summaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoopVectorize.cpp
blob: 4cd171ab140b7a61c7b2dc7ddf7d23494d559c3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR. Legalization of the IR is done
// in the codegen. However, the vectorizes uses (will use) the codegen
// interfaces to generate IR that is likely to result in an optimal binary.
//
// The loop vectorizer combines consecutive loop iteration into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A helper class that checks for the legality
//    of the vectorization.
// 3. SingleBlockLoopVectorizer - A helper class that performs the actual
//    widening of instructions.
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// Other ideas/concepts are from:
//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
//===----------------------------------------------------------------------===//
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Value.h"
#include "llvm/Function.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/DataLayout.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;

static cl::opt<unsigned>
DefaultVectorizationFactor("default-loop-vectorize-width",
                          cl::init(4), cl::Hidden,
                          cl::desc("Set the default loop vectorization width"));
namespace {

// Forward declaration.
class LoopVectorizationLegality;

/// SingleBlockLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
///   counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
///   instructions.
/// SingleBlockLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The SingleBlockLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class SingleBlockLoopVectorizer {
public:
  /// Ctor.
  SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
                            LPPassManager *Lpm, unsigned VecWidth):
  OrigLoop(Orig), SE(Se), LI(Li), LPM(Lpm), VF(VecWidth),
  Builder(Se->getContext()), Induction(0), OldInduction(0) { }

  // Perform the actual loop widening (vectorization).
  void vectorize(LoopVectorizationLegality *Legal) {
    ///Create a new empty loop. Unlink the old loop and connect the new one.
    createEmptyLoop(Legal);
    /// Widen each instruction in the old loop to a new one in the new loop.
    /// Use the Legality module to find the induction and reduction variables.
   vectorizeLoop(Legal);
    // register the new loop.
    cleanup();
 }

private:
  /// Create an empty loop, based on the loop ranges of the old loop.
  void createEmptyLoop(LoopVectorizationLegality *Legal);
  /// Copy and widen the instructions from the old loop.
  void vectorizeLoop(LoopVectorizationLegality *Legal);
  /// Insert the new loop to the loop hierarchy and pass manager.
  void cleanup();

  /// This instruction is un-vectorizable. Implement it as a sequence
  /// of scalars.
  void scalarizeInstruction(Instruction *Instr);

  /// Create a broadcast instruction. This method generates a broadcast
  /// instruction (shuffle) for loop invariant values and for the induction
  /// value. If this is the induction variable then we extend it to N, N+1, ...
  /// this is needed because each iteration in the loop corresponds to a SIMD
  /// element.
  Value *getBroadcastInstrs(Value *V);

  /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
  /// for each element in the vector. Starting from zero.
  Value *getConsecutiveVector(Value* Val);

  /// When we go over instructions in the basic block we rely on previous
  /// values within the current basic block or on loop invariant values.
  /// When we widen (vectorize) values we place them in the map. If the values
  /// are not within the map, they have to be loop invariant, so we simply
  /// broadcast them into a vector.
  Value *getVectorValue(Value *V);

  /// Get a uniform vector of constant integers. We use this to get
  /// vectors of ones and zeros for the reduction code.
  Constant* getUniformVector(unsigned Val, Type* ScalarTy);

  typedef DenseMap<Value*, Value*> ValueMap;

  /// The original loop.
  Loop *OrigLoop;
  // Scev analysis to use.
  ScalarEvolution *SE;
  // Loop Info.
  LoopInfo *LI;
  // Loop Pass Manager;
  LPPassManager *LPM;
  // The vectorization factor to use.
  unsigned VF;

  // The builder that we use
  IRBuilder<> Builder;

  // --- Vectorization state ---

  /// Middle Block between the vector and the scalar.
  BasicBlock *LoopMiddleBlock;
  ///The ExitBlock of the scalar loop.
  BasicBlock *LoopExitBlock;
  ///The vector loop body.
  BasicBlock *LoopVectorBody;
  ///The scalar loop body.
  BasicBlock *LoopScalarBody;
  ///The first bypass block.
  BasicBlock *LoopBypassBlock;

  /// The new Induction variable which was added to the new block.
  PHINode *Induction;
  /// The induction variable of the old basic block.
  PHINode *OldInduction;
  // Maps scalars to widened vectors.
  ValueMap WidenMap;
};

/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
/// legality. This class has two main kinds of checks:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
///   will change the order of memory accesses in a way that will change the
///   correctness of the program.
/// * Scalars checks - The code in canVectorizeBlock checks for a number
///   of different conditions, such as the availability of a single induction
///   variable, that all types are supported and vectorize-able, etc.
/// This code reflects the capabilities of SingleBlockLoopVectorizer.
/// This class is also used by SingleBlockLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
  LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
  TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }

