summaryrefslogtreecommitdiff
path: root/lib/VMCore/ConstantFold.cpp
blob: 32b9ebba742d550404467f542fe3169df82091e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
//===- ConstantHandling.cpp - Implement ConstantHandling.h ----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the various intrinsic operations, on constant values.
//
//===----------------------------------------------------------------------===//

#include "llvm/ConstantHandling.h"
#include "llvm/iPHINode.h"
#include "llvm/InstrTypes.h"
#include "llvm/DerivedTypes.h"
#include <cmath>

AnnotationID ConstRules::AID(AnnotationManager::getID("opt::ConstRules",
						      &ConstRules::find));

// ConstantFoldInstruction - Attempt to constant fold the specified instruction.
// If successful, the constant result is returned, if not, null is returned.
//
Constant *ConstantFoldInstruction(Instruction *I) {
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    if (PN->getNumIncomingValues() == 0)
      return Constant::getNullValue(PN->getType());
    
    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
    if (Result == 0) return 0;

    // Handle PHI nodes specially here...
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
      if (PN->getIncomingValue(i) != Result)
        return 0;   // Not all the same incoming constants...

    // If we reach here, all incoming values are the same constant.
    return Result;
  }

  Constant *Op0 = 0;
  Constant *Op1 = 0;

  if (I->getNumOperands() != 0) {    // Get first operand if it's a constant...
    Op0 = dyn_cast<Constant>(I->getOperand(0));
    if (Op0 == 0) return 0;          // Not a constant?, can't fold

    if (I->getNumOperands() != 1) {  // Get second operand if it's a constant...
      Op1 = dyn_cast<Constant>(I->getOperand(1));
      if (Op1 == 0) return 0;        // Not a constant?, can't fold
    }
  }

  if (isa<BinaryOperator>(I))
    return ConstantExpr::get(I->getOpcode(), Op0, Op1);    

  switch (I->getOpcode()) {
  case Instruction::Cast:
    return ConstantExpr::getCast(Op0, I->getType());
  case Instruction::Shl:
  case Instruction::Shr:
    return ConstantExpr::getShift(I->getOpcode(), Op0, Op1);
  case Instruction::GetElementPtr: {
    std::vector<Constant*> IdxList;
    IdxList.reserve(I->getNumOperands()-1);
    if (Op1) IdxList.push_back(Op1);
    for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i)
      if (Constant *C = dyn_cast<Constant>(I->getOperand(i)))
        IdxList.push_back(C);
      else
        return 0;  // Non-constant operand
    return ConstantExpr::getGetElementPtr(Op0, IdxList);
  }
  default:
    return 0;
  }
}

static unsigned getSize(const Type *Ty) {
  unsigned S = Ty->getPrimitiveSize();
  return S ? S : 8;  // Treat pointers at 8 bytes
}

Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy) {
  if (V->getType() == DestTy) return (Constant*)V;

  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::Cast) {
      Constant *Op = const_cast<Constant*>(CE->getOperand(0));
      // Try to not produce a cast of a cast, which is almost always redundant.
      if (!Op->getType()->isFloatingPoint() &&
          !CE->getType()->isFloatingPoint() &&
          !DestTy->getType()->isFloatingPoint()) {
        unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
        unsigned S3 = getSize(DestTy);
        if (Op->getType() == DestTy && S3 >= S2)
          return Op;
        if (S1 >= S2 && S2 >= S3)
          return ConstantExpr::getCast(Op, DestTy);
        if (S1 <= S2 && S2 >= S3 && S1 <= S3)
          return ConstantExpr::getCast(Op, DestTy);
      }
    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
      // If all of the indexes in the GEP are null values, there is no pointer
      // adjustment going on.  We might as well cast the source pointer.
      bool isAllNull = true;
      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
        if (!CE->getOperand(i)->isNullValue()) {
          isAllNull = false;
          break;
        }
      if (isAllNull)
        return ConstantExpr::getCast(CE->getOperand(0), DestTy);
    }

