summaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/SLPVectorizer.cpp
blob: 88bcd90839eb45514185f4bf3fe94eb4b6af329e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
// stores that can be put together into vector-stores. Next, it attempts to
// construct vectorizable tree using the use-def chains. If a profitable tree
// was found, the SLP vectorizer performs vectorization on the tree.
//
// The pass is inspired by the work described in the paper:
//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
//
//===----------------------------------------------------------------------===//
#define SV_NAME "slp-vectorizer"
#define DEBUG_TYPE "SLP"

#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <map>

using namespace llvm;

static cl::opt<int>
    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
                     cl::desc("Only vectorize trees if the gain is above this "
                              "number. (gain = -cost of vectorization)"));
namespace {

static const unsigned MinVecRegSize = 128;

static const unsigned RecursionMaxDepth = 12;

/// RAII pattern to save the insertion point of the IR builder.
class BuilderLocGuard {
public:
  BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()) {}
  ~BuilderLocGuard() { Builder.SetInsertPoint(Loc); }

private:
  // Prevent copying.
  BuilderLocGuard(const BuilderLocGuard &);
  BuilderLocGuard &operator=(const BuilderLocGuard &);
  IRBuilder<> &Builder;
  BasicBlock::iterator Loc;
};

/// A helper class for numbering instructions in multible blocks.
/// Numbers starts at zero for each basic block.
struct BlockNumbering {

  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}

  BlockNumbering() : BB(0), Valid(false) {}

  void numberInstructions() {
    unsigned Loc = 0;
    InstrIdx.clear();
    InstrVec.clear();
    // Number the instructions in the block.
    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
      InstrIdx[it] = Loc++;
      InstrVec.push_back(it);
      assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
    }
    Valid = true;
  }

  int getIndex(Instruction *I) {
    if (!Valid)
      numberInstructions();
    assert(InstrIdx.count(I) && "Unknown instruction");
    return InstrIdx[I];
  }

  Instruction *getInstruction(unsigned loc) {
    if (!Valid)
      numberInstructions();
    assert(InstrVec.size() > loc && "Invalid Index");
    return InstrVec[loc];
  }

  void forget() { Valid = false; }

private:
  /// The block we are numbering.
  BasicBlock *BB;
  /// Is the block numbered.
  bool Valid;
  /// Maps instructions to numbers and back.
  SmallDenseMap<Instruction *, int> InstrIdx;
  /// Maps integers to Instructions.
  std::vector<Instruction *> InstrVec;
};

class FuncSLP {
  typedef SmallVector<Value *, 8> ValueList;
  typedef SmallVector<Instruction *, 16> InstrList;
  typedef SmallPtrSet<Value *, 16> ValueSet;
  typedef SmallVector<StoreInst *, 8> StoreList;

public:
  static const int MAX_COST = INT_MIN;

  FuncSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
          TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li, 
          DominatorTree *Dt) :
    F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
    Builder(Se->getContext()) {
    for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
      BasicBlock *BB = it;
      BlocksNumbers[BB] = BlockNumbering(BB);
    }
  }

  /// \brief Take the pointer operand from the Load/Store instruction.
  /// \returns NULL if this is not a valid Load/Store instruction.
  static Value *getPointerOperand(Value *I);

  /// \brief Take the address space operand from the Load/Store instruction.
  /// \returns -1 if this is not a valid Load/Store instruction.
  static unsigned getAddressSpaceOperand(Value *I);

  /// \returns true if the memory operations A and B are consecutive.
  bool isConsecutiveAccess(Value *A, Value *B);

  /// \brief Vectorize the tree that starts with the elements in \p VL.
  /// \returns the vectorized value.
  Value *vectorizeTree(ArrayRef<Value *> VL);

  /// \returns the vectorization cost of the subtree that starts at \p VL.
  /// A negative number means that this is profitable.
  int getTreeCost(ArrayRef<Value *> VL);

  /// \returns the scalarization cost for this list of values. Assuming that
  /// this subtree gets vectorized, we may need to extract the values from the
  /// roots. This method calculates the cost of extracting the values.
  int getGatherCost(ArrayRef<Value *> VL);

  /// \brief Attempts to order and vectorize a sequence of stores. This
  /// function does a quadratic scan of the given stores.
  /// \returns true if the basic block was modified.
  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold);

  /// \brief Vectorize a group of scalars into a vector tree.
  /// \returns the vectorized value.
  Value *vectorizeArith(ArrayRef<Value *> Operands);

  /// \brief This method contains the recursive part of getTreeCost.
  int getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth);

  /// \brief This recursive method looks for vectorization hazards such as
  /// values that are used by multiple users and checks that values are used
  /// by only one vector lane. It updates the variables LaneMap, MultiUserVals.
  void getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth);

  /// \brief This method contains the recursive part of vectorizeTree.
  Value *vectorizeTree_rec(ArrayRef<Value *> VL);

  ///  \brief Vectorize a sorted sequence of stores.
  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold);

  /// \returns the scalarization cost for this type. Scalarization in this
  /// context means the creation of vectors from a group of scalars.
  int getGatherCost(Type *Ty);

  /// \returns the AA location that is being access by the instruction.
  AliasAnalysis::Location getLocation(Instruction *I);