  /// This represents the kinds of reductions that we support.
  /// We use the enum values to hold the 'identity' value for
  /// each operand. This value does not change the result if applied.
  enum ReductionKind {
    NoReduction = -1, /// Not a reduction.
    IntegerAdd  = 0,  /// Sum of numbers.
    IntegerMult = 1  /// Product of numbers.
  };

  /// This POD struct holds information about reduction variables.
  struct ReductionDescriptor {
    // Default C'tor
    ReductionDescriptor():
    StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}

    // C'tor.
    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
    StartValue(Start), LoopExitInstr(Exit), Kind(K) {}

    // The starting value of the reduction.
    // It does not have to be zero!
    Value *StartValue;
    // The instruction who's value is used outside the loop.
    Instruction *LoopExitInstr;
    // The kind of the reduction.
    ReductionKind Kind;
  };

  /// ReductionList contains the reduction descriptors for all
  /// of the reductions that were found in the loop.
  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;

  /// Returns the maximum vectorization factor that we *can* use to vectorize
  /// this loop. This does not mean that it is profitable to vectorize this
  /// loop, only that it is legal to do so. This may be a large number. We
  /// can vectorize to any SIMD width below this number.
  unsigned getLoopMaxVF();

  /// Returns the Induction variable.
  PHINode *getInduction() {return Induction;}

  /// Returns the reduction variables found in the loop.
  ReductionList *getReductionVars() { return &Reductions; }

  /// Check if the pointer returned by this GEP is consecutive
  /// when the index is vectorized. This happens when the last
  /// index of the GEP is consecutive, like the induction variable.
  /// This check allows us to vectorize A[idx] into a wide load/store.
  bool isConsecutiveGep(Value *Ptr);

private:
  /// Check if a single basic block loop is vectorizable.
  /// At this point we know that this is a loop with a constant trip count
  /// and we only need to check individual instructions.
  bool canVectorizeBlock(BasicBlock &BB);

  /// When we vectorize loops we may change the order in which
  /// we read and write from memory. This method checks if it is
  /// legal to vectorize the code, considering only memory constrains.
  /// Returns true if BB is vectorizable
  bool canVectorizeMemory(BasicBlock &BB);

  /// Returns True, if 'Phi' is the kind of reduction variable for type
  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
  /// Returns true if the instruction I can be a reduction variable of type
  /// 'Kind'.
  bool isReductionInstr(Instruction *I, ReductionKind Kind);
  /// Returns True, if 'Phi' is an induction variable.
  bool isInductionVariable(PHINode *Phi);

  /// The loop that we evaluate.
  Loop *TheLoop;
  /// Scev analysis.
  ScalarEvolution *SE;
  /// DataLayout analysis.
  DataLayout *DL;

  //  ---  vectorization state --- //

  /// Holds the induction variable.
  PHINode *Induction;
  /// Holds the reduction variables.
  ReductionList Reductions;
  /// Allowed outside users. This holds the reduction
  /// vars which can be accessed from outside the loop.
  SmallPtrSet<Value*, 4> AllowedExit;
};

struct LoopVectorize : public LoopPass {
  static char ID; // Pass identification, replacement for typeid

  LoopVectorize() : LoopPass(ID) {
    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
  }

  ScalarEvolution *SE;
  DataLayout *DL;
  LoopInfo *LI;

  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
    // We only vectorize innermost loops.
    if (!L->empty())
      return false;

    SE = &getAnalysis<ScalarEvolution>();
    DL = getAnalysisIfAvailable<DataLayout>();
    LI = &getAnalysis<LoopInfo>();

    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
          L->getHeader()->getParent()->getName() << "\"\n");

    // Check if it is legal to vectorize the loop.
    LoopVectorizationLegality LVL(L, SE, DL);
    unsigned MaxVF = LVL.getLoopMaxVF();

    // Check that we can vectorize this loop using the chosen vectorization
    // width.
    if (MaxVF < DefaultVectorizationFactor) {
      DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n");
      return false;
    }

    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n");

    // If we decided that it is *legal* to vectorizer the loop then do it.
    SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, DefaultVectorizationFactor);
    LB.vectorize(&LVL);

    DEBUG(verifyFunction(*L->getHeader()->getParent()));
    return true;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    LoopPass::getAnalysisUsage(AU);
    AU.addRequiredID(LoopSimplifyID);
    AU.addRequiredID(LCSSAID);
    AU.addRequired<LoopInfo>();
    AU.addRequired<ScalarEvolution>();
  }

};

Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
  // Instructions that access the old induction variable
  // actually want to get the new one.
  if (V == OldInduction)
    V = Induction;
  // Create the types.
  LLVMContext &C = V->getContext();
  Type *VTy = VectorType::get(V->getType(), VF);
  Type *I32 = IntegerType::getInt32Ty(C);
  Constant *Zero = ConstantInt::get(I32, 0);
  Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
  Value *UndefVal = UndefValue::get(VTy);
  // Insert the value into a new vector.
  Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
  // Broadcast the scalar into all locations in the vector.
  Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
                                             "broadcast");
  // We are accessing the induction variable. Make sure to promote the
  // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
  if (V == Induction)
    return getConsecutiveVector(Shuf);
  return Shuf;
}

Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
  assert(Val->getType()->isVectorTy() && "Must be a vector");
  assert(Val->getType()->getScalarType()->isIntegerTy() &&
         "Elem must be an integer");
  // Create the types.
  Type *ITy = Val->getType()->getScalarType();
  VectorType *Ty = cast<VectorType>(Val->getType());
  unsigned VLen = Ty->getNumElements();
  SmallVector<Constant*, 8> Indices;

  // Create a vector of consecutive numbers from zero to VF.
  for (unsigned i = 0; i < VLen; ++i)
    Indices.push_back(ConstantInt::get(ITy, i));

  // Add the consecutive indices to the vector value.
  Constant *Cv = ConstantVector::get(Indices);
  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
  return Builder.CreateAdd(Val, Cv, "induction");
}

bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) {
  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
  if (!Gep)
    return false;

  unsigned NumOperands = Gep->getNumOperands();
  Value *LastIndex = Gep->getOperand(NumOperands - 1);

  // Check that all of the gep indices are uniform except for the last.
  for (unsigned i = 0; i < NumOperands - 1; ++i)
    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
      return false;

  // We can emit wide load/stores only of the last index is the induction
  // variable.
  const SCEV *Last = SE->getSCEV(LastIndex);
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
    const SCEV *Step = AR->getStepRecurrence(*SE);

    // The memory is consecutive because the last index is consecutive
    // and all other indices are loop invariant.
    if (Step->isOne())
      return true;
  }

  return false;
}

Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
  // If we saved a vectorized copy of V, use it.
  Value *&MapEntry = WidenMap[V];
  if (MapEntry)
    return MapEntry;

  // Broadcast V and save the value for future uses.
  Value *B = getBroadcastInstrs(V);
  MapEntry = B;
  return B;
}

Constant*
SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
  SmallVector<Constant*, 8> Indices;
  // Create a vector of consecutive numbers from zero to VF.
  for (unsigned i = 0; i < VF; ++i)
    Indices.push_back(ConstantInt::get(ScalarTy, Val));

  // Add the consecutive indices to the vector value.
  return ConstantVector::get(Indices);
}

void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
  // Holds vector parameters or scalars, in case of uniform vals.
  SmallVector<Value*, 8> Params;

  // Find all of the vectorized parameters.
  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
    Value *SrcOp = Instr->getOperand(op);

    // If we are accessing the old induction variable, use the new one.
    if (SrcOp == OldInduction) {
      Params.push_back(getBroadcastInstrs(Induction));
      continue;
    }

    // Try using previously calculated values.
    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);

    // If the src is an instruction that appeared earlier in the basic block
    // then it should already be vectorized.
    if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
      assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
      // The parameter is a vector value from earlier.
      Params.push_back(WidenMap[SrcInst]);
    } else {
      // The parameter is a scalar from outside the loop. Maybe even a constant.
      Params.push_back(SrcOp);
    }
  }

  assert(Params.size() == Instr->getNumOperands() &&
         "Invalid number of operands");

  // Does this instruction return a value ?
  bool IsVoidRetTy = Instr->getType()->isVoidTy();
  Value *VecResults = 0;

  // If we have a return value, create an empty vector. We place the scalarized
  // instructions in this vector.
  if (!IsVoidRetTy)
    VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));

  // For each scalar that we create:
  for (unsigned i = 0; i < VF; ++i) {
    Instruction *Cloned = Instr->clone();
    if (!IsVoidRetTy)
      Cloned->setName(Instr->getName() + ".cloned");
    // Replace the operands of the cloned instrucions with extracted scalars.
    for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
      Value *Op = Params[op];
      // Param is a vector. Need to extract the right lane.
      if (Op->getType()->isVectorTy())
        Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
      Cloned->setOperand(op, Op);
    }

    // Place the cloned scalar in the new loop.
    Builder.Insert(Cloned);

    // If the original scalar returns a value we need to place it in a vector
    // so that future users will be able to use it.
    if (!IsVoidRetTy)
      VecResults = Builder.CreateInsertElement(VecResults, Cloned,
                                               Builder.getInt32(i));
  }

  if (!IsVoidRetTy)
    WidenMap[Instr] = VecResults;
}

void SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
  /*
   In this function we generate a new loop. The new loop will contain
   the vectorized instructions while the old loop will continue to run the
   scalar remainder.