  return ConstRules::get(*V, *V)->castTo(V, DestTy);
}

Constant *ConstantFoldBinaryInstruction(unsigned Opcode, const Constant *V1,
                                        const Constant *V2) {
  switch (Opcode) {
  case Instruction::Add:     return *V1 + *V2;
  case Instruction::Sub:     return *V1 - *V2;
  case Instruction::Mul:     return *V1 * *V2;
  case Instruction::Div:     return *V1 / *V2;
  case Instruction::Rem:     return *V1 % *V2;
  case Instruction::And:     return *V1 & *V2;
  case Instruction::Or:      return *V1 | *V2;
  case Instruction::Xor:     return *V1 ^ *V2;

  case Instruction::SetEQ:   return *V1 == *V2;
  case Instruction::SetNE:   return *V1 != *V2;
  case Instruction::SetLE:   return *V1 <= *V2;
  case Instruction::SetGE:   return *V1 >= *V2;
  case Instruction::SetLT:   return *V1 <  *V2;
  case Instruction::SetGT:   return *V1 >  *V2;
  }
  return 0;
}

Constant *ConstantFoldShiftInstruction(unsigned Opcode, const Constant *V1, 
                                       const Constant *V2) {
  switch (Opcode) {
  case Instruction::Shl:     return *V1 << *V2;
  case Instruction::Shr:     return *V1 >> *V2;
  default:                   return 0;
  }
}

Constant *ConstantFoldGetElementPtr(const Constant *C,
                                    const std::vector<Constant*> &IdxList) {
  if (IdxList.size() == 0 ||
      (IdxList.size() == 1 && IdxList[0]->isNullValue()))
    return const_cast<Constant*>(C);

  // TODO If C is null and all idx's are null, return null of the right type.


  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    // Combine Indices - If the source pointer to this getelementptr instruction
    // is a getelementptr instruction, combine the indices of the two
    // getelementptr instructions into a single instruction.
    //
    if (CE->getOpcode() == Instruction::GetElementPtr) {
      if (CE->getOperand(CE->getNumOperands()-1)->getType() == Type::LongTy) {
        std::vector<Constant*> NewIndices;
        NewIndices.reserve(IdxList.size() + CE->getNumOperands());
        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
          NewIndices.push_back(cast<Constant>(CE->getOperand(i)));

        // Add the last index of the source with the first index of the new GEP.
        Constant *Combined =
          ConstantExpr::get(Instruction::Add, IdxList[0],
                            CE->getOperand(CE->getNumOperands()-1));
                            
        NewIndices.push_back(Combined);
        NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
        return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
      }
    }

    // Implement folding of:
    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
    //                        long 0, long 0)
    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
    //
    if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
        IdxList[0]->isNullValue())
      if (const PointerType *SPT = 
          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
          if (const ArrayType *CAT =
              dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
            if (CAT->getElementType() == SAT->getElementType())
              return ConstantExpr::getGetElementPtr(
                      (Constant*)CE->getOperand(0), IdxList);
  }
  return 0;
}


//===----------------------------------------------------------------------===//
//                             TemplateRules Class
//===----------------------------------------------------------------------===//
//
// TemplateRules - Implement a subclass of ConstRules that provides all 
// operations as noops.  All other rules classes inherit from this class so 
// that if functionality is needed in the future, it can simply be added here 
// and to ConstRules without changing anything else...
// 
// This class also provides subclasses with typesafe implementations of methods
// so that don't have to do type casting.
//
template<class ArgType, class SubClassName>
class TemplateRules : public ConstRules {

  //===--------------------------------------------------------------------===//
  // Redirecting functions that cast to the appropriate types
  //===--------------------------------------------------------------------===//

  virtual Constant *add(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *sub(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *mul(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *div(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *rem(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *op_and(const Constant *V1, const Constant *V2) const { 
    return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *op_or(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *op_xor(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *shl(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *shr(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2);  
  }

  virtual ConstantBool *lessthan(const Constant *V1, 
                                 const Constant *V2) const { 
    return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
  }

