            uint64_t Mask = ~(((1ULL << InsertBits)-1) << Offset);
            if (TotalBits != 64)
              Mask = Mask & ((1ULL << TotalBits)-1);
            Old = BinaryOperator::createAnd(Old,
                                        ConstantInt::get(Old->getType(), Mask),
                                            Old->getName()+".mask", SI);
            SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
          }
        }
      }
      new StoreInst(SV, NewAI, SI);
      SI->eraseFromParent();
      
    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
      unsigned NewOff = Offset;
      const TargetData &TD = getAnalysis<TargetData>();
      if (TD.isBigEndian() && !isVectorInsert) {
        // Adjust the pointer.  For example, storing 16-bits into a 32-bit
        // alloca with just a cast makes it modify the top 16-bits.
        const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
        const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
        int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
        NewOff += PtrDiffBits;
      }
      ConvertUsesToScalar(CI, NewAI, NewOff);
      CI->eraseFromParent();
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      const PointerType *AggPtrTy = 
        cast<PointerType>(GEP->getOperand(0)->getType());
      const TargetData &TD = getAnalysis<TargetData>();
      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
      
      // Check to see if this is stepping over an element: GEP Ptr, int C
      unsigned NewOffset = Offset;
      if (GEP->getNumOperands() == 2) {
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
        unsigned BitOffset = Idx*AggSizeInBits;
        
        if (TD.isLittleEndian() || isVectorInsert)
          NewOffset += BitOffset;
        else
          NewOffset -= BitOffset;
        
      } else if (GEP->getNumOperands() == 3) {
        // We know that operand #2 is zero.
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
        const Type *AggTy = AggPtrTy->getElementType();
        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;

          if (TD.isLittleEndian() || isVectorInsert)
            NewOffset += ElSizeBits*Idx;
          else
            NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
          unsigned EltBitOffset = TD.getStructLayout(STy)->MemberOffsets[Idx]*8;
          
          if (TD.isLittleEndian() || isVectorInsert)
            NewOffset += EltBitOffset;
          else {
            const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
            unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
            NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
          }
          
        } else {
          assert(0 && "Unsupported operation!");
          abort();
        }
      } else {
        assert(0 && "Unsupported operation!");
        abort();
      }
      ConvertUsesToScalar(GEP, NewAI, NewOffset);
      GEP->eraseFromParent();
    } else {
      assert(0 && "Unsupported operation!");
      abort();
    }
  }
}