    [ ] <-- vector loop bypass.
  /  |
 /   v
|   [ ]     <-- vector pre header.
|    |
|    v
|   [  ] \
|   [  ]_|   <-- vector loop.
|    |
 \   v
   >[ ]   <--- middle-block.
  /  |
 /   v
|   [ ]     <--- new preheader.
|    |
|    v
|   [ ] \
|   [ ]_|   <-- old scalar loop to handle remainder.
 \   |
  \  v
   >[ ]     <-- exit block.
   ...
   */

  // This is the original scalar-loop preheader.
  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
  assert(ExitBlock && "Must have an exit block");

  assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
  assert(BypassBlock && "Invalid loop structure");

  BasicBlock *VectorPH =
      BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
  BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
                                                 "vector.body");

  BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
                                                  "middle.block");
  BasicBlock *ScalarPH =
    MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
                                 "scalar.preheader");
  // Find the induction variable.
  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
  OldInduction = Legal->getInduction();
  assert(OldInduction && "We must have a single phi node.");
  Type *IdxTy = OldInduction->getType();

  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
  // inside the loop.
  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());

  // Generate the induction variable.
  Induction = Builder.CreatePHI(IdxTy, 2, "index");
  Constant *Zero = ConstantInt::get(IdxTy, 0);
  Constant *Step = ConstantInt::get(IdxTy, VF);

  // Find the loop boundaries.
  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");

  // Get the total trip count from the count by adding 1.
  ExitCount = SE->getAddExpr(ExitCount,
                             SE->getConstant(ExitCount->getType(), 1));

  // Expand the trip count and place the new instructions in the preheader.
  // Notice that the pre-header does not change, only the loop body.
  SCEVExpander Exp(*SE, "induction");
  Instruction *Loc = BypassBlock->getTerminator();

  // We may need to extend the index in case there is a type mismatch.
  // We know that the count starts at zero and does not overflow.
  // We are using Zext because it should be less expensive.
  if (ExitCount->getType() != Induction->getType())
    ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);

  // Count holds the overall loop count (N).
  Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
  // Now we need to generate the expression for N - (N % VF), which is
  // the part that the vectorized body will execute.
  Constant *CIVF = ConstantInt::get(IdxTy, VF);
  Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
  Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);

  // Now, compare the new count to zero. If it is zero, jump to the scalar part.
  Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
                               CountRoundDown, ConstantInt::getNullValue(IdxTy),
                               "cmp.zero", Loc);
  BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
  // Remove the old terminator.
  Loc->eraseFromParent();

  // Add a check in the middle block to see if we have completed
  // all of the iterations in the first vector loop.
  // If (N - N%VF) == N, then we *don't* need to run the remainder.
  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
                                CountRoundDown, "cmp.n",
                                MiddleBlock->getTerminator());

  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
  // Remove the old terminator.
  MiddleBlock->getTerminator()->eraseFromParent();

  // Create i+1 and fill the PHINode.
  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
  Induction->addIncoming(Zero, VectorPH);
  Induction->addIncoming(NextIdx, VecBody);
  // Create the compare.
  Value *ICmp = Builder.CreateICmpEQ(NextIdx, CountRoundDown);
  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);

  // Now we have two terminators. Remove the old one from the block.
  VecBody->getTerminator()->eraseFromParent();

  // Fix the scalar body iteration count.
  unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
  OldInduction->setIncomingValue(BlockIdx, CountRoundDown);

  // Get ready to start creating new instructions into the vectorized body.
  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());

  // Register the new loop.
  Loop* Lp = new Loop();
  LPM->insertLoop(Lp, OrigLoop->getParentLoop());

  Lp->addBasicBlockToLoop(VecBody, LI->getBase());

  Loop *ParentLoop = OrigLoop->getParentLoop();
  if (ParentLoop) {
    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
  }

  // Save the state.
  LoopMiddleBlock = MiddleBlock;
  LoopExitBlock = ExitBlock;
  LoopVectorBody = VecBody;
  LoopScalarBody = OldBasicBlock;
  LoopBypassBlock = BypassBlock;
}

void
SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
  typedef SmallVector<PHINode*, 4> PhiVector;
  BasicBlock &BB = *OrigLoop->getHeader();
  Constant *Zero = ConstantInt::get(
    IntegerType::getInt32Ty(BB.getContext()), 0);

  // In order to support reduction variables we need to be able to vectorize
  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
  // steages. First, we create a new vector PHI node with no incoming edges.
  // We use this value when we vectorize all of the instructions that use the
  // PHI. Next, after all of the instructions in the block are complete we
  // add the new incoming edges to the PHI. At this point all of the
  // instructions in the basic block are vectorized, so we can use them to
  // construct the PHI.
  PhiVector PHIsToFix;

