summaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/LoopSimplify.cpp
blob: 46f2beb34b03afc39b9ad3b280b11d632a8469ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This pass performs several transformations to transform natural loops into a
// simpler form, which makes subsequent analyses and transformations simpler and
// more effective.
//
// Loop pre-header insertion guarantees that there is a single, non-critical
// entry edge from outside of the loop to the loop header.  This simplifies a
// number of analyses and transformations, such as LICM.
//
// Loop exit-block insertion guarantees that all exit blocks from the loop
// (blocks which are outside of the loop that have predecessors inside of the
// loop) are dominated by the loop header.  This simplifies transformations such
// as store-sinking that are built into LICM.
//
// This pass also guarantees that loops will have exactly one backedge.
//
// Note that the simplifycfg pass will clean up blocks which are split out but
// end up being unnecessary, so usage of this pass should not pessimize
// generated code.
//
// This pass obviously modifies the CFG, but updates loop information and
// dominator information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
#include "Support/SetOperations.h"
#include "Support/Statistic.h"
#include "Support/DepthFirstIterator.h"

namespace llvm {

namespace {
  Statistic<>
  NumInserted("loopsimplify", "Number of pre-header blocks inserted");

  struct LoopSimplify : public FunctionPass {
    virtual bool runOnFunction(Function &F);
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      // We need loop information to identify the loops...
      AU.addRequired<LoopInfo>();
      AU.addRequired<DominatorSet>();

      AU.addPreserved<LoopInfo>();
      AU.addPreserved<DominatorSet>();
      AU.addPreserved<ImmediateDominators>();
      AU.addPreserved<DominatorTree>();
      AU.addPreserved<DominanceFrontier>();
      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
    }
  private:
    bool ProcessLoop(Loop *L);
    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
                                       const std::vector<BasicBlock*> &Preds);
    void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
    void InsertPreheaderForLoop(Loop *L);
    void InsertUniqueBackedgeBlock(Loop *L);

    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
                                         std::vector<BasicBlock*> &PredBlocks);
  };

  RegisterOpt<LoopSimplify>
  X("loopsimplify", "Canonicalize natural loops", true);
}

// Publically exposed interface to pass...
const PassInfo *LoopSimplifyID = X.getPassInfo();
Pass *createLoopSimplifyPass() { return new LoopSimplify(); }

/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
/// it in any convenient order) inserting preheaders...
///
bool LoopSimplify::runOnFunction(Function &F) {
  bool Changed = false;
  LoopInfo &LI = getAnalysis<LoopInfo>();

  for (unsigned i = 0, e = LI.getTopLevelLoops().size(); i != e; ++i)
    Changed |= ProcessLoop(LI.getTopLevelLoops()[i]);

  return Changed;
}


/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
/// all loops have preheaders.
///
bool LoopSimplify::ProcessLoop(Loop *L) {
  bool Changed = false;

  // Does the loop already have a preheader?  If so, don't modify the loop...
  if (L->getLoopPreheader() == 0) {
    InsertPreheaderForLoop(L);
    NumInserted++;
    Changed = true;
  }

  // Regardless of whether or not we added a preheader to the loop we must
  // guarantee that the preheader dominates all exit nodes.  If there are any
  // exit nodes not dominated, split them now.
  DominatorSet &DS = getAnalysis<DominatorSet>();
  BasicBlock *Header = L->getHeader();
  for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
    if (!DS.dominates(Header, L->getExitBlocks()[i])) {
      RewriteLoopExitBlock(L, L->getExitBlocks()[i]);
      assert(DS.dominates(Header, L->getExitBlocks()[i]) &&
             "RewriteLoopExitBlock failed?");
      NumInserted++;
      Changed = true;
    }

  // The preheader may have more than two predecessors at this point (from the
  // preheader and from the backedges).  To simplify the loop more, insert an
  // extra back-edge block in the loop so that there is exactly one backedge.
  if (L->getNumBackEdges() != 1) {
    InsertUniqueBackedgeBlock(L);
    NumInserted++;
    Changed = true;
  }

  const std::vector<Loop*> &SubLoops = L->getSubLoops();
  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
    Changed |= ProcessLoop(SubLoops[i]);
  return Changed;
}

/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
/// to move the predecessors specified in the Preds list to point to the new
/// block, leaving the remaining predecessors pointing to BB.  This method
/// updates the SSA PHINode's, but no other analyses.
///
BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
                                                 const char *Suffix,
                                       const std::vector<BasicBlock*> &Preds) {
  
  // Create new basic block, insert right before the original block...
  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);

