summaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/Local.cpp
blob: fe27f308cf096310dfd840acc537f166c94c789c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
//===-- Local.cpp - Functions to perform local transformations ------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include <cerrno>
#include <cmath>
using namespace llvm;

//===----------------------------------------------------------------------===//
//  Local constant propagation...
//

/// doConstantPropagation - If an instruction references constants, try to fold
/// them together...
///
bool llvm::doConstantPropagation(BasicBlock::iterator &II) {
  if (Constant *C = ConstantFoldInstruction(II)) {
    // Replaces all of the uses of a variable with uses of the constant.
    II->replaceAllUsesWith(C);
    
    // Remove the instruction from the basic block...
    II = II->getParent()->getInstList().erase(II);
    return true;
  }

  return false;
}

/// ConstantFoldInstruction - Attempt to constant fold the specified
/// instruction.  If successful, the constant result is returned, if not, null
/// is returned.  Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I) {
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    if (PN->getNumIncomingValues() == 0)
      return Constant::getNullValue(PN->getType());
    
    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
    if (Result == 0) return 0;

    // Handle PHI nodes specially here...
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
        return 0;   // Not all the same incoming constants...
    
    // If we reach here, all incoming values are the same constant.
    return Result;
  } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
    if (Function *F = CI->getCalledFunction())
      if (canConstantFoldCallTo(F)) {
        std::vector<Constant*> Args;
        for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
          if (Constant *Op = dyn_cast<Constant>(CI->getOperand(i)))
            Args.push_back(Op);
          else
            return 0;
        return ConstantFoldCall(F, Args);
      }
    return 0;
  }

  Constant *Op0 = 0, *Op1 = 0;
  switch (I->getNumOperands()) {
  default:
  case 2:
    Op1 = dyn_cast<Constant>(I->getOperand(1));
    if (Op1 == 0) return 0;        // Not a constant?, can't fold
  case 1:
    Op0 = dyn_cast<Constant>(I->getOperand(0));
    if (Op0 == 0) return 0;        // Not a constant?, can't fold
    break;
  case 0: return 0;
  }

  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
    return ConstantExpr::get(I->getOpcode(), Op0, Op1);    

  switch (I->getOpcode()) {
  default: return 0;
  case Instruction::Cast:
    return ConstantExpr::getCast(Op0, I->getType());
  case Instruction::Select:
    if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
      return ConstantExpr::getSelect(Op0, Op1, Op2);
    return 0;
  case Instruction::GetElementPtr:
    std::vector<Constant*> IdxList;
    IdxList.reserve(I->getNumOperands()-1);
    if (Op1) IdxList.push_back(Op1);
    for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i)
      if (Constant *C = dyn_cast<Constant>(I->getOperand(i)))
        IdxList.push_back(C);
      else
        return 0;  // Non-constant operand
    return ConstantExpr::getGetElementPtr(Op0, IdxList);
  }
}

// ConstantFoldTerminator - If a terminator instruction is predicated on a
// constant value, convert it into an unconditional branch to the constant
// destination.
//
bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
  TerminatorInst *T = BB->getTerminator();
      
  // Branch - See if we are conditional jumping on constant
  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));

    if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
      // Are we branching on constant?
      // YES.  Change to unconditional branch...
      BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
      BasicBlock *OldDest     = Cond->getValue() ? Dest2 : Dest1;

      //cerr << "Function: " << T->getParent()->getParent() 
      //     << "\nRemoving branch from " << T->getParent() 
      //     << "\n\nTo: " << OldDest << endl;

      // Let the basic block know that we are letting go of it.  Based on this,
      // it will adjust it's PHI nodes.
      assert(BI->getParent() && "Terminator not inserted in block!");
      OldDest->removePredecessor(BI->getParent());

      // Set the unconditional destination, and change the insn to be an
      // unconditional branch.
      BI->setUnconditionalDest(Destination);
      return true;
    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
      // This branch matches something like this:  
      //     br bool %cond, label %Dest, label %Dest
      // and changes it into:  br label %Dest

      // Let the basic block know that we are letting go of one copy of it.
      assert(BI->getParent() && "Terminator not inserted in block!");
      Dest1->removePredecessor(BI->getParent());

      // Change a conditional branch to unconditional.
      BI->setUnconditionalDest(Dest1);
      return true;
    }
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    // If we are switching on a constant, we can convert the switch into a
    // single branch instruction!
    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
    BasicBlock *DefaultDest = TheOnlyDest;
    assert(TheOnlyDest == SI->getDefaultDest() &&
           "Default destination is not successor #0?");

    // Figure out which case it goes to...
    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
      // Found case matching a constant operand?
      if (SI->getSuccessorValue(i) == CI) {
        TheOnlyDest = SI->getSuccessor(i);
        break;
      }

      // Check to see if this branch is going to the same place as the default
      // dest.  If so, eliminate it as an explicit compare.
      if (SI->getSuccessor(i) == DefaultDest) {
        // Remove this entry...
        DefaultDest->removePredecessor(SI->getParent());
        SI->removeCase(i);
        --i; --e;  // Don't skip an entry...
        continue;
      }

      // Otherwise, check to see if the switch only branches to one destination.
      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
      // destinations.
      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
    }

    if (CI && !TheOnlyDest) {
      // Branching on a constant, but not any of the cases, go to the default
      // successor.
      TheOnlyDest = SI->getDefaultDest();
    }