  // For each instruction in the old loop.
  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
    Instruction *Inst = it;

    switch (Inst->getOpcode()) {
      case Instruction::Br:
        // Nothing to do for PHIs and BR, since we already took care of the
        // loop control flow instructions.
        continue;
      case Instruction::PHI:{
        PHINode* P = cast<PHINode>(Inst);
        // Special handling for the induction var.
        if (OldInduction == Inst)
          continue;
        // This is phase one of vectorizing PHIs.
        // This has to be a reduction variable.
        assert(Legal->getReductionVars()->count(P) && "Not a Reduction");
        Type *VecTy = VectorType::get(Inst->getType(), VF);
        WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi");
        PHIsToFix.push_back(P);
        continue;
      }
      case Instruction::Add:
      case Instruction::FAdd:
      case Instruction::Sub:
      case Instruction::FSub:
      case Instruction::Mul:
      case Instruction::FMul:
      case Instruction::UDiv:
      case Instruction::SDiv:
      case Instruction::FDiv:
      case Instruction::URem:
      case Instruction::SRem:
      case Instruction::FRem:
      case Instruction::Shl:
      case Instruction::LShr:
      case Instruction::AShr:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor: {
        // Just widen binops.
        BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
        Value *A = getVectorValue(Inst->getOperand(0));
        Value *B = getVectorValue(Inst->getOperand(1));
        // Use this vector value for all users of the original instruction.
        WidenMap[Inst] = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
        break;
      }
      case Instruction::Select: {
        // Widen selects.
        // If the selector is loop invariant we can create a select
        // instruction with a scalar condition. Otherwise, use vector-select.
        Value *Cond = Inst->getOperand(0);
        bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);

        // The condition can be loop invariant  but still defined inside the
        // loop. This means that we can't just use the original 'cond' value.
        // We have to take the 'vectorized' value and pick the first lane.
        // Instcombine will make this a no-op.
        Cond = getVectorValue(Cond);
        if (InvariantCond)
          Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));

        Value *Op0 = getVectorValue(Inst->getOperand(1));
        Value *Op1 = getVectorValue(Inst->getOperand(2));
        WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1);
        break;
      }

      case Instruction::ICmp:
      case Instruction::FCmp: {
        // Widen compares. Generate vector compares.
        bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
        CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
        Value *A = getVectorValue(Inst->getOperand(0));
        Value *B = getVectorValue(Inst->getOperand(1));
        if (FCmp)
          WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
        else
          WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
        break;
      }

      case Instruction::Store: {
        // Attempt to issue a wide store.
        StoreInst *SI = dyn_cast<StoreInst>(Inst);
        Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
        Value *Ptr = SI->getPointerOperand();
        unsigned Alignment = SI->getAlignment();
        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
        // This store does not use GEPs.
        if (!Legal->isConsecutiveGep(Gep)) {
          scalarizeInstruction(Inst);
          break;
        }

        // The last index does not have to be the induction. It can be
        // consecutive and be a function of the index. For example A[I+1];
        unsigned NumOperands = Gep->getNumOperands();
        Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
        LastIndex = Builder.CreateExtractElement(LastIndex, Builder.getInt32(0));

        // Create the new GEP with the new induction variable.
        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
        Gep2->setOperand(NumOperands - 1, LastIndex);
        Ptr = Builder.Insert(Gep2);
        Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo(Ptr->getType()));
        Value *Val = getVectorValue(SI->getValueOperand());
        Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
        break;
      }
      case Instruction::Load: {
        // Attempt to issue a wide load.
        LoadInst *LI = dyn_cast<LoadInst>(Inst);
        Type *RetTy = VectorType::get(LI->getType(), VF);
        Value *Ptr = LI->getPointerOperand();
        unsigned Alignment = LI->getAlignment();
        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);

        // We don't have a gep. Scalarize the load.
        if (!Legal->isConsecutiveGep(Gep)) {
          scalarizeInstruction(Inst);
          break;
        }

        // The last index does not have to be the induction. It can be
        // consecutive and be a function of the index. For example A[I+1];
        unsigned NumOperands = Gep->getNumOperands();
        Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
        LastIndex = Builder.CreateExtractElement(LastIndex, Builder.getInt32(0));

        // Create the new GEP with the new induction variable.
        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
        Gep2->setOperand(NumOperands - 1, LastIndex);
        Ptr = Builder.Insert(Gep2);
        Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo(Ptr->getType()));
        LI = Builder.CreateLoad(Ptr);
        LI->setAlignment(Alignment);
        // Use this vector value for all users of the load.
        WidenMap[Inst] = LI;
        break;
      }
      case Instruction::ZExt:
      case Instruction::SExt:
      case Instruction::FPToUI:
      case Instruction::FPToSI:
      case Instruction::FPExt:
      case Instruction::PtrToInt:
      case Instruction::IntToPtr:
      case Instruction::SIToFP:
      case Instruction::UIToFP:
      case Instruction::Trunc:
      case Instruction::FPTrunc:
      case Instruction::BitCast: {
        /// Vectorize bitcasts.
        CastInst *CI = dyn_cast<CastInst>(Inst);
        Value *A = getVectorValue(Inst->getOperand(0));
        Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
        WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
        break;
      }

      default:
        /// All other instructions are unsupported. Scalarize them.
        scalarizeInstruction(Inst);
        break;
    }// end of switch.
  }// end of for_each instr.

