summaryrefslogtreecommitdiff
path: root/lib/VMCore/Constants.cpp
blob: 8b28c0d3ff6c85a023ebfe76df18e8911262b50e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes...
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "ConstantFolding.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "Support/StringExtras.h"
#include <algorithm>
#include <iostream>
using namespace llvm;

ConstantBool *ConstantBool::True  = new ConstantBool(true);
ConstantBool *ConstantBool::False = new ConstantBool(false);


//===----------------------------------------------------------------------===//
//                              Constant Class
//===----------------------------------------------------------------------===//

// Specialize setName to take care of symbol table majik
void Constant::setName(const std::string &Name, SymbolTable *ST) {
  assert(ST && "Type::setName - Must provide symbol table argument!");

  if (Name.size()) ST->insert(Name, this);
}

void Constant::destroyConstantImpl() {
  // When a Constant is destroyed, there may be lingering
  // references to the constant by other constants in the constant pool.  These
  // constants are implicitly dependent on the module that is being deleted,
  // but they don't know that.  Because we only find out when the CPV is
  // deleted, we must now notify all of our users (that should only be
  // Constants) that they are, in fact, invalid now and should be deleted.
  //
  while (!use_empty()) {
    Value *V = use_back();
#ifndef NDEBUG      // Only in -g mode...
    if (!isa<Constant>(V))
      std::cerr << "While deleting: " << *this
                << "\n\nUse still stuck around after Def is destroyed: "
                << *V << "\n\n";
#endif
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    Constant *CV = cast<Constant>(V);
    CV->destroyConstant();

    // The constant should remove itself from our use list...
    assert((use_empty() || use_back() != V) && "Constant not removed!");
  }

  // Value has no outstanding references it is safe to delete it now...
  delete this;
}

// Static constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID: {
    static Constant *NullBool = ConstantBool::get(false);
    return NullBool;
  }
  case Type::SByteTyID: {
    static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0);
    return NullSByte;
  }
  case Type::UByteTyID: {
    static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0);
    return NullUByte;
  }
  case Type::ShortTyID: {
    static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0);
    return NullShort;
  }
  case Type::UShortTyID: {
    static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0);
    return NullUShort;
  }
  case Type::IntTyID: {
    static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0);
    return NullInt;
  }
  case Type::UIntTyID: {
    static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0);
    return NullUInt;
  }
  case Type::LongTyID: {
    static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0);
    return NullLong;
  }
  case Type::ULongTyID: {
    static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0);
    return NullULong;
  }

  case Type::FloatTyID: {
    static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
    return NullFloat;
  }
  case Type::DoubleTyID: {
    static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
    return NullDouble;
  }

  case Type::PointerTyID: 
    return ConstantPointerNull::get(cast<PointerType>(Ty));

  case Type::StructTyID:
  case Type::ArrayTyID:
  case Type::PackedTyID:
    return ConstantAggregateZero::get(Ty);
  default:
    // Function, Label, or Opaque type?
    assert(!"Cannot create a null constant of that type!");
    return 0;
  }
}

// Static constructor to create the maximum constant of an integral type...
ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID:   return ConstantBool::True;
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
  case Type::LongTyID: {
    // Calculate 011111111111111... 
    unsigned TypeBits = Ty->getPrimitiveSize()*8;
    int64_t Val = INT64_MAX;             // All ones
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
    return ConstantSInt::get(Ty, Val);
  }

  case Type::UByteTyID:
  case Type::UShortTyID:
  case Type::UIntTyID:
  case Type::ULongTyID:  return getAllOnesValue(Ty);

  default: return 0;
  }
}

// Static constructor to create the minimum constant for an integral type...
ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID:   return ConstantBool::False;
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
  case Type::LongTyID: {
     // Calculate 1111111111000000000000 
     unsigned TypeBits = Ty->getPrimitiveSize()*8;
     int64_t Val = -1;                    // All ones
     Val <<= TypeBits-1;                  // Shift over to the right spot
     return ConstantSInt::get(Ty, Val);
  }

  case Type::UByteTyID:
  case Type::UShortTyID:
  case Type::UIntTyID:
  case Type::ULongTyID:  return ConstantUInt::get(Ty, 0);

  default: return 0;
  }
}

// Static constructor to create an integral constant with all bits set
ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID:   return ConstantBool::True;
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
  case Type::LongTyID:   return ConstantSInt::get(Ty, -1);

  case Type::UByteTyID:
  case Type::UShortTyID:
  case Type::UIntTyID:
  case Type::ULongTyID: {
    // Calculate ~0 of the right type...
    unsigned TypeBits = Ty->getPrimitiveSize()*8;
    uint64_t Val = ~0ULL;                // All ones
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
    return ConstantUInt::get(Ty, Val);
  }
  default: return 0;
  }
}

bool ConstantUInt::isAllOnesValue() const {
  unsigned TypeBits = getType()->getPrimitiveSize()*8;
  uint64_t Val = ~0ULL;                // All ones
  Val >>= 64-TypeBits;                 // Shift out inappropriate bits
  return getValue() == Val;
}