  /// \brief Checks if it is possible to sink an instruction from
  /// \p Src to \p Dst.
  /// \returns the pointer to the barrier instruction if we can't sink.
  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);

  /// \returns the index of the last instrucion in the BB from \p VL.
  int getLastIndex(ArrayRef<Value *> VL);

  /// \returns the Instrucion in the bundle \p VL.
  Instruction *getLastInstruction(ArrayRef<Value *> VL);

  /// \returns the Instruction at index \p Index which is in Block \p BB.
  Instruction *getInstructionForIndex(unsigned Index, BasicBlock *BB);

  /// \returns the index of the first User of \p VL.
  int getFirstUserIndex(ArrayRef<Value *> VL);

  /// \returns a vector from a collection of scalars in \p VL.
  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);

  /// \brief Perform LICM and CSE on the newly generated gather sequences.
  void optimizeGatherSequence();

  bool needToGatherAny(ArrayRef<Value *> VL) {
    for (int i = 0, e = VL.size(); i < e; ++i)
      if (MustGather.count(VL[i]))
        return true;
    return false;
  }

  /// -- Vectorization State --

  /// Maps values in the tree to the vector lanes that uses them. This map must
  /// be reset between runs of getCost.
  std::map<Value *, int> LaneMap;
  /// A list of instructions to ignore while sinking
  /// memory instructions. This map must be reset between runs of getCost.
  ValueSet MemBarrierIgnoreList;

  /// Maps between the first scalar to the vector. This map must be reset
  /// between runs.
  DenseMap<Value *, Value *> VectorizedValues;

  /// Contains values that must be gathered because they are used
  /// by multiple lanes, or by users outside the tree.
  /// NOTICE: The vectorization methods also use this set.
  ValueSet MustGather;

  /// Contains a list of values that are used outside the current tree. This
  /// set must be reset between runs.
  SetVector<Value *> MultiUserVals;

  /// Holds all of the instructions that we gathered.
  SetVector<Instruction *> GatherSeq;

  /// Numbers instructions in different blocks.
  std::map<BasicBlock *, BlockNumbering> BlocksNumbers;

  // Analysis and block reference.
  Function *F;
  ScalarEvolution *SE;
  DataLayout *DL;
  TargetTransformInfo *TTI;
  AliasAnalysis *AA;
  LoopInfo *LI;
  DominatorTree *DT;
  /// Instruction builder to construct the vectorized tree.
  IRBuilder<> Builder;
};

int FuncSLP::getGatherCost(Type *Ty) {
  int Cost = 0;
  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
  return Cost;
}

int FuncSLP::getGatherCost(ArrayRef<Value *> VL) {
  // Find the type of the operands in VL.
  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
  // Find the cost of inserting/extracting values from the vector.
  return getGatherCost(VecTy);
}

AliasAnalysis::Location FuncSLP::getLocation(Instruction *I) {
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return AA->getLocation(SI);
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return AA->getLocation(LI);
  return AliasAnalysis::Location();
}

Value *FuncSLP::getPointerOperand(Value *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->getPointerOperand();
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->getPointerOperand();
  return 0;
}

unsigned FuncSLP::getAddressSpaceOperand(Value *I) {
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    return L->getPointerAddressSpace();
  if (StoreInst *S = dyn_cast<StoreInst>(I))
    return S->getPointerAddressSpace();
  return -1;
}

bool FuncSLP::isConsecutiveAccess(Value *A, Value *B) {
  Value *PtrA = getPointerOperand(A);
  Value *PtrB = getPointerOperand(B);
  unsigned ASA = getAddressSpaceOperand(A);
  unsigned ASB = getAddressSpaceOperand(B);

  // Check that the address spaces match and that the pointers are valid.
  if (!PtrA || !PtrB || (ASA != ASB))
    return false;

  // Check that A and B are of the same type.
  if (PtrA->getType() != PtrB->getType())
    return false;

  // Calculate the distance.
  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
  const SCEV *OffsetSCEV = SE->getMinusSCEV(PtrSCEVA, PtrSCEVB);
  const SCEVConstant *ConstOffSCEV = dyn_cast<SCEVConstant>(OffsetSCEV);

  // Non constant distance.
  if (!ConstOffSCEV)
    return false;

  int64_t Offset = ConstOffSCEV->getValue()->getSExtValue();
  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
  // The Instructions are connsecutive if the size of the first load/store is
  // the same as the offset.
  int64_t Sz = DL->getTypeStoreSize(Ty);
  return ((-Offset) == Sz);
}

Value *FuncSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
  BasicBlock::iterator I = Src, E = Dst;
  /// Scan all of the instruction from SRC to DST and check if
  /// the source may alias.
  for (++I; I != E; ++I) {
    // Ignore store instructions that are marked as 'ignore'.
    if (MemBarrierIgnoreList.count(I))
      continue;
    if (Src->mayWriteToMemory()) /* Write */ {
      if (!I->mayReadOrWriteMemory())
        continue;
    } else /* Read */ {
      if (!I->mayWriteToMemory())
        continue;
    }
    AliasAnalysis::Location A = getLocation(&*I);
    AliasAnalysis::Location B = getLocation(Src);