  // At this point every instruction in the original loop is widended to
  // a vector form. We are almost done. Now, we need to fix the PHI nodes
  // that we vectorized. The PHI nodes are currently empty because we did
  // not want to introduce cycles. Notice that the remaining PHI nodes
  // that we need to fix are reduction variables.

  // Create the 'reduced' values for each of the induction vars.
  // The reduced values are the vector values that we scalarize and combine
  // after the loop is finished.
  for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end();
       it != e; ++it) {
    PHINode *RdxPhi = *it;
    PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
    assert(RdxPhi && "Unable to recover vectorized PHI");

    // Find the reduction variable descriptor.
    assert(Legal->getReductionVars()->count(RdxPhi) &&
           "Unable to find the reduction variable");
    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
      (*Legal->getReductionVars())[RdxPhi];

    // We need to generate a reduction vector from the incoming scalar.
    // To do so, we need to generate the 'identity' vector and overide
    // one of the elements with the incoming scalar reduction. We need
    // to do it in the vector-loop preheader.
    Builder.SetInsertPoint(LoopBypassBlock->getTerminator());

    // This is the vector-clone of the value that leaves the loop.
    Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
    Type *VecTy = VectorExit->getType();

    // Find the reduction identity variable. The value of the enum is the
    // identity. Zero for addition. One for Multiplication.
    unsigned IdentitySclr =  RdxDesc.Kind;
    Constant *Identity = getUniformVector(IdentitySclr,
                                          VecTy->getScalarType());

    // This vector is the Identity vector where the first element is the
    // incoming scalar reduction.
    Value *VectorStart = Builder.CreateInsertElement(Identity,
                                                    RdxDesc.StartValue, Zero);


    // Fix the vector-loop phi.
    // We created the induction variable so we know that the
    // preheader is the first entry.
    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);

    // Reductions do not have to start at zero. They can start with
    // any loop invariant values.
    VecRdxPhi->addIncoming(VectorStart, VecPreheader);
    unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
    Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
    VecRdxPhi->addIncoming(Val, LoopVectorBody);

    // Before each round, move the insertion point right between
    // the PHIs and the values we are going to write.
    // This allows us to write both PHINodes and the extractelement
    // instructions.
    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());

    // This PHINode contains the vectorized reduction variable, or
    // the initial value vector, if we bypass the vector loop.
    PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
    NewPhi->addIncoming(VectorStart, LoopBypassBlock);
    NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);

    // Extract the first scalar.
    Value *Scalar0 =
      Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
    // Extract and sum the remaining vector elements.
    for (unsigned i=1; i < VF; ++i) {
      Value *Scalar1 =
        Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
      if (RdxDesc.Kind == LoopVectorizationLegality::IntegerAdd) {
        Scalar0 = Builder.CreateAdd(Scalar0, Scalar1);
      } else {
        Scalar0 = Builder.CreateMul(Scalar0, Scalar1);
      }
    }

    // Now, we need to fix the users of the reduction variable
    // inside and outside of the scalar remainder loop.
    // We know that the loop is in LCSSA form. We need to update the
    // PHI nodes in the exit blocks.
    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
      if (!LCSSAPhi) continue;

      // All PHINodes need to have a single entry edge, or two if
      // we already fixed them.
      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");

      // We found our reduction value exit-PHI. Update it with the
      // incoming bypass edge.
      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
        // Add an edge coming from the bypass.
        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
        break;
      }
    }// end of the LCSSA phi scan.

    // Fix the scalar loop reduction variable with the incoming reduction sum
    // from the vector body and from the backedge value.
    int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
  }// end of for each redux variable.
}

void SingleBlockLoopVectorizer::cleanup() {
  // The original basic block.
  SE->forgetLoop(OrigLoop);
}

unsigned LoopVectorizationLegality::getLoopMaxVF() {
  if (!TheLoop->getLoopPreheader()) {
    assert(false && "No preheader!!");
    DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
    return  1;
  }

  // We can only vectorize single basic block loops.
  unsigned NumBlocks = TheLoop->getNumBlocks();
  if (NumBlocks != 1) {
    DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
    return 1;
  }

  // We need to have a loop header.
  BasicBlock *BB = TheLoop->getHeader();
  DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");

  // Go over each instruction and look at memory deps.
  if (!canVectorizeBlock(*BB)) {
    DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
    return 1;
  }

  // ScalarEvolution needs to be able to find the exit count.
  const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
  if (ExitCount == SE->getCouldNotCompute()) {
    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
    return 1;
  }