//===----------------------------------------------------------------------===//
//                            ConstantXXX Classes
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//                             Normal Constructors

ConstantIntegral::ConstantIntegral(const Type *Ty, uint64_t V)
  : Constant(Ty) {
    Val.Unsigned = V;
}

ConstantBool::ConstantBool(bool V) : ConstantIntegral(Type::BoolTy, V) {
}

ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : ConstantIntegral(Ty, V) {
}

ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) {
  assert(Ty->isInteger() && Ty->isSigned() &&
         "Illegal type for unsigned integer constant!");
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
}

ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) {
  assert(Ty->isInteger() && Ty->isUnsigned() &&
         "Illegal type for unsigned integer constant!");
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
}

ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) {
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
  Val = V;
}

ConstantArray::ConstantArray(const ArrayType *T,
                             const std::vector<Constant*> &V) : Constant(T) {
  Operands.reserve(V.size());
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
    assert(V[i]->getType() == T->getElementType() ||
           (T->isAbstract() &&
            V[i]->getType()->getTypeID() == T->getElementType()->getTypeID()));
    Operands.push_back(Use(V[i], this));
  }
}

ConstantStruct::ConstantStruct(const StructType *T,
                               const std::vector<Constant*> &V) : Constant(T) {
  assert(V.size() == T->getNumElements() &&
         "Invalid initializer vector for constant structure");
  Operands.reserve(V.size());
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
    assert((V[i]->getType() == T->getElementType(i) ||
            ((T->getElementType(i)->isAbstract() ||
              V[i]->getType()->isAbstract()) &&
             T->getElementType(i)->getTypeID() == V[i]->getType()->getTypeID())) &&
           "Initializer for struct element doesn't match struct element type!");
    Operands.push_back(Use(V[i], this));
  }
}

ConstantPacked::ConstantPacked(const PackedType *T,
                               const std::vector<Constant*> &V) : Constant(T) {
  Operands.reserve(V.size());
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
    assert(V[i]->getType() == T->getElementType() ||
           (T->isAbstract() &&
            V[i]->getType()->getTypeID() == T->getElementType()->getTypeID()));
    Operands.push_back(Use(V[i], this));
  }
}

ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
  : Constant(Ty, ConstantExprVal), iType(Opcode) {
  Operands.reserve(1);
  Operands.push_back(Use(C, this));
}

// Select instruction creation ctor
ConstantExpr::ConstantExpr(Constant *C, Constant *V1, Constant *V2)
  : Constant(V1->getType(), ConstantExprVal), iType(Instruction::Select) {
  Operands.reserve(3);
  Operands.push_back(Use(C, this));
  Operands.push_back(Use(V1, this));
  Operands.push_back(Use(V2, this));
}


static bool isSetCC(unsigned Opcode) {
  return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE ||
         Opcode == Instruction::SetLT || Opcode == Instruction::SetGT ||
         Opcode == Instruction::SetLE || Opcode == Instruction::SetGE;
}

ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
  : Constant(isSetCC(Opcode) ? Type::BoolTy : C1->getType(), ConstantExprVal),
    iType(Opcode) {
  Operands.reserve(2);
  Operands.push_back(Use(C1, this));
  Operands.push_back(Use(C2, this));
}

ConstantExpr::ConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
                           const Type *DestTy)
  : Constant(DestTy, ConstantExprVal), iType(Instruction::GetElementPtr) {
  Operands.reserve(1+IdxList.size());
  Operands.push_back(Use(C, this));
  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
    Operands.push_back(Use(IdxList[i], this));
}