    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
      return I;
  }
  return 0;
}

static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
  BasicBlock *BB = 0;
  for (int i = 0, e = VL.size(); i < e; i++) {
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    if (!I)
      return 0;

    if (!BB) {
      BB = I->getParent();
      continue;
    }

    if (BB != I->getParent())
      return 0;
  }
  return BB;
}

static bool allConstant(ArrayRef<Value *> VL) {
  for (unsigned i = 0, e = VL.size(); i < e; ++i)
    if (!isa<Constant>(VL[i]))
      return false;
  return true;
}

static bool isSplat(ArrayRef<Value *> VL) {
  for (unsigned i = 1, e = VL.size(); i < e; ++i)
    if (VL[i] != VL[0])
      return false;
  return true;
}

static unsigned getSameOpcode(ArrayRef<Value *> VL) {
  unsigned Opcode = 0;
  for (int i = 0, e = VL.size(); i < e; i++) {
    if (Instruction *I = dyn_cast<Instruction>(VL[i])) {
      if (!Opcode) {
        Opcode = I->getOpcode();
        continue;
      }
      if (Opcode != I->getOpcode())
        return 0;
    }
  }
  return Opcode;
}

static bool CanReuseExtract(ArrayRef<Value *> VL, unsigned VF,
                            VectorType *VecTy) {
  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
  // Check if all of the extracts come from the same vector and from the
  // correct offset.
  Value *VL0 = VL[0];
  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
  Value *Vec = E0->getOperand(0);

  // We have to extract from the same vector type.
  if (Vec->getType() != VecTy)
    return false;

  // Check that all of the indices extract from the correct offset.
  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
  if (!CI || CI->getZExtValue())
    return false;

  for (unsigned i = 1, e = VF; i < e; ++i) {
    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));

    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
      return false;
  }

  return true;
}

void FuncSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
  if (Depth == RecursionMaxDepth)
    return MustGather.insert(VL.begin(), VL.end());

  // Don't handle vectors.
  if (VL[0]->getType()->isVectorTy())
    return;

  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    if (SI->getValueOperand()->getType()->isVectorTy())
      return;

  // If all of the operands are identical or constant we have a simple solution.
  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL))
    return MustGather.insert(VL.begin(), VL.end());

  // Stop the scan at unknown IR.
  Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
  assert(VL0 && "Invalid instruction");

  // Mark instructions with multiple users.
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    // Remember to check if all of the users of this instruction are vectorized
    // within our tree. At depth zero we have no local users, only external
    // users that we don't care about.
    if (Depth && I && I->getNumUses() > 1) {
      DEBUG(dbgs() << "SLP: Adding to MultiUserVals "
                      "because it has multiple users:" << *I << " \n");
      MultiUserVals.insert(I);
    }
  }

  // Check that the instruction is only used within one lane.
  for (int i = 0, e = VL.size(); i < e; ++i) {
    if (LaneMap.count(VL[i]) && LaneMap[VL[i]] != i) {
      DEBUG(dbgs() << "SLP: Value used by multiple lanes:" << *VL[i] << "\n");
      return MustGather.insert(VL.begin(), VL.end());
    }
    // Make this instruction as 'seen' and remember the lane.
    LaneMap[VL[i]] = i;
  }

  unsigned Opcode = getSameOpcode(VL);
  if (!Opcode)
    return MustGather.insert(VL.begin(), VL.end());

  switch (Opcode) {
  case Instruction::ExtractElement: {
    VectorType *VecTy = VectorType::get(VL[0]->getType(), VL.size());
    // No need to follow ExtractElements that are going to be optimized away.
    if (CanReuseExtract(VL, VL.size(), VecTy))
      return;
    // Fall through.
  }
  case Instruction::Load:
    return;
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast:
  case Instruction::Select:
  case Instruction::ICmp:
  case Instruction::FCmp:
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
      ValueList Operands;
      // Prepare the operand vector.
      for (unsigned j = 0; j < VL.size(); ++j)
        Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));

      getTreeUses_rec(Operands, Depth + 1);
    }
    return;
  }
  case Instruction::Store: {
    ValueList Operands;
    for (unsigned j = 0; j < VL.size(); ++j)
      Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
    getTreeUses_rec(Operands, Depth + 1);
    return;
  }
  default:
    return MustGather.insert(VL.begin(), VL.end());
  }
}

int FuncSLP::getLastIndex(ArrayRef<Value *> VL) {
  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
  BlockNumbering &BN = BlocksNumbers[BB];

  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
  for (unsigned i = 0, e = VL.size(); i < e; ++i)
    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
  return MaxIdx;
}

Instruction *FuncSLP::getLastInstruction(ArrayRef<Value *> VL) {
  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
  BlockNumbering &BN = BlocksNumbers[BB];

  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
  for (unsigned i = 1, e = VL.size(); i < e; ++i)
    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
  return BN.getInstruction(MaxIdx);
}

Instruction *FuncSLP::getInstructionForIndex(unsigned Index, BasicBlock *BB) {
  BlockNumbering &BN = BlocksNumbers[BB];
  return BN.getInstruction(Index);
}

int FuncSLP::getFirstUserIndex(ArrayRef<Value *> VL) {
  BasicBlock *BB = getSameBlock(VL);
  assert(BB && "All instructions must come from the same block");
  BlockNumbering &BN = BlocksNumbers[BB];

