summaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/SSAUpdater.cpp
blob: f4bdb527655abe8ab646a2202c0608ae25b73023 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdater class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "ssaupdater"
#include "llvm/Instructions.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
using namespace llvm;

typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
static AvailableValsTy &getAvailableVals(void *AV) {
  return *static_cast<AvailableValsTy*>(AV);
}

SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
  : AV(0), PrototypeValue(0), InsertedPHIs(NewPHI) {}

SSAUpdater::~SSAUpdater() {
  delete &getAvailableVals(AV);
}

/// Initialize - Reset this object to get ready for a new set of SSA
/// updates.  ProtoValue is the value used to name PHI nodes.
void SSAUpdater::Initialize(Value *ProtoValue) {
  if (AV == 0)
    AV = new AvailableValsTy();
  else
    getAvailableVals(AV).clear();
  PrototypeValue = ProtoValue;
}

/// HasValueForBlock - Return true if the SSAUpdater already has a value for
/// the specified block.
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
  return getAvailableVals(AV).count(BB);
}

/// AddAvailableValue - Indicate that a rewritten value is available in the
/// specified block with the specified value.
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
  assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
  assert(PrototypeValue->getType() == V->getType() &&
         "All rewritten values must have the same type");
  getAvailableVals(AV)[BB] = V;
}

/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
/// in ValueMapping for each predecessor block.
static bool IsEquivalentPHI(PHINode *PHI,
                            DenseMap<BasicBlock*, Value*> &ValueMapping) {
  unsigned PHINumValues = PHI->getNumIncomingValues();
  if (PHINumValues != ValueMapping.size())
    return false;

  // Scan the phi to see if it matches.
  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
    if (ValueMapping[PHI->getIncomingBlock(i)] !=
        PHI->getIncomingValue(i)) {
      return false;
    }

  return true;
}

/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
/// live at the end of the specified block.
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
  Value *Res = GetValueAtEndOfBlockInternal(BB);
  return Res;
}

/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
/// is live in the middle of the specified block.
///
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
/// important case: if there is a definition of the rewritten value after the
/// 'use' in BB.  Consider code like this:
///
///      X1 = ...
///   SomeBB:
///      use(X)
///      X2 = ...
///      br Cond, SomeBB, OutBB
///
/// In this case, there are two values (X1 and X2) added to the AvailableVals
/// set by the client of the rewriter, and those values are both live out of
/// their respective blocks.  However, the use of X happens in the *middle* of
/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
/// merge the appropriate values, and this value isn't live out of the block.
///
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
  // If there is no definition of the renamed variable in this block, just use
  // GetValueAtEndOfBlock to do our work.
  if (!HasValueForBlock(BB))
    return GetValueAtEndOfBlock(BB);

  // Otherwise, we have the hard case.  Get the live-in values for each
  // predecessor.
  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
  Value *SingularValue = 0;

  // We can get our predecessor info by walking the pred_iterator list, but it
  // is relatively slow.  If we already have PHI nodes in this block, walk one
  // of them to get the predecessor list instead.
  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
      PredValues.push_back(std::make_pair(PredBB, PredVal));

      // Compute SingularValue.
      if (i == 0)
        SingularValue = PredVal;
      else if (PredVal != SingularValue)
        SingularValue = 0;
    }
  } else {
    bool isFirstPred = true;
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
      BasicBlock *PredBB = *PI;
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
      PredValues.push_back(std::make_pair(PredBB, PredVal));

      // Compute SingularValue.
      if (isFirstPred) {
        SingularValue = PredVal;
        isFirstPred = false;
      } else if (PredVal != SingularValue)
        SingularValue = 0;
    }
  }

  // If there are no predecessors, just return undef.
  if (PredValues.empty())
    return UndefValue::get(PrototypeValue->getType());

  // Otherwise, if all the merged values are the same, just use it.
  if (SingularValue != 0)
    return SingularValue;

  // Otherwise, we do need a PHI: check to see if we already have one available
  // in this block that produces the right value.
  if (isa<PHINode>(BB->begin())) {
    DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
                                               PredValues.end());
    PHINode *SomePHI;
    for (BasicBlock::iterator It = BB->begin();
         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
      if (IsEquivalentPHI(SomePHI, ValueMapping))
        return SomePHI;
    }
  }