/// ConstantExpr::get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
Constant *ConstantExpr::getNeg(Constant *C) {
  if (!C->getType()->isFloatingPoint())
    return get(Instruction::Sub, getNullValue(C->getType()), C);
  else
    return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C);
}
Constant *ConstantExpr::getNot(Constant *C) {
  assert(isa<ConstantIntegral>(C) && "Cannot NOT a nonintegral type!");
  return get(Instruction::Xor, C,
             ConstantIntegral::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
  return get(Instruction::Add, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
  return get(Instruction::Sub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
  return get(Instruction::Mul, C1, C2);
}
Constant *ConstantExpr::getDiv(Constant *C1, Constant *C2) {
  return get(Instruction::Div, C1, C2);
}
Constant *ConstantExpr::getRem(Constant *C1, Constant *C2) {
  return get(Instruction::Rem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
  return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
  return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
  return get(Instruction::Xor, C1, C2);
}
Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) {
  return get(Instruction::SetEQ, C1, C2);
}
Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) {
  return get(Instruction::SetNE, C1, C2);
}
Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) {
  return get(Instruction::SetLT, C1, C2);
}
Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) {
  return get(Instruction::SetGT, C1, C2);
}
Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) {
  return get(Instruction::SetLE, C1, C2);
}
Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) {
  return get(Instruction::SetGE, C1, C2);
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
  return get(Instruction::Shl, C1, C2);
}
Constant *ConstantExpr::getShr(Constant *C1, Constant *C2) {
  return get(Instruction::Shr, C1, C2);
}

Constant *ConstantExpr::getUShr(Constant *C1, Constant *C2) {
  if (C1->getType()->isUnsigned()) return getShr(C1, C2);
  return getCast(getShr(getCast(C1,
                    C1->getType()->getUnsignedVersion()), C2), C1->getType());
}

Constant *ConstantExpr::getSShr(Constant *C1, Constant *C2) {
  if (C1->getType()->isSigned()) return getShr(C1, C2);
  return getCast(getShr(getCast(C1,
                        C1->getType()->getSignedVersion()), C2), C1->getType());
}


//===----------------------------------------------------------------------===//
//                      isValueValidForType implementations

bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as integers!!!
    // Signed types...
  case Type::SByteTyID:
    return (Val <= INT8_MAX && Val >= INT8_MIN);
  case Type::ShortTyID:
    return (Val <= INT16_MAX && Val >= INT16_MIN);
  case Type::IntTyID:
    return (Val <= int(INT32_MAX) && Val >= int(INT32_MIN));
  case Type::LongTyID:
    return true;          // This is the largest type...
  }
}

bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as integers!!!

    // Unsigned types...
  case Type::UByteTyID:
    return (Val <= UINT8_MAX);
  case Type::UShortTyID:
    return (Val <= UINT16_MAX);
  case Type::UIntTyID:
    return (Val <= UINT32_MAX);
  case Type::ULongTyID:
    return true;          // This is the largest type...
  }
}

bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as floating point!

    // TODO: Figure out how to test if a double can be cast to a float!
  case Type::FloatTyID:
  case Type::DoubleTyID:
    return true;          // This is the largest type...
  }
};

//===----------------------------------------------------------------------===//
//                replaceUsesOfWithOnConstant implementations

void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                bool DisableChecking) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");

  std::vector<Constant*> Values;
  Values.reserve(getNumOperands());  // Build replacement array...
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    Constant *Val = getOperand(i);
    if (Val == From) Val = cast<Constant>(To);
    Values.push_back(Val);
  }
  
  Constant *Replacement = ConstantArray::get(getType(), Values);
  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement...
  if (DisableChecking)
    uncheckedReplaceAllUsesWith(Replacement);
  else
    replaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();  
}

void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 bool DisableChecking) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");

  std::vector<Constant*> Values;
  Values.reserve(getNumOperands());  // Build replacement array...
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    Constant *Val = getOperand(i);
    if (Val == From) Val = cast<Constant>(To);
    Values.push_back(Val);
  }
  
  Constant *Replacement = ConstantStruct::get(getType(), Values);
  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement...
  if (DisableChecking)
    uncheckedReplaceAllUsesWith(Replacement);
  else
    replaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 bool DisableChecking) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");

  std::vector<Constant*> Values;
  Values.reserve(getNumOperands());  // Build replacement array...
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    Constant *Val = getOperand(i);
    if (Val == From) Val = cast<Constant>(To);
    Values.push_back(Val);
  }
  
  Constant *Replacement = ConstantPacked::get(getType(), Values);
  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement...
  if (DisableChecking)
    uncheckedReplaceAllUsesWith(Replacement);
  else
    replaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();  
}

void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
                                               bool DisableChecking) {
  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
  Constant *To = cast<Constant>(ToV);

  Constant *Replacement = 0;
  if (getOpcode() == Instruction::GetElementPtr) {
    std::vector<Constant*> Indices;
    Constant *Pointer = getOperand(0);
    Indices.reserve(getNumOperands()-1);
    if (Pointer == From) Pointer = To;
    