  // Find the first user of the values.
  int FirstUser = BN.getIndex(BB->getTerminator());
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
         U != UE; ++U) {
      Instruction *Instr = dyn_cast<Instruction>(*U);

      if (!Instr || Instr->getParent() != BB)
        continue;

      FirstUser = std::min(FirstUser, BN.getIndex(Instr));
    }
  }
  return FirstUser;
}

int FuncSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
  Type *ScalarTy = VL[0]->getType();

  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();

  /// Don't mess with vectors.
  if (ScalarTy->isVectorTy())
    return FuncSLP::MAX_COST;

  if (allConstant(VL))
    return 0;

  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());

  if (isSplat(VL))
    return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);

  int GatherCost = getGatherCost(VecTy);
  if (Depth == RecursionMaxDepth || needToGatherAny(VL))
    return GatherCost;

  BasicBlock *BB = getSameBlock(VL);
  unsigned Opcode = getSameOpcode(VL);
  assert(Opcode && BB && "Invalid Instruction Value");

  // Check if it is safe to sink the loads or the stores.
  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
    int MaxIdx = getLastIndex(VL);
    Instruction *Last = getInstructionForIndex(MaxIdx, BB);

    for (unsigned i = 0, e = VL.size(); i < e; ++i) {
      if (VL[i] == Last)
        continue;
      Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
      if (Barrier) {
        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
                     << "\n because of " << *Barrier << "\n");
        return MAX_COST;
      }
    }
  }

  Instruction *VL0 = cast<Instruction>(VL[0]);
  switch (Opcode) {
  case Instruction::ExtractElement: {
    if (CanReuseExtract(VL, VL.size(), VecTy))
      return 0;
    return getGatherCost(VecTy);
  }
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast: {
    ValueList Operands;
    Type *SrcTy = VL0->getOperand(0)->getType();
    // Prepare the operand vector.
    for (unsigned j = 0; j < VL.size(); ++j) {
      Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
      // Check that the casted type is the same for all users.
      if (cast<Instruction>(VL[j])->getOperand(0)->getType() != SrcTy)
        return getGatherCost(VecTy);
    }

    int Cost = getTreeCost_rec(Operands, Depth + 1);
    if (Cost == FuncSLP::MAX_COST)
      return Cost;

    // Calculate the cost of this instruction.
    int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
                                                       VL0->getType(), SrcTy);

    VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
    int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
    Cost += (VecCost - ScalarCost);

    if (Cost > GatherCost) {
      MustGather.insert(VL.begin(), VL.end());
      return GatherCost;
    }

    return Cost;
  }
  case Instruction::FCmp:
  case Instruction::ICmp: {
    // Check that all of the compares have the same predicate.
    CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
    for (unsigned i = 1, e = VL.size(); i < e; ++i) {
      CmpInst *Cmp = cast<CmpInst>(VL[i]);
      if (Cmp->getPredicate() != P0)
        return getGatherCost(VecTy);
    }
    // Fall through.
  }
  case Instruction::Select:
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    int TotalCost = 0;
    // Calculate the cost of all of the operands.
    for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
      ValueList Operands;
      // Prepare the operand vector.
      for (unsigned j = 0; j < VL.size(); ++j)
        Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));

      int Cost = getTreeCost_rec(Operands, Depth + 1);
      if (Cost == MAX_COST)
        return MAX_COST;
      TotalCost += Cost;
    }

    // Calculate the cost of this instruction.
    int ScalarCost = 0;
    int VecCost = 0;
    if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
        Opcode == Instruction::Select) {
      VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
      ScalarCost =
          VecTy->getNumElements() *
          TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
      VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
    } else {
      ScalarCost = VecTy->getNumElements() *
                   TTI->getArithmeticInstrCost(Opcode, ScalarTy);
      VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
    }
    TotalCost += (VecCost - ScalarCost);

    if (TotalCost > GatherCost) {
      MustGather.insert(VL.begin(), VL.end());
      return GatherCost;
    }

    return TotalCost;
  }
  case Instruction::Load: {
    // If we are scalarize the loads, add the cost of forming the vector.
    for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
      if (!isConsecutiveAccess(VL[i], VL[i + 1]))
        return getGatherCost(VecTy);

    // Cost of wide load - cost of scalar loads.
    int ScalarLdCost = VecTy->getNumElements() *
                       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
    int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
    int TotalCost = VecLdCost - ScalarLdCost;

    if (TotalCost > GatherCost) {
      MustGather.insert(VL.begin(), VL.end());
      return GatherCost;
    }

    return TotalCost;
  }
  case Instruction::Store: {
    // We know that we can merge the stores. Calculate the cost.
    int ScalarStCost = VecTy->getNumElements() *
                       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
    int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
    int StoreCost = VecStCost - ScalarStCost;

    ValueList Operands;
    for (unsigned j = 0; j < VL.size(); ++j) {
      Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
      MemBarrierIgnoreList.insert(VL[j]);
    }

    int Cost = getTreeCost_rec(Operands, Depth + 1);
    if (Cost == MAX_COST)
      return MAX_COST;

    int TotalCost = StoreCost + Cost;
    return TotalCost;
  }
  default:
    // Unable to vectorize unknown instructions.
    return getGatherCost(VecTy);
  }
}

int FuncSLP::getTreeCost(ArrayRef<Value *> VL) {
  // Get rid of the list of stores that were removed, and from the
  // lists of instructions with multiple users.
  MemBarrierIgnoreList.clear();
  LaneMap.clear();
  MultiUserVals.clear();
  MustGather.clear();

  if (!getSameBlock(VL))
    return MAX_COST;