  DEBUG(dbgs() << "LV: We can vectorize this loop!\n");

  // Okay! We can vectorize. At this point we don't have any other mem analysis
  // which may limit our maximum vectorization factor, so just return the
  // maximum SIMD size.
  return DefaultVectorizationFactor;
}

bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
  // Scan the instructions in the block and look for hazards.
  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
    Instruction *I = it;

    PHINode *Phi = dyn_cast<PHINode>(I);
    if (Phi) {
      // This should not happen because the loop should be normalized.
      if (Phi->getNumIncomingValues() != 2) {
        DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
        return false;
      }
      // We only look at integer phi nodes.
      if (!Phi->getType()->isIntegerTy()) {
        DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
        return false;
      }

      if (isInductionVariable(Phi)) {
        if (Induction) {
          DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
          return false;
        }
        DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
        Induction = Phi;
        continue;
      }
      if (AddReductionVar(Phi, IntegerAdd)) {
        DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
        continue;
      }
      if (AddReductionVar(Phi, IntegerMult)) {
        DEBUG(dbgs() << "LV: Found an Mult reduction PHI."<< *Phi <<"\n");
        continue;
      }

      DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
      return false;
    }// end of PHI handling

    // We still don't handle functions.
    CallInst *CI = dyn_cast<CallInst>(I);
    if (CI) {
      DEBUG(dbgs() << "LV: Found a call site:"<<
            CI->getCalledFunction()->getName() << "\n");
      return false;
    }

    // We do not re-vectorize vectors.
    if (!VectorType::isValidElementType(I->getType()) &&
        !I->getType()->isVoidTy()) {
      DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
      return false;
    }

    // Reduction instructions are allowed to have exit users.
    // All other instructions must not have external users.
    if (!AllowedExit.count(I))
      //Check that all of the users of the loop are inside the BB.
      for (Value::use_iterator it = I->use_begin(), e = I->use_end();
           it != e; ++it) {
        Instruction *U = cast<Instruction>(*it);
        // This user may be a reduction exit value.
        BasicBlock *Parent = U->getParent();
        if (Parent != &BB) {
          DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
          return false;
        }
    }
  } // next instr.

  if (!Induction) {
      DEBUG(dbgs() << "LV: Did not find an induction var.\n");
      return false;
  }

  // If the memory dependencies do not prevent us from
  // vectorizing, then vectorize.
  return canVectorizeMemory(BB);
}

bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
  typedef SmallVector<Value*, 16> ValueVector;
  typedef SmallPtrSet<Value*, 16> ValueSet;
  // Holds the Load and Store *instructions*.
  ValueVector Loads;
  ValueVector Stores;

  // Scan the BB and collect legal loads and stores.
  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
    Instruction *I = it;

    // If this is a load, save it. If this instruction can read from memory
    // but is not a load, then we quit. Notice that we don't handle function
    // calls that read or write.
    if (I->mayReadFromMemory()) {
      LoadInst *Ld = dyn_cast<LoadInst>(I);
      if (!Ld) return false;
      if (!Ld->isSimple()) {
        DEBUG(dbgs() << "LV: Found a non-simple load.\n");
        return false;
      }
      Loads.push_back(Ld);
      continue;
    }

    // Save store instructions. Abort if other instructions write to memory.
    if (I->mayWriteToMemory()) {
      StoreInst *St = dyn_cast<StoreInst>(I);
      if (!St) return false;
      if (!St->isSimple()) {
        DEBUG(dbgs() << "LV: Found a non-simple store.\n");
        return false;
      }
      Stores.push_back(St);
    }
  } // next instr.

  // Now we have two lists that hold the loads and the stores.
  // Next, we find the pointers that they use.

  // Check if we see any stores. If there are no stores, then we don't
  // care if the pointers are *restrict*.
  if (!Stores.size()) {
        DEBUG(dbgs() << "LV: Found a read-only loop!\n");
        return true;
  }

  // Holds the read and read-write *pointers* that we find.
  ValueVector Reads;
  ValueVector ReadWrites;

  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
  // multiple times on the same object. If the ptr is accessed twice, once
  // for read and once for write, it will only appear once (on the write
  // list). This is okay, since we are going to check for conflicts between
  // writes and between reads and writes, but not between reads and reads.
  ValueSet Seen;

  ValueVector::iterator I, IE;
  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
    StoreInst *ST = dyn_cast<StoreInst>(*I);
    assert(ST && "Bad StoreInst");
    Value* Ptr = ST->getPointerOperand();
    // If we did *not* see this pointer before, insert it to
    // the read-write list. At this phase it is only a 'write' list.
    if (Seen.insert(Ptr))
      ReadWrites.push_back(Ptr);
  }