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
      Constant *Val = getOperand(i);
      if (Val == From) Val = To;
      Indices.push_back(Val);
    }
    Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
  } else if (getOpcode() == Instruction::Cast) {
    assert(getOperand(0) == From && "Cast only has one use!");
    Replacement = ConstantExpr::getCast(To, getType());
  } else if (getOpcode() == Instruction::Select) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    Constant *C3 = getOperand(2);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    if (C3 == From) C3 = To;
    Replacement = ConstantExpr::getSelect(C1, C2, C3);
  } else if (getNumOperands() == 2) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    Replacement = ConstantExpr::get(getOpcode(), C1, C2);
  } else {
    assert(0 && "Unknown ConstantExpr type!");
    return;
  }
  
  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement...
  if (DisableChecking)
    uncheckedReplaceAllUsesWith(Replacement);
  else
    replaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

//===----------------------------------------------------------------------===//
//                      Factory Function Implementation

// ConstantCreator - A class that is used to create constants by
// ValueMap*.  This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
namespace llvm {
  template<class ConstantClass, class TypeClass, class ValType>
  struct ConstantCreator {
    static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
      return new ConstantClass(Ty, V);
    }
  };
  
  template<class ConstantClass, class TypeClass>
  struct ConvertConstantType {
    static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
      assert(0 && "This type cannot be converted!\n");
      abort();
    }
  };
}

namespace {
  template<class ValType, class TypeClass, class ConstantClass>
  class ValueMap : public AbstractTypeUser {
    typedef std::pair<const TypeClass*, ValType> MapKey;
    typedef std::map<MapKey, ConstantClass *> MapTy;
    typedef typename MapTy::iterator MapIterator;
    MapTy Map;

    typedef std::map<const TypeClass*, MapIterator> AbstractTypeMapTy;
    AbstractTypeMapTy AbstractTypeMap;
  public:
    // getOrCreate - Return the specified constant from the map, creating it if
    // necessary.
    ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
      MapKey Lookup(Ty, V);
      MapIterator I = Map.lower_bound(Lookup);
      if (I != Map.end() && I->first == Lookup)
        return I->second;  // Is it in the map?

      // If no preexisting value, create one now...
      ConstantClass *Result =
        ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);


      /// FIXME: why does this assert fail when loading 176.gcc?
      //assert(Result->getType() == Ty && "Type specified is not correct!");
      I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));

      // If the type of the constant is abstract, make sure that an entry exists
      // for it in the AbstractTypeMap.
      if (Ty->isAbstract()) {
        typename AbstractTypeMapTy::iterator TI =
          AbstractTypeMap.lower_bound(Ty);

        if (TI == AbstractTypeMap.end() || TI->first != Ty) {
          // Add ourselves to the ATU list of the type.
          cast<DerivedType>(Ty)->addAbstractTypeUser(this);

          AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
        }
      }
      return Result;
    }
    
    void remove(ConstantClass *CP) {
      MapIterator I = Map.find(MapKey((TypeClass*)CP->getRawType(),
                                      getValType(CP)));
      if (I == Map.end() || I->second != CP) {
        // FIXME: This should not use a linear scan.  If this gets to be a
        // performance problem, someone should look at this.
        for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
          /* empty */;
      }

      assert(I != Map.end() && "Constant not found in constant table!");
      assert(I->second == CP && "Didn't find correct element?");

      // Now that we found the entry, make sure this isn't the entry that
      // the AbstractTypeMap points to.
      const TypeClass *Ty = I->first.first;
      if (Ty->isAbstract()) {
        assert(AbstractTypeMap.count(Ty) &&
               "Abstract type not in AbstractTypeMap?");
        MapIterator &ATMEntryIt = AbstractTypeMap[Ty];
        if (ATMEntryIt == I) {
          // Yes, we are removing the representative entry for this type.
          // See if there are any other entries of the same type.
          MapIterator TmpIt = ATMEntryIt;
          
          // First check the entry before this one...
          if (TmpIt != Map.begin()) {
            --TmpIt;
            if (TmpIt->first.first != Ty) // Not the same type, move back...
              ++TmpIt;
          }
          
          // If we didn't find the same type, try to move forward...
          if (TmpIt == ATMEntryIt) {
            ++TmpIt;
            if (TmpIt == Map.end() || TmpIt->first.first != Ty)
              --TmpIt;   // No entry afterwards with the same type
          }

          // If there is another entry in the map of the same abstract type,
          // update the AbstractTypeMap entry now.
          if (TmpIt != ATMEntryIt) {
            ATMEntryIt = TmpIt;
          } else {
            // Otherwise, we are removing the last instance of this type
            // from the table.  Remove from the ATM, and from user list.
            cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
            AbstractTypeMap.erase(Ty);
          }
        }
      }
      