  // Find the location of the last root.
  int LastRootIndex = getLastIndex(VL);
  int FirstUserIndex = getFirstUserIndex(VL);

  // Don't vectorize if there are users of the tree roots inside the tree
  // itself.
  if (LastRootIndex > FirstUserIndex)
    return MAX_COST;

  // Scan the tree and find which value is used by which lane, and which values
  // must be scalarized.
  getTreeUses_rec(VL, 0);

  // Check that instructions with multiple users can be vectorized. Mark unsafe
  // instructions.
  for (SetVector<Value *>::iterator it = MultiUserVals.begin(),
                                    e = MultiUserVals.end();
       it != e; ++it) {
    // Check that all of the users of this instr are within the tree.
    for (Value::use_iterator I = (*it)->use_begin(), E = (*it)->use_end();
         I != E; ++I) {
      if (LaneMap.find(*I) == LaneMap.end()) {
        DEBUG(dbgs() << "SLP: Adding to MustExtract "
                        "because of an out of tree usage.\n");
        MustGather.insert(*it);
        continue;
      }
    }
  }

  // Now calculate the cost of vectorizing the tree.
  return getTreeCost_rec(VL, 0);
}
bool FuncSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
  unsigned ChainLen = Chain.size();
  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
               << "\n");
  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
  unsigned VF = MinVecRegSize / Sz;

  if (!isPowerOf2_32(Sz) || VF < 2)
    return false;

  bool Changed = false;
  // Look for profitable vectorizable trees at all offsets, starting at zero.
  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
    if (i + VF > e)
      break;
    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
                 << "\n");
    ArrayRef<Value *> Operands = Chain.slice(i, VF);

    int Cost = getTreeCost(Operands);
    if (Cost == FuncSLP::MAX_COST)
      continue;
    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
    if (Cost < CostThreshold) {
      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
      vectorizeTree(Operands);

      // Remove the scalar stores.
      for (int j = 0, e = VF; j < e; ++j)
        cast<Instruction>(Operands[j])->eraseFromParent();

      // Move to the next bundle.
      i += VF - 1;
      Changed = true;
    }
  }

  if (Changed || ChainLen > VF)
    return Changed;

  // Handle short chains. This helps us catch types such as <3 x float> that
  // are smaller than vector size.
  int Cost = getTreeCost(Chain);
  if (Cost == FuncSLP::MAX_COST)
    return false;
  if (Cost < CostThreshold) {
    DEBUG(dbgs() << "SLP: Found store chain cost = " << Cost
                 << " for size = " << ChainLen << "\n");
    vectorizeTree(Chain);

    // Remove all of the scalar stores.
    for (int i = 0, e = Chain.size(); i < e; ++i)
      cast<Instruction>(Chain[i])->eraseFromParent();

    return true;
  }

  return false;
}

bool FuncSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
  SetVector<Value *> Heads, Tails;
  SmallDenseMap<Value *, Value *> ConsecutiveChain;

  // We may run into multiple chains that merge into a single chain. We mark the
  // stores that we vectorized so that we don't visit the same store twice.
  ValueSet VectorizedStores;
  bool Changed = false;

  // Do a quadratic search on all of the given stores and find
  // all of the pairs of loads that follow each other.
  for (unsigned i = 0, e = Stores.size(); i < e; ++i)
    for (unsigned j = 0; j < e; ++j) {
      if (i == j)
        continue;

      if (isConsecutiveAccess(Stores[i], Stores[j])) {
        Tails.insert(Stores[j]);
        Heads.insert(Stores[i]);
        ConsecutiveChain[Stores[i]] = Stores[j];
      }
    }

  // For stores that start but don't end a link in the chain:
  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
       it != e; ++it) {
    if (Tails.count(*it))
      continue;

    // We found a store instr that starts a chain. Now follow the chain and try
    // to vectorize it.
    ValueList Operands;
    Value *I = *it;
    // Collect the chain into a list.
    while (Tails.count(I) || Heads.count(I)) {
      if (VectorizedStores.count(I))
        break;
      Operands.push_back(I);
      // Move to the next value in the chain.
      I = ConsecutiveChain[I];
    }

    bool Vectorized = vectorizeStoreChain(Operands, costThreshold);

    // Mark the vectorized stores so that we don't vectorize them again.
    if (Vectorized)
      VectorizedStores.insert(Operands.begin(), Operands.end());
    Changed |= Vectorized;
  }

  return Changed;
}

Value *FuncSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
  Value *Vec = UndefValue::get(Ty);
  // Generate the 'InsertElement' instruction.
  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
    if (Instruction *I = dyn_cast<Instruction>(Vec))
      GatherSeq.insert(I);
  }

  return Vec;
}

Value *FuncSLP::vectorizeTree_rec(ArrayRef<Value *> VL) {
  BuilderLocGuard Guard(Builder);

  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());

  if (needToGatherAny(VL))
    return Gather(VL, VecTy);

  if (VectorizedValues.count(VL[0])) {
    DEBUG(dbgs() << "SLP: Diamond merged at depth.\n");
    return VectorizedValues[VL[0]];
  }