  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
    LoadInst *LD = dyn_cast<LoadInst>(*I);
    assert(LD && "Bad LoadInst");
    Value* Ptr = LD->getPointerOperand();
    // If we did *not* see this pointer before, insert it to the
    // read list. If we *did* see it before, then it is already in
    // the read-write list. This allows us to vectorize expressions
    // such as A[i] += x;  Because the address of A[i] is a read-write
    // pointer. This only works if the index of A[i] is consecutive.
    // If the address of i is unknown (for example A[B[i]]) then we may
    // read a few words, modify, and write a few words, and some of the
    // words may be written to the same address.
    if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr))
      Reads.push_back(Ptr);
  }

  // Now that the pointers are in two lists (Reads and ReadWrites), we
  // can check that there are no conflicts between each of the writes and
  // between the writes to the reads.
  ValueSet WriteObjects;
  ValueVector TempObjects;

  // Check that the read-writes do not conflict with other read-write
  // pointers.
  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
    GetUnderlyingObjects(*I, TempObjects, DL);
    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
         it != e; ++it) {
      if (!isIdentifiedObject(*it)) {
        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
        return false;
      }
      if (!WriteObjects.insert(*it)) {
        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
              << **it <<"\n");
        return false;
      }
    }
    TempObjects.clear();
  }

  /// Check that the reads don't conflict with the read-writes.
  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
    GetUnderlyingObjects(*I, TempObjects, DL);
    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
         it != e; ++it) {
      if (!isIdentifiedObject(*it)) {
        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
        return false;
      }
      if (WriteObjects.count(*it)) {
        DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
              << **it <<"\n");
        return false;
      }
    }
    TempObjects.clear();
  }

  // All is okay.
  return true;
}

bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
                                                ReductionKind Kind) {
  if (Phi->getNumIncomingValues() != 2)
    return false;

  // Find the possible incoming reduction variable.
  BasicBlock *BB = Phi->getParent();
  int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
  int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
  Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);

  // ExitInstruction is the single value which is used outside the loop.
  // We only allow for a single reduction value to be used outside the loop.
  // This includes users of the reduction, variables (which form a cycle
  // which ends in the phi node).
  Instruction *ExitInstruction = 0;

  // Iter is our iterator. We start with the PHI node and scan for all of the
  // users of this instruction. All users must be instructions which can be
  // used as reduction variables (such as ADD). We may have a single
  // out-of-block user. They cycle must end with the original PHI.
  // Also, we can't have multiple block-local users.
  Instruction *Iter = Phi;
  while (true) {
    // Any reduction instr must be of one of the allowed kinds.
    if (!isReductionInstr(Iter, Kind))
      return false;

    // Did we found a user inside this block ?
    bool FoundInBlockUser = false;
    // Did we reach the initial PHI node ?
    bool FoundStartPHI = false;

    // If the instruction has no users then this is a broken
    // chain and can't be a reduction variable.
    if (Iter->use_empty())
      return false;

    // For each of the *users* of iter.
    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
         it != e; ++it) {
      Instruction *U = cast<Instruction>(*it);
      // We already know that the PHI is a user.
      if (U == Phi) {
        FoundStartPHI = true;
        continue;
      }
      // Check if we found the exit user.
      BasicBlock *Parent = U->getParent();
      if (Parent != BB) {
        // We must have a single exit instruction.
        if (ExitInstruction != 0)
          return false;
        ExitInstruction = Iter;
      }
      // We can't have multiple inside users.
      if (FoundInBlockUser)
        return false;
      FoundInBlockUser = true;
      Iter = U;
    }

    // We found a reduction var if we have reached the original
    // phi node and we only have a single instruction with out-of-loop
    // users.
   if (FoundStartPHI && ExitInstruction) {
     // This instruction is allowed to have out-of-loop users.
     AllowedExit.insert(ExitInstruction);

     // Save the description of this reduction variable.
     ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
     Reductions[Phi] = RD;
     return true;
   }
  }
}

bool
LoopVectorizationLegality::isReductionInstr(Instruction *I,
                                            ReductionKind Kind) {
    switch (I->getOpcode()) {
    default:
      return false;
    case Instruction::PHI:
      // possibly.
      return true;
    case Instruction::Add:
    case Instruction::Sub:
      return Kind == IntegerAdd;
    case Instruction::Mul:
    case Instruction::UDiv:
    case Instruction::SDiv:
      return Kind == IntegerMult;
    }
}

bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
  // Check that the PHI is consecutive and starts at zero.
  const SCEV *PhiScev = SE->getSCEV(Phi);
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }
  const SCEV *Step = AR->getStepRecurrence(*SE);
  const SCEV *Start = AR->getStart();

  if (!Step->isOne() || !Start->isZero()) {
    DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n");
    return false;
  }
  return true;
}

} // namespace

char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)

namespace llvm {
  Pass *createLoopVectorizePass() {
    return new LoopVectorize();
  }
}