  // The preheader first gets an unconditional branch to the loop header...
  BranchInst *BI = new BranchInst(BB, 0, 0, NewBB);
  
  // For every PHI node in the block, insert a PHI node into NewBB where the
  // incoming values from the out of loop edges are moved to NewBB.  We have two
  // possible cases here.  If the loop is dead, we just insert dummy entries
  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
  // incoming edges in BB into new PHI nodes in NewBB.
  //
  if (!Preds.empty()) {  // Is the loop not obviously dead?
    for (BasicBlock::iterator I = BB->begin();
         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
      
      // Create the new PHI node, insert it into NewBB at the end of the block
      PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
        
      // Move all of the edges from blocks outside the loop to the new PHI
      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
        Value *V = PN->removeIncomingValue(Preds[i]);
        NewPHI->addIncoming(V, Preds[i]);
      }
      
      // Add an incoming value to the PHI node in the loop for the preheader
      // edge
      PN->addIncoming(NewPHI, NewBB);
    }
    
    // Now that the PHI nodes are updated, actually move the edges from
    // Preds to point to NewBB instead of BB.
    //
    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
      TerminatorInst *TI = Preds[i]->getTerminator();
      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
        if (TI->getSuccessor(s) == BB)
          TI->setSuccessor(s, NewBB);
    }
    
  } else {                       // Otherwise the loop is dead...
    for (BasicBlock::iterator I = BB->begin();
         PHINode *PN = dyn_cast<PHINode>(I); ++I)
      // Insert dummy values as the incoming value...
      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
  }  
  return NewBB;
}

// ChangeExitBlock - This recursive function is used to change any exit blocks
// that use OldExit to use NewExit instead.  This is recursive because children
// may need to be processed as well.
//
static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) {
  if (L->hasExitBlock(OldExit)) {
    L->changeExitBlock(OldExit, NewExit);
    const std::vector<Loop*> &SubLoops = L->getSubLoops();
    for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
      ChangeExitBlock(SubLoops[i], OldExit, NewExit);
  }
}


/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
/// preheader, this method is called to insert one.  This method has two phases:
/// preheader insertion and analysis updating.
///
void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
  BasicBlock *Header = L->getHeader();

  // Compute the set of predecessors of the loop that are not in the loop.
  std::vector<BasicBlock*> OutsideBlocks;
  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
       PI != PE; ++PI)
      if (!L->contains(*PI))           // Coming in from outside the loop?
        OutsideBlocks.push_back(*PI);  // Keep track of it...
  
  // Split out the loop pre-header
  BasicBlock *NewBB =
    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
  
  //===--------------------------------------------------------------------===//
  //  Update analysis results now that we have performed the transformation
  //
  
  // We know that we have loop information to update... update it now.
  if (Loop *Parent = L->getParentLoop())
    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());

  // If the header for the loop used to be an exit node for another loop, then
  // we need to update this to know that the loop-preheader is now the exit
  // node.  Note that the only loop that could have our header as an exit node
  // is a sibling loop, ie, one with the same parent loop, or one if it's
  // children.
  //
  const std::vector<Loop*> *ParentSubLoops;
  if (Loop *Parent = L->getParentLoop())
    ParentSubLoops = &Parent->getSubLoops();
  else       // Must check top-level loops...
    ParentSubLoops = &getAnalysis<LoopInfo>().getTopLevelLoops();

  // Loop over all sibling loops, performing the substitution (recursively to
  // include child loops)...
  for (unsigned i = 0, e = ParentSubLoops->size(); i != e; ++i)
    ChangeExitBlock((*ParentSubLoops)[i], Header, NewBB);
  
  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
  {
    // The blocks that dominate NewBB are the blocks that dominate Header,
    // minus Header, plus NewBB.
    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
    DomSet.insert(NewBB);  // We dominate ourself
    DomSet.erase(Header);  // Header does not dominate us...
    DS.addBasicBlock(NewBB, DomSet);

    // The newly created basic block dominates all nodes dominated by Header.
    for (Function::iterator I = Header->getParent()->begin(),
           E = Header->getParent()->end(); I != E; ++I)
      if (DS.dominates(Header, I))
        DS.addDominator(I, NewBB);
  }
  
  // Update immediate dominator information if we have it...
  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
    // Whatever i-dominated the header node now immediately dominates NewBB
    ID->addNewBlock(NewBB, ID->get(Header));
    
    // The preheader now is the immediate dominator for the header node...
    ID->setImmediateDominator(Header, NewBB);
  }
  
  // Update DominatorTree information if it is active.
  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
    // The immediate dominator of the preheader is the immediate dominator of
    // the old header.
    //
    DominatorTree::Node *HeaderNode = DT->getNode(Header);
    DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
                                                    HeaderNode->getIDom());
    