  Instruction *VL0 = cast<Instruction>(VL[0]);
  unsigned Opcode = VL0->getOpcode();
  assert(Opcode == getSameOpcode(VL) && "Invalid opcode");

  switch (Opcode) {
  case Instruction::ExtractElement: {
    if (CanReuseExtract(VL, VL.size(), VecTy))
      return VL0->getOperand(0);
    return Gather(VL, VecTy);
  }
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast: {
    ValueList INVL;
    for (int i = 0, e = VL.size(); i < e; ++i)
      INVL.push_back(cast<Instruction>(VL[i])->getOperand(0));

    Builder.SetInsertPoint(getLastInstruction(VL));
    Value *InVec = vectorizeTree_rec(INVL);
    CastInst *CI = dyn_cast<CastInst>(VL0);
    Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
    VectorizedValues[VL0] = V;
    return V;
  }
  case Instruction::FCmp:
  case Instruction::ICmp: {
    // Check that all of the compares have the same predicate.
    CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
    for (unsigned i = 1, e = VL.size(); i < e; ++i) {
      CmpInst *Cmp = cast<CmpInst>(VL[i]);
      if (Cmp->getPredicate() != P0)
        return Gather(VL, VecTy);
    }

    ValueList LHSV, RHSV;
    for (int i = 0, e = VL.size(); i < e; ++i) {
      LHSV.push_back(cast<Instruction>(VL[i])->getOperand(0));
      RHSV.push_back(cast<Instruction>(VL[i])->getOperand(1));
    }

    Builder.SetInsertPoint(getLastInstruction(VL));
    Value *L = vectorizeTree_rec(LHSV);
    Value *R = vectorizeTree_rec(RHSV);
    Value *V;

    if (Opcode == Instruction::FCmp)
      V = Builder.CreateFCmp(P0, L, R);
    else
      V = Builder.CreateICmp(P0, L, R);

    VectorizedValues[VL0] = V;
    return V;
  }
  case Instruction::Select: {
    ValueList TrueVec, FalseVec, CondVec;
    for (int i = 0, e = VL.size(); i < e; ++i) {
      CondVec.push_back(cast<Instruction>(VL[i])->getOperand(0));
      TrueVec.push_back(cast<Instruction>(VL[i])->getOperand(1));
      FalseVec.push_back(cast<Instruction>(VL[i])->getOperand(2));
    }

    Builder.SetInsertPoint(getLastInstruction(VL));
    Value *True = vectorizeTree_rec(TrueVec);
    Value *False = vectorizeTree_rec(FalseVec);
    Value *Cond = vectorizeTree_rec(CondVec);
    Value *V = Builder.CreateSelect(Cond, True, False);
    VectorizedValues[VL0] = V;
    return V;
  }
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    ValueList LHSVL, RHSVL;
    for (int i = 0, e = VL.size(); i < e; ++i) {
      LHSVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
      RHSVL.push_back(cast<Instruction>(VL[i])->getOperand(1));
    }

    Builder.SetInsertPoint(getLastInstruction(VL));
    Value *LHS = vectorizeTree_rec(LHSVL);
    Value *RHS = vectorizeTree_rec(RHSVL);

    if (LHS == RHS) {
      assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
    }

    BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
    Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
    VectorizedValues[VL0] = V;
    return V;
  }
  case Instruction::Load: {
    // Check if all of the loads are consecutive.
    for (unsigned i = 1, e = VL.size(); i < e; ++i)
      if (!isConsecutiveAccess(VL[i - 1], VL[i]))
        return Gather(VL, VecTy);

    // Loads are inserted at the head of the tree because we don't want to
    // sink them all the way down past store instructions.
    Builder.SetInsertPoint(getLastInstruction(VL));
    LoadInst *LI = cast<LoadInst>(VL0);
    Value *VecPtr =
        Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
    unsigned Alignment = LI->getAlignment();
    LI = Builder.CreateLoad(VecPtr);
    LI->setAlignment(Alignment);

    VectorizedValues[VL0] = LI;
    return LI;
  }
  case Instruction::Store: {
    StoreInst *SI = cast<StoreInst>(VL0);
    unsigned Alignment = SI->getAlignment();

    ValueList ValueOp;
    for (int i = 0, e = VL.size(); i < e; ++i)
      ValueOp.push_back(cast<StoreInst>(VL[i])->getValueOperand());

    Value *VecValue = vectorizeTree_rec(ValueOp);

    Builder.SetInsertPoint(getLastInstruction(VL));
    Value *VecPtr =
        Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
    Builder.CreateStore(VecValue, VecPtr)->setAlignment(Alignment);
    return 0;
  }
  default:
    return Gather(VL, VecTy);
  }
}

Value *FuncSLP::vectorizeTree(ArrayRef<Value *> VL) {
  Builder.SetInsertPoint(getLastInstruction(VL));
  Value *V = vectorizeTree_rec(VL);

  // We moved some instructions around. We have to number them again
  // before we can do any analysis.
  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it)
    BlocksNumbers[it].forget();
  // Clear the state.
  MustGather.clear();
  VectorizedValues.clear();
  MemBarrierIgnoreList.clear();
  return V;
}