  // Casting operators.  ick
  virtual ConstantBool *castToBool(const Constant *V) const {
    return SubClassName::CastToBool((const ArgType*)V);
  }
  virtual ConstantSInt *castToSByte(const Constant *V) const {
    return SubClassName::CastToSByte((const ArgType*)V);
  }
  virtual ConstantUInt *castToUByte(const Constant *V) const {
    return SubClassName::CastToUByte((const ArgType*)V);
  }
  virtual ConstantSInt *castToShort(const Constant *V) const {
    return SubClassName::CastToShort((const ArgType*)V);
  }
  virtual ConstantUInt *castToUShort(const Constant *V) const {
    return SubClassName::CastToUShort((const ArgType*)V);
  }
  virtual ConstantSInt *castToInt(const Constant *V) const {
    return SubClassName::CastToInt((const ArgType*)V);
  }
  virtual ConstantUInt *castToUInt(const Constant *V) const {
    return SubClassName::CastToUInt((const ArgType*)V);
  }
  virtual ConstantSInt *castToLong(const Constant *V) const {
    return SubClassName::CastToLong((const ArgType*)V);
  }
  virtual ConstantUInt *castToULong(const Constant *V) const {
    return SubClassName::CastToULong((const ArgType*)V);
  }
  virtual ConstantFP   *castToFloat(const Constant *V) const {
    return SubClassName::CastToFloat((const ArgType*)V);
  }
  virtual ConstantFP   *castToDouble(const Constant *V) const {
    return SubClassName::CastToDouble((const ArgType*)V);
  }
  virtual Constant *castToPointer(const Constant *V, 
                                  const PointerType *Ty) const {
    return SubClassName::CastToPointer((const ArgType*)V, Ty);
  }

  //===--------------------------------------------------------------------===//
  // Default "noop" implementations
  //===--------------------------------------------------------------------===//

  static Constant *Add(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Sub(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Mul(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Div(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Rem(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *And(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Xor(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Shl(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Shr(const ArgType *V1, const ArgType *V2) { return 0; }
  static ConstantBool *LessThan(const ArgType *V1, const ArgType *V2) {
    return 0;
  }

  // Casting operators.  ick
  static ConstantBool *CastToBool  (const Constant *V) { return 0; }
  static ConstantSInt *CastToSByte (const Constant *V) { return 0; }
  static ConstantUInt *CastToUByte (const Constant *V) { return 0; }
  static ConstantSInt *CastToShort (const Constant *V) { return 0; }
  static ConstantUInt *CastToUShort(const Constant *V) { return 0; }
  static ConstantSInt *CastToInt   (const Constant *V) { return 0; }
  static ConstantUInt *CastToUInt  (const Constant *V) { return 0; }
  static ConstantSInt *CastToLong  (const Constant *V) { return 0; }
  static ConstantUInt *CastToULong (const Constant *V) { return 0; }
  static ConstantFP   *CastToFloat (const Constant *V) { return 0; }
  static ConstantFP   *CastToDouble(const Constant *V) { return 0; }
  static Constant     *CastToPointer(const Constant *,
                                     const PointerType *) {return 0;}
};



//===----------------------------------------------------------------------===//
//                             EmptyRules Class
//===----------------------------------------------------------------------===//
//
// EmptyRules provides a concrete base class of ConstRules that does nothing
//
struct EmptyRules : public TemplateRules<Constant, EmptyRules> {
};



//===----------------------------------------------------------------------===//
//                              BoolRules Class
//===----------------------------------------------------------------------===//
//
// BoolRules provides a concrete base class of ConstRules for the 'bool' type.
//
struct BoolRules : public TemplateRules<ConstantBool, BoolRules> {

  static ConstantBool *LessThan(const ConstantBool *V1, const ConstantBool *V2){
    return ConstantBool::get(V1->getValue() < V2->getValue());
  }

  static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
    return ConstantBool::get(V1->getValue() & V2->getValue());
  }

  static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
    return ConstantBool::get(V1->getValue() | V2->getValue());
  }

  static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
    return ConstantBool::get(V1->getValue() ^ V2->getValue());
  }

  // Casting operators.  ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
  static CLASS *CastTo##TYPE  (const ConstantBool *V) {    \
    return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
  }