    // Change the header node so that PNHode is the new immediate dominator
    DT->changeImmediateDominator(HeaderNode, PHNode);
  }

  // Update dominance frontier information...
  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
    // everything that Header does, and it strictly dominates Header in
    // addition.
    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
    NewDFSet.erase(Header);
    DF->addBasicBlock(NewBB, NewDFSet);

    // Now we must loop over all of the dominance frontiers in the function,
    // replacing occurrences of Header with NewBB in some cases.  If a block
    // dominates a (now) predecessor of NewBB, but did not strictly dominate
    // Header, it will have Header in it's DF set, but should now have NewBB in
    // its set.
    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
      // Get all of the dominators of the predecessor...
      const DominatorSet::DomSetType &PredDoms =
        DS.getDominators(OutsideBlocks[i]);
      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
        BasicBlock *PredDom = *PDI;
        // If the loop header is in DF(PredDom), then PredDom didn't dominate
        // the header but did dominate a predecessor outside of the loop.  Now
        // we change this entry to include the preheader in the DF instead of
        // the header.
        DominanceFrontier::iterator DFI = DF->find(PredDom);
        assert(DFI != DF->end() && "No dominance frontier for node?");
        if (DFI->second.count(Header)) {
          DF->removeFromFrontier(DFI, Header);
          DF->addToFrontier(DFI, NewBB);
        }
      }
    }
  }
}

void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
  DominatorSet &DS = getAnalysis<DominatorSet>();
  assert(!DS.dominates(L->getHeader(), Exit) &&
         "Loop already dominates exit block??");
  assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
         != L->getExitBlocks().end() && "Not a current exit block!");
  
  std::vector<BasicBlock*> LoopBlocks;
  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
    if (L->contains(*I))
      LoopBlocks.push_back(*I);

  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);

  // Update Loop Information - we know that the new block will be in the parent
  // loop of L.
  if (Loop *Parent = L->getParentLoop())
    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());

  // Replace any instances of Exit with NewBB in this and any nested loops...
  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
    if (I->hasExitBlock(Exit))
      I->changeExitBlock(Exit, NewBB);   // Update exit block information

  // Update dominator information (set, immdom, domtree, and domfrontier)
  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
}

/// InsertUniqueBackedgeBlock - This method is called when the specified loop
/// has more than one backedge in it.  If this occurs, revector all of these
/// backedges to target a new basic block and have that block branch to the loop
/// header.  This ensures that loops have exactly one backedge.
///
void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");

  // Get information about the loop
  BasicBlock *Preheader = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  Function *F = Header->getParent();

  // Figure out which basic blocks contain back-edges to the loop header.
  std::vector<BasicBlock*> BackedgeBlocks;
  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
    if (*I != Preheader) BackedgeBlocks.push_back(*I);

  // Create and insert the new backedge block...
  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
  BranchInst *BETerminator = new BranchInst(Header, 0, 0, BEBlock);

  // Move the new backedge block to right after the last backedge block.
  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
  
  // Now that the block has been inserted into the function, create PHI nodes in
  // the backedge block which correspond to any PHI nodes in the header block.
  for (BasicBlock::iterator I = Header->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
                                 BETerminator);
    NewPN->op_reserve(2*BackedgeBlocks.size());

    // Loop over the PHI node, moving all entries except the one for the
    // preheader over to the new PHI node.
    unsigned PreheaderIdx = ~0U;
    bool HasUniqueIncomingValue = true;
    Value *UniqueValue = 0;
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *IBB = PN->getIncomingBlock(i);
      Value *IV = PN->getIncomingValue(i);
      if (IBB == Preheader) {
        PreheaderIdx = i;
      } else {
        NewPN->addIncoming(IV, IBB);
        if (HasUniqueIncomingValue) {
          if (UniqueValue == 0)
            UniqueValue = IV;
          else if (UniqueValue != IV)
            HasUniqueIncomingValue = false;
        }
      }
    }
      
    // Delete all of the incoming values from the old PN except the preheader's
    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    if (PreheaderIdx != 0) {
      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    }
    PN->op_erase(PN->op_begin()+2, PN->op_end());

    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    PN->addIncoming(NewPN, BEBlock);

    // As an optimization, if all incoming values in the new PhiNode (which is a
    // subset of the incoming values of the old PHI node) have the same value,
    // eliminate the PHI Node.
    if (HasUniqueIncomingValue) {
      NewPN->replaceAllUsesWith(UniqueValue);
      BEBlock->getInstList().erase(NewPN);
    }
  }