  // Ok, we have no way out, insert a new one now.
  PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
                                         PrototypeValue->getName(),
                                         &BB->front());
  InsertedPHI->reserveOperandSpace(PredValues.size());

  // Fill in all the predecessors of the PHI.
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);

  // See if the PHI node can be merged to a single value.  This can happen in
  // loop cases when we get a PHI of itself and one other value.
  if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
    InsertedPHI->eraseFromParent();
    return ConstVal;
  }

  // If the client wants to know about all new instructions, tell it.
  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);

  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
  return InsertedPHI;
}

/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
/// which use their value in the corresponding predecessor.
void SSAUpdater::RewriteUse(Use &U) {
  Instruction *User = cast<Instruction>(U.getUser());

  Value *V;
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
  else
    V = GetValueInMiddleOfBlock(User->getParent());

  U.set(V);
}

/// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
/// in the SSAUpdaterImpl template.
namespace {
  class PHIiter {
  private:
    PHINode *PHI;
    unsigned idx;

  public:
    explicit PHIiter(PHINode *P) // begin iterator
      : PHI(P), idx(0) {}
    PHIiter(PHINode *P, bool) // end iterator
      : PHI(P), idx(PHI->getNumIncomingValues()) {}

    PHIiter &operator++() { ++idx; return *this; } 
    bool operator==(const PHIiter& x) const { return idx == x.idx; }
    bool operator!=(const PHIiter& x) const { return !operator==(x); }
    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
  };
}

/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
/// specialized for SSAUpdater.
namespace llvm {
template<>
class SSAUpdaterTraits<SSAUpdater> {
public:
  typedef BasicBlock BlkT;
  typedef Value *ValT;
  typedef PHINode PhiT;

  typedef succ_iterator BlkSucc_iterator;
  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }

  typedef PHIiter PHI_iterator;
  static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
  static inline PHI_iterator PHI_end(PhiT *PHI) {
    return PHI_iterator(PHI, true);
  }

  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
  static void FindPredecessorBlocks(BasicBlock *BB,
                                    SmallVectorImpl<BasicBlock*> *Preds) {
    // We can get our predecessor info by walking the pred_iterator list,
    // but it is relatively slow.  If we already have PHI nodes in this
    // block, walk one of them to get the predecessor list instead.
    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
      for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
        Preds->push_back(SomePhi->getIncomingBlock(PI));
    } else {
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        Preds->push_back(*PI);
    }
  }

  /// GetUndefVal - Get an undefined value of the same type as the value
  /// being handled.
  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
    return UndefValue::get(Updater->PrototypeValue->getType());
  }

  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
  /// Reserve space for the operands but do not fill them in yet.
  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
                               SSAUpdater *Updater) {
    PHINode *PHI = PHINode::Create(Updater->PrototypeValue->getType(),
                                   Updater->PrototypeValue->getName(),
                                   &BB->front());
    PHI->reserveOperandSpace(NumPreds);
    return PHI;
  }

  /// AddPHIOperand - Add the specified value as an operand of the PHI for
  /// the specified predecessor block.
  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
    PHI->addIncoming(Val, Pred);
  }

  /// InstrIsPHI - Check if an instruction is a PHI.
  ///
  static PHINode *InstrIsPHI(Instruction *I) {
    return dyn_cast<PHINode>(I);
  }

  /// ValueIsPHI - Check if a value is a PHI.
  ///
  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
    return dyn_cast<PHINode>(Val);
  }

  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
  /// operands, i.e., it was just added.
  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
    PHINode *PHI = ValueIsPHI(Val, Updater);
    if (PHI && PHI->getNumIncomingValues() == 0)
      return PHI;
    return 0;
  }

  /// GetPHIValue - For the specified PHI instruction, return the value
  /// that it defines.
  static Value *GetPHIValue(PHINode *PHI) {
    return PHI;
  }
};

} // End llvm namespace

/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
/// for the specified BB and if so, return it.  If not, construct SSA form by
/// first calculating the required placement of PHIs and then inserting new
/// PHIs where needed.
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
  if (Value *V = AvailableVals[BB])
    return V;

  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
  return Impl.GetValue(BB);
}