  DEF_CAST(Bool  , ConstantBool, bool)
  DEF_CAST(SByte , ConstantSInt, signed char)
  DEF_CAST(UByte , ConstantUInt, unsigned char)
  DEF_CAST(Short , ConstantSInt, signed short)
  DEF_CAST(UShort, ConstantUInt, unsigned short)
  DEF_CAST(Int   , ConstantSInt, signed int)
  DEF_CAST(UInt  , ConstantUInt, unsigned int)
  DEF_CAST(Long  , ConstantSInt, int64_t)
  DEF_CAST(ULong , ConstantUInt, uint64_t)
  DEF_CAST(Float , ConstantFP  , float)
  DEF_CAST(Double, ConstantFP  , double)
#undef DEF_CAST
};


//===----------------------------------------------------------------------===//
//                            PointerRules Class
//===----------------------------------------------------------------------===//
//
// PointerRules provides a concrete base class of ConstRules for pointer types
//
struct PointerRules : public TemplateRules<ConstantPointer, PointerRules> {
  static ConstantBool *CastToBool  (const Constant *V) {
    if (V->isNullValue()) return ConstantBool::False;
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantSInt *CastToSByte (const Constant *V) {
    if (V->isNullValue()) return ConstantSInt::get(Type::SByteTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantUInt *CastToUByte (const Constant *V) {
    if (V->isNullValue()) return ConstantUInt::get(Type::UByteTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantSInt *CastToShort (const Constant *V) {
    if (V->isNullValue()) return ConstantSInt::get(Type::ShortTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantUInt *CastToUShort(const Constant *V) {
    if (V->isNullValue()) return ConstantUInt::get(Type::UShortTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantSInt *CastToInt   (const Constant *V) {
    if (V->isNullValue()) return ConstantSInt::get(Type::IntTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantUInt *CastToUInt  (const Constant *V) {
    if (V->isNullValue()) return ConstantUInt::get(Type::UIntTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantSInt *CastToLong  (const Constant *V) {
    if (V->isNullValue()) return ConstantSInt::get(Type::LongTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantUInt *CastToULong (const Constant *V) {
    if (V->isNullValue()) return ConstantUInt::get(Type::ULongTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantFP   *CastToFloat (const Constant *V) {
    if (V->isNullValue()) return ConstantFP::get(Type::FloatTy, 0);
    return 0;  // Can't const prop other types of pointers
  }
  static ConstantFP   *CastToDouble(const Constant *V) {
    if (V->isNullValue()) return ConstantFP::get(Type::DoubleTy, 0);
    return 0;  // Can't const prop other types of pointers
  }

  static Constant *CastToPointer(const ConstantPointer *V,
                                 const PointerType *PTy) {
    if (V->getType() == PTy)
      return const_cast<ConstantPointer*>(V);  // Allow cast %PTy %ptr to %PTy
    if (V->isNullValue())
      return ConstantPointerNull::get(PTy);
    return 0;  // Can't const prop other types of pointers
  }
};


//===----------------------------------------------------------------------===//
//                             DirectRules Class
//===----------------------------------------------------------------------===//
//
// DirectRules provides a concrete base classes of ConstRules for a variety of
// different types.  This allows the C++ compiler to automatically generate our
// constant handling operations in a typesafe and accurate manner.
//
template<class ConstantClass, class BuiltinType, Type **Ty, class SuperClass>
struct DirectRules : public TemplateRules<ConstantClass, SuperClass> {
  static Constant *Add(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() + (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Sub(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Mul(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;
    BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static ConstantBool *LessThan(const ConstantClass *V1,
                                const ConstantClass *V2) {
    bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
    return ConstantBool::get(R);
  } 

  static Constant *CastToPointer(const ConstantClass *V,
                                 const PointerType *PTy) {
    if (V->isNullValue())    // Is it a FP or Integral null value?
      return ConstantPointerNull::get(PTy);
    return 0;  // Can't const prop other types of pointers
  }

  // Casting operators.  ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
  static CLASS *CastTo##TYPE  (const ConstantClass *V) {    \
    return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
  }

  DEF_CAST(Bool  , ConstantBool, bool)
  DEF_CAST(SByte , ConstantSInt, signed char)
  DEF_CAST(UByte , ConstantUInt, unsigned char)
  DEF_CAST(Short , ConstantSInt, signed short)
  DEF_CAST(UShort, ConstantUInt, unsigned short)
  DEF_CAST(Int   , ConstantSInt, signed int)
  DEF_CAST(UInt  , ConstantUInt, unsigned int)
  DEF_CAST(Long  , ConstantSInt, int64_t)
  DEF_CAST(ULong , ConstantUInt, uint64_t)
  DEF_CAST(Float , ConstantFP  , float)
  DEF_CAST(Double, ConstantFP  , double)
#undef DEF_CAST
};