  // Now that all of the PHI nodes have been inserted and adjusted, modify the
  // backedge blocks to just to the BEBlock instead of the header.
  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
      if (TI->getSuccessor(Op) == Header)
        TI->setSuccessor(Op, BEBlock);
  }

  //===--- Update all analyses which we must preserve now -----------------===//

  // Update Loop Information - we know that this block is now in the current
  // loop and all parent loops.
  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());

  // Replace any instances of Exit with NewBB in this and any nested loops...
  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
    if (I->hasExitBlock(Header))
      I->changeExitBlock(Header, BEBlock);   // Update exit block information

  // Update dominator information (set, immdom, domtree, and domfrontier)
  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
}

/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
/// different kinds of dominator information (dominator sets, immediate
/// dominators, dominator trees, and dominance frontiers) after a new block has
/// been added to the CFG.
///
/// This only supports the case when an existing block (known as "Exit"), had
/// some of its predecessors factored into a new basic block.  This
/// transformation inserts a new basic block ("NewBB"), with a single
/// unconditional branch to Exit, and moves some predecessors of "Exit" to now
/// branch to NewBB.  These predecessors are listed in PredBlocks, even though
/// they are the same as pred_begin(NewBB)/pred_end(NewBB).
///
void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
                                         std::vector<BasicBlock*> &PredBlocks) {
  assert(succ_begin(NewBB) != succ_end(NewBB) &&
         ++succ_begin(NewBB) == succ_end(NewBB) &&
         "NewBB should have a single successor!");
  DominatorSet &DS = getAnalysis<DominatorSet>();

  // Update dominator information...  The blocks that dominate NewBB are the
  // intersection of the dominators of predecessors, plus the block itself.
  // The newly created basic block does not dominate anything except itself.
  //
  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
  DS.addBasicBlock(NewBB, NewBBDomSet);

  // Update immediate dominator information if we have it...
  BasicBlock *NewBBIDom = 0;
  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
    // This block does not strictly dominate anything, so it is not an immediate
    // dominator.  To find the immediate dominator of the new exit node, we
    // trace up the immediate dominators of a predecessor until we find a basic
    // block that dominates the exit block.
    //
    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
      assert(Dom != 0 && "No shared dominator found???");
      Dom = ID->get(Dom);
    }

    // Set the immediate dominator now...
    ID->addNewBlock(NewBB, Dom);
    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
  }

  // Update DominatorTree information if it is active.
  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
    // NewBB doesn't dominate anything, so just create a node and link it into
    // its immediate dominator.  If we don't have ImmediateDominator info
    // around, calculate the idom as above.
    DominatorTree::Node *NewBBIDomNode;
    if (NewBBIDom) {
      NewBBIDomNode = DT->getNode(NewBBIDom);
    } else {
      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
        NewBBIDomNode = NewBBIDomNode->getIDom();
        assert(NewBBIDomNode && "No shared dominator found??");
      }
    }

    // Create the new dominator tree node...
    DT->createNewNode(NewBB, NewBBIDomNode);
  }

  // Update dominance frontier information...
  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
    // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
    // does dominate itself (and there is an edge (NewBB -> Exit)).  Exit is the
    // single successor of NewBB.
    DominanceFrontier::DomSetType NewDFSet;
    BasicBlock *Exit = *succ_begin(NewBB);
    NewDFSet.insert(Exit);
    DF->addBasicBlock(NewBB, NewDFSet);

    // Now we must loop over all of the dominance frontiers in the function,
    // replacing occurrences of Exit with NewBB in some cases.  All blocks that
    // dominate a block in PredBlocks and contained Exit in their dominance
    // frontier must be updated to contain NewBB instead.  This only occurs if
    // there is more than one block in PredBlocks.
    //
    if (PredBlocks.size() > 1) {
      for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
        BasicBlock *Pred = PredBlocks[i];
        // Get all of the dominators of the predecessor...
        const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
        for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
               PDE = PredDoms.end(); PDI != PDE; ++PDI) {
          BasicBlock *PredDom = *PDI;

          // If the Exit node is in DF(PredDom), then PredDom didn't dominate
          // Exit but did dominate a predecessor of it.  Now we change this
          // entry to include NewBB in the DF instead of Exit.
          DominanceFrontier::iterator DFI = DF->find(PredDom);
          assert(DFI != DF->end() && "No dominance frontier for node?");
          if (DFI->second.count(Exit)) {
            DF->removeFromFrontier(DFI, Exit);
            DF->addToFrontier(DFI, NewBB);
          }
        }
      }
    }
  }
}

} // End llvm namespace