Value *FuncSLP::vectorizeArith(ArrayRef<Value *> Operands) {
  Value *Vec = vectorizeTree(Operands);
  // After vectorizing the operands we need to generate extractelement
  // instructions and replace all of the uses of the scalar values with
  // the values that we extracted from the vectorized tree.
  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    Value *S = Builder.CreateExtractElement(Vec, Builder.getInt32(i));
    Operands[i]->replaceAllUsesWith(S);
  }

  return Vec;
}

void FuncSLP::optimizeGatherSequence() {
  // LICM InsertElementInst sequences.
  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
       e = GatherSeq.end(); it != e; ++it) {
    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);

    if (!Insert)
      continue;

    // Check if this block is inside a loop.
    Loop *L = LI->getLoopFor(Insert->getParent());
    if (!L)
      continue;

    // Check if it has a preheader.
    BasicBlock *PreHeader = L->getLoopPreheader();
    if (!PreHeader)
      return;

    // If the vector or the element that we insert into it are
    // instructions that are defined in this basic block then we can't
    // hoist this instruction.
    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
    if (CurrVec && L->contains(CurrVec))
      continue;
    if (NewElem && L->contains(NewElem))
      continue;

    // We can hoist this instruction. Move it to the pre-header.
    Insert->moveBefore(PreHeader->getTerminator());
  }

  // Perform O(N^2) search over the gather sequences and merge identical
  // instructions. TODO: We can further optimize this scan if we split the
  // instructions into different buckets based on the insert lane.
  SmallPtrSet<Instruction*, 16> Visited;
  ReversePostOrderTraversal<Function*> RPOT(F);
  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
       E = RPOT.end(); I != E; ++I) {
    BasicBlock *BB = *I;
    // For all instructions in the function:
    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
      InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
      if (!Insert || !GatherSeq.count(Insert))
        continue;

     // Check if we can replace this instruction with any of the
     // visited instructions.
      for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
           ve = Visited.end(); v != ve; ++v) {
        if (Insert->isIdenticalTo(*v) &&
          DT->dominates((*v)->getParent(), Insert->getParent())) {
          Insert->replaceAllUsesWith(*v);
          break;
        }
      }
      Visited.insert(Insert);
    }
  }
}

/// The SLPVectorizer Pass.
struct SLPVectorizer : public FunctionPass {
  typedef SmallVector<StoreInst *, 8> StoreList;
  typedef MapVector<Value *, StoreList> StoreListMap;

  /// Pass identification, replacement for typeid
  static char ID;

  explicit SLPVectorizer() : FunctionPass(ID) {
    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
  }

  ScalarEvolution *SE;
  DataLayout *DL;
  TargetTransformInfo *TTI;
  AliasAnalysis *AA;
  LoopInfo *LI;
  DominatorTree *DT;

  virtual bool runOnFunction(Function &F) {
    SE = &getAnalysis<ScalarEvolution>();
    DL = getAnalysisIfAvailable<DataLayout>();
    TTI = &getAnalysis<TargetTransformInfo>();
    AA = &getAnalysis<AliasAnalysis>();
    LI = &getAnalysis<LoopInfo>();
    DT = &getAnalysis<DominatorTree>();

    StoreRefs.clear();
    bool Changed = false;

    // Must have DataLayout. We can't require it because some tests run w/o
    // triple.
    if (!DL)
      return false;

    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");

    // Use the bollom up slp vectorizer to construct chains that start with
    // he store instructions.
    FuncSLP R(&F, SE, DL, TTI, AA, LI, DT);

    for (Function::iterator it = F.begin(), e = F.end(); it != e; ++it) {
      BasicBlock *BB = it;

      // Vectorize trees that end at reductions.
      Changed |= vectorizeChainsInBlock(BB, R);

      // Vectorize trees that end at stores.
      if (unsigned count = collectStores(BB, R)) {
        (void)count;
        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
        Changed |= vectorizeStoreChains(R);
      }
    }

    if (Changed) {
      R.optimizeGatherSequence();
      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
      DEBUG(verifyFunction(F));
    }
    return Changed;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    FunctionPass::getAnalysisUsage(AU);
    AU.addRequired<ScalarEvolution>();
    AU.addRequired<AliasAnalysis>();
    AU.addRequired<TargetTransformInfo>();
    AU.addRequired<LoopInfo>();
    AU.addRequired<DominatorTree>();
  }

private:

  /// \brief Collect memory references and sort them according to their base
  /// object. We sort the stores to their base objects to reduce the cost of the
  /// quadratic search on the stores. TODO: We can further reduce this cost
  /// if we flush the chain creation every time we run into a memory barrier.
  unsigned collectStores(BasicBlock *BB, FuncSLP &R);

  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
  bool tryToVectorizePair(Value *A, Value *B, FuncSLP &R);

  /// \brief Try to vectorize a list of operands. If \p NeedExtracts is true
  /// then we calculate the cost of extracting the scalars from the vector.
  /// \returns true if a value was vectorized.
  bool tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R, bool NeedExtracts);

  /// \brief Try to vectorize a chain that may start at the operands of \V;
  bool tryToVectorize(BinaryOperator *V, FuncSLP &R);

  /// \brief Vectorize the stores that were collected in StoreRefs.
  bool vectorizeStoreChains(FuncSLP &R);