//===----------------------------------------------------------------------===//
//                           DirectIntRules Class
//===----------------------------------------------------------------------===//
//
// DirectIntRules provides implementations of functions that are valid on
// integer types, but not all types in general.
//
template <class ConstantClass, class BuiltinType, Type **Ty>
struct DirectIntRules
  : public DirectRules<ConstantClass, BuiltinType, Ty,
                       DirectIntRules<ConstantClass, BuiltinType, Ty> > {

  static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;
    if (V2->isAllOnesValue() &&              // MIN_INT / -1
        (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
      return 0;
    BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Rem(const ConstantClass *V1,
                       const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;         // X / 0
    if (V2->isAllOnesValue() &&              // MIN_INT / -1
        (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
      return 0;
    BuiltinType R = (BuiltinType)V1->getValue() % (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *And(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() & (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }
  static Constant *Or(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() | (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }
  static Constant *Xor(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() ^ (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Shl(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() << (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Shr(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() >> (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }
};


//===----------------------------------------------------------------------===//
//                           DirectFPRules Class
//===----------------------------------------------------------------------===//
//
// DirectFPRules provides implementations of functions that are valid on
// floating point types, but not all types in general.
//
template <class ConstantClass, class BuiltinType, Type **Ty>
struct DirectFPRules
  : public DirectRules<ConstantClass, BuiltinType, Ty,
                       DirectFPRules<ConstantClass, BuiltinType, Ty> > {
  static Constant *Rem(const ConstantClass *V1, const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;
    BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
                                   (BuiltinType)V2->getValue());
    return ConstantClass::get(*Ty, Result);
  }
};

//===----------------------------------------------------------------------===//
//                            DirectRules Subclasses
//===----------------------------------------------------------------------===//
//
// Given the DirectRules class we can now implement lots of types with little
// code.  Thank goodness C++ compilers are great at stomping out layers of 
// templates... can you imagine having to do this all by hand? (/me is lazy :)
//

// ConstRules::find - Return the constant rules that take care of the specified
// type.
//
Annotation *ConstRules::find(AnnotationID AID, const Annotable *TyA, void *) {
  assert(AID == ConstRules::AID && "Bad annotation for factory!");
  const Type *Ty = cast<Type>((const Value*)TyA);
  
  switch (Ty->getPrimitiveID()) {
  case Type::BoolTyID:    return new BoolRules();
  case Type::PointerTyID: return new PointerRules();
  case Type::SByteTyID:
    return new DirectIntRules<ConstantSInt,   signed char , &Type::SByteTy>();
  case Type::UByteTyID:
    return new DirectIntRules<ConstantUInt, unsigned char , &Type::UByteTy>();
  case Type::ShortTyID:
    return new DirectIntRules<ConstantSInt,   signed short, &Type::ShortTy>();
  case Type::UShortTyID:
    return new DirectIntRules<ConstantUInt, unsigned short, &Type::UShortTy>();
  case Type::IntTyID:
    return new DirectIntRules<ConstantSInt,   signed int  , &Type::IntTy>();
  case Type::UIntTyID:
    return new DirectIntRules<ConstantUInt, unsigned int  , &Type::UIntTy>();
  case Type::LongTyID:
    return new DirectIntRules<ConstantSInt,  int64_t      , &Type::LongTy>();
  case Type::ULongTyID:
    return new DirectIntRules<ConstantUInt, uint64_t      , &Type::ULongTy>();
  case Type::FloatTyID:
    return new DirectFPRules<ConstantFP  , float         , &Type::FloatTy>();
  case Type::DoubleTyID:
    return new DirectFPRules<ConstantFP  , double        , &Type::DoubleTy>();
  default:
    return new EmptyRules();
  }
}

ConstRules *ConstRules::getConstantExprRules() {
  static EmptyRules CERules;
  return &CERules;
}