    // If we found a single destination that we can fold the switch into, do so
    // now.
    if (TheOnlyDest) {
      // Insert the new branch..
      new BranchInst(TheOnlyDest, SI);
      BasicBlock *BB = SI->getParent();

      // Remove entries from PHI nodes which we no longer branch to...
      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
        // Found case matching a constant operand?
        BasicBlock *Succ = SI->getSuccessor(i);
        if (Succ == TheOnlyDest)
          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
        else
          Succ->removePredecessor(BB);
      }

      // Delete the old switch...
      BB->getInstList().erase(SI);
      return true;
    } else if (SI->getNumSuccessors() == 2) {
      // Otherwise, we can fold this switch into a conditional branch
      // instruction if it has only one non-default destination.
      Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
                                    SI->getSuccessorValue(1), "cond", SI);
      // Insert the new branch...
      new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);

      // Delete the old switch...
      SI->getParent()->getInstList().erase(SI);
      return true;
    }
  }
  return false;
}

/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool llvm::canConstantFoldCallTo(Function *F) {
  const std::string &Name = F->getName();

  switch (F->getIntrinsicID()) {
  case Intrinsic::isunordered: return true;
  default: break;
  }

  return Name == "sin" || Name == "cos" || Name == "tan" || Name == "sqrt" ||
         Name == "log" || Name == "log10" || Name == "exp" || Name == "pow" ||
         Name == "acos" || Name == "asin" || Name == "atan" || Name == "fmod";
}

static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
                                const Type *Ty) {
  errno = 0;
  V = NativeFP(V);
  if (errno == 0)
    return ConstantFP::get(Ty, V);
  return 0;
}

/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *llvm::ConstantFoldCall(Function *F,
                                 const std::vector<Constant*> &Operands) {
  const std::string &Name = F->getName();
  const Type *Ty = F->getReturnType();

  if (Operands.size() == 1) {
    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
      double V = Op->getValue();
      if (Name == "sin")
        return ConstantFP::get(Ty, sin(V));
      else if (Name == "cos")
        return ConstantFP::get(Ty, cos(V));
      else if (Name == "tan")
        return ConstantFP::get(Ty, tan(V));
      else if (Name == "sqrt" && V >= 0)
        return ConstantFP::get(Ty, sqrt(V));
      else if (Name == "exp")
        return ConstantFP::get(Ty, exp(V));
      else if (Name == "log" && V > 0)
        return ConstantFP::get(Ty, log(V));
      else if (Name == "log10")
        return ConstantFoldFP(log10, V, Ty);
      else if (Name == "acos")
        return ConstantFoldFP(acos, V, Ty);
      else if (Name == "asin")
        return ConstantFoldFP(asin, V, Ty);
      else if (Name == "atan")
        return ConstantFP::get(Ty, atan(V));
    }
  } else if (Operands.size() == 2) {
    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0]))
      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
        double Op1V = Op1->getValue(), Op2V = Op2->getValue();

        if (Name == "llvm.isunordered")
          return ConstantBool::get(IsNAN(Op1V) || IsNAN(Op2V));
        else 
        if (Name == "pow") {
          errno = 0;
          double V = pow(Op1V, Op2V);
          if (errno == 0)
            return ConstantFP::get(Ty, V);
        } else if (Name == "fmod") {
          errno = 0;
          double V = fmod(Op1V, Op2V);
          if (errno == 0)
            return ConstantFP::get(Ty, V);
        }
      }
  }
  return 0;
}




//===----------------------------------------------------------------------===//
//  Local dead code elimination...
//

bool llvm::isInstructionTriviallyDead(Instruction *I) {
  return I->use_empty() && !I->mayWriteToMemory() && !isa<TerminatorInst>(I);
}

// dceInstruction - Inspect the instruction at *BBI and figure out if it's
// [trivially] dead.  If so, remove the instruction and update the iterator
// to point to the instruction that immediately succeeded the original
// instruction.
//
bool llvm::dceInstruction(BasicBlock::iterator &BBI) {
  // Look for un"used" definitions...
  if (isInstructionTriviallyDead(BBI)) {
    BBI = BBI->getParent()->getInstList().erase(BBI);   // Bye bye
    return true;
  }
  return false;
}

//===----------------------------------------------------------------------===//
//  PHI Instruction Simplification
//

/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
///
Value *llvm::hasConstantValue(PHINode *PN) {
  // If the PHI node only has one incoming value, eliminate the PHI node...
  if (PN->getNumIncomingValues() == 1)
    return PN->getIncomingValue(0);

  // Otherwise if all of the incoming values are the same for the PHI, replace
  // the PHI node with the incoming value.
  //
  Value *InVal = 0;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    if (PN->getIncomingValue(i) != PN)  // Not the PHI node itself...
      if (InVal && PN->getIncomingValue(i) != InVal)
        return 0;  // Not the same, bail out.
      else
        InVal = PN->getIncomingValue(i);

  // The only case that could cause InVal to be null is if we have a PHI node
  // that only has entries for itself.  In this case, there is no entry into the
  // loop, so kill the PHI.
  //
  if (InVal == 0) InVal = Constant::getNullValue(PN->getType());

  // All of the incoming values are the same, return the value now.
  return InVal;
}