  /// \brief Scan the basic block and look for patterns that are likely to start
  /// a vectorization chain.
  bool vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R);

private:
  StoreListMap StoreRefs;
};

unsigned SLPVectorizer::collectStores(BasicBlock *BB, FuncSLP &R) {
  unsigned count = 0;
  StoreRefs.clear();
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
    StoreInst *SI = dyn_cast<StoreInst>(it);
    if (!SI)
      continue;

    // Check that the pointer points to scalars.
    Type *Ty = SI->getValueOperand()->getType();
    if (Ty->isAggregateType() || Ty->isVectorTy())
      return 0;

    // Find the base of the GEP.
    Value *Ptr = SI->getPointerOperand();
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
      Ptr = GEP->getPointerOperand();

    // Save the store locations.
    StoreRefs[Ptr].push_back(SI);
    count++;
  }
  return count;
}

bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, FuncSLP &R) {
  if (!A || !B)
    return false;
  Value *VL[] = { A, B };
  return tryToVectorizeList(VL, R, true);
}

bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R,
                                       bool NeedExtracts) {
  if (VL.size() < 2)
    return false;

  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");

  // Check that all of the parts are scalar instructions of the same type.
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
  if (!I0)
    return 0;

  unsigned Opcode0 = I0->getOpcode();

  for (int i = 0, e = VL.size(); i < e; ++i) {
    Type *Ty = VL[i]->getType();
    if (Ty->isAggregateType() || Ty->isVectorTy())
      return 0;
    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
    if (!Inst || Inst->getOpcode() != Opcode0)
      return 0;
  }

  int Cost = R.getTreeCost(VL);
  if (Cost == FuncSLP::MAX_COST)
    return false;

  int ExtrCost = NeedExtracts ? R.getGatherCost(VL) : 0;
  DEBUG(dbgs() << "SLP: Cost of pair:" << Cost
               << " Cost of extract:" << ExtrCost << ".\n");
  if ((Cost + ExtrCost) >= -SLPCostThreshold)
    return false;
  DEBUG(dbgs() << "SLP: Vectorizing pair.\n");
  R.vectorizeArith(VL);
  return true;
}

bool SLPVectorizer::tryToVectorize(BinaryOperator *V, FuncSLP &R) {
  if (!V)
    return false;

  // Try to vectorize V.
  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
    return true;

  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
  // Try to skip B.
  if (B && B->hasOneUse()) {
    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
    if (tryToVectorizePair(A, B0, R)) {
      B->moveBefore(V);
      return true;
    }
    if (tryToVectorizePair(A, B1, R)) {
      B->moveBefore(V);
      return true;
    }
  }

  // Try to skip A.
  if (A && A->hasOneUse()) {
    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
    if (tryToVectorizePair(A0, B, R)) {
      A->moveBefore(V);
      return true;
    }
    if (tryToVectorizePair(A1, B, R)) {
      A->moveBefore(V);
      return true;
    }
  }
  return 0;
}

bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R) {
  bool Changed = false;
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
    if (isa<DbgInfoIntrinsic>(it))
      continue;

    // Try to vectorize reductions that use PHINodes.
    if (PHINode *P = dyn_cast<PHINode>(it)) {
      // Check that the PHI is a reduction PHI.
      if (P->getNumIncomingValues() != 2)
        return Changed;
      Value *Rdx =
          (P->getIncomingBlock(0) == BB
               ? (P->getIncomingValue(0))
               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
      // Check if this is a Binary Operator.
      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
      if (!BI)
        continue;

      Value *Inst = BI->getOperand(0);
      if (Inst == P)
        Inst = BI->getOperand(1);

      Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
      continue;
    }

    // Try to vectorize trees that start at compare instructions.
    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
        Changed |= true;
        continue;
      }
      for (int i = 0; i < 2; ++i)
        if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
          Changed |=
              tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R);
      continue;
    }
  }

  // Scan the PHINodes in our successors in search for pairing hints.
  for (succ_iterator it = succ_begin(BB), e = succ_end(BB); it != e; ++it) {
    BasicBlock *Succ = *it;
    SmallVector<Value *, 4> Incoming;

    // Collect the incoming values from the PHIs.
    for (BasicBlock::iterator instr = Succ->begin(), ie = Succ->end();
         instr != ie; ++instr) {
      PHINode *P = dyn_cast<PHINode>(instr);

      if (!P)
        break;

      Value *V = P->getIncomingValueForBlock(BB);
      if (Instruction *I = dyn_cast<Instruction>(V))
        if (I->getParent() == BB)
          Incoming.push_back(I);
    }

    if (Incoming.size() > 1)
      Changed |= tryToVectorizeList(Incoming, R, true);
  }

  return Changed;
}

bool SLPVectorizer::vectorizeStoreChains(FuncSLP &R) {
  bool Changed = false;
  // Attempt to sort and vectorize each of the store-groups.
  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
       it != e; ++it) {
    if (it->second.size() < 2)
      continue;

    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
                 << it->second.size() << ".\n");

    Changed |= R.vectorizeStores(it->second, -SLPCostThreshold);
  }
  return Changed;
}

} // end anonymous namespace

char SLPVectorizer::ID = 0;
static const char lv_name[] = "SLP Vectorizer";
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)

namespace llvm {
Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
}