      Map.erase(I);
    }

    void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
      typename AbstractTypeMapTy::iterator I = 
        AbstractTypeMap.find(cast<TypeClass>(OldTy));

      assert(I != AbstractTypeMap.end() &&
             "Abstract type not in AbstractTypeMap?");

      // Convert a constant at a time until the last one is gone.  The last one
      // leaving will remove() itself, causing the AbstractTypeMapEntry to be
      // eliminated eventually.
      do {
        ConvertConstantType<ConstantClass,
                            TypeClass>::convert(I->second->second,
                                                cast<TypeClass>(NewTy));

        I = AbstractTypeMap.find(cast<TypeClass>(OldTy));
      } while (I != AbstractTypeMap.end());
    }

    // If the type became concrete without being refined to any other existing
    // type, we just remove ourselves from the ATU list.
    void typeBecameConcrete(const DerivedType *AbsTy) {
      AbsTy->removeAbstractTypeUser(this);
    }

    void dump() const {
      std::cerr << "Constant.cpp: ValueMap\n";
    }
  };
}

//---- ConstantUInt::get() and ConstantSInt::get() implementations...
//
static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;

ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
  return SIntConstants.getOrCreate(Ty, V);
}

ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
  return UIntConstants.getOrCreate(Ty, V);
}

ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
  assert(V <= 127 && "Can only be used with very small positive constants!");
  if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
  return ConstantUInt::get(Ty, V);
}

//---- ConstantFP::get() implementation...
//
namespace llvm {
  template<>
  struct ConstantCreator<ConstantFP, Type, uint64_t> {
    static ConstantFP *create(const Type *Ty, uint64_t V) {
      assert(Ty == Type::DoubleTy);
      union {
        double F;
        uint64_t I;
      } T;
      T.I = V;
      return new ConstantFP(Ty, T.F);
    }
  };
  template<>
  struct ConstantCreator<ConstantFP, Type, uint32_t> {
    static ConstantFP *create(const Type *Ty, uint32_t V) {
      assert(Ty == Type::FloatTy);
      union {
        float F;
        uint32_t I;
      } T;
      T.I = V;
      return new ConstantFP(Ty, T.F);
    }
  };
}

static ValueMap<uint64_t, Type, ConstantFP> DoubleConstants;
static ValueMap<uint32_t, Type, ConstantFP> FloatConstants;

ConstantFP *ConstantFP::get(const Type *Ty, double V) {
  if (Ty == Type::FloatTy) {
    // Force the value through memory to normalize it.
    union {
      float F;
      uint32_t I;
    } T;
    T.F = (float)V;
    return FloatConstants.getOrCreate(Ty, T.I);
  } else {
    assert(Ty == Type::DoubleTy);
    union {
      double F;
      uint64_t I;
    } T;
    T.F = V;
    return DoubleConstants.getOrCreate(Ty, T.I);
  }
}

//---- ConstantAggregateZero::get() implementation...
//
namespace llvm {
  // ConstantAggregateZero does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
    static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
      return new ConstantAggregateZero(Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantAggregateZero, Type> {
    static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
      // Make everyone now use a constant of the new type...
      Constant *New = ConstantAggregateZero::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;

static char getValType(ConstantAggregateZero *CPZ) { return 0; }

Constant *ConstantAggregateZero::get(const Type *Ty) {
  return AggZeroConstants.getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantAggregateZero::destroyConstant() {
  AggZeroConstants.remove(this);
  destroyConstantImpl();
}

void ConstantAggregateZero::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                        bool DisableChecking) {
  assert(0 && "No uses!");
  abort();
}



//---- ConstantArray::get() implementation...
//
namespace llvm {
  template<>
  struct ConvertConstantType<ConstantArray, ArrayType> {
    static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantArray::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

static std::vector<Constant*> getValType(ConstantArray *CA) {
  std::vector<Constant*> Elements;
  Elements.reserve(CA->getNumOperands());
  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    Elements.push_back(cast<Constant>(CA->getOperand(i)));
  return Elements;
}

static ValueMap<std::vector<Constant*>, ArrayType,
                ConstantArray> ArrayConstants;

Constant *ConstantArray::get(const ArrayType *Ty,
                             const std::vector<Constant*> &V) {
  // If this is an all-zero array, return a ConstantAggregateZero object
  if (!V.empty()) {
    Constant *C = V[0];
    if (!C->isNullValue())
      return ArrayConstants.getOrCreate(Ty, V);
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C)
        return ArrayConstants.getOrCreate(Ty, V);
  }
  return ConstantAggregateZero::get(Ty);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
  ArrayConstants.remove(this);
  destroyConstantImpl();
}

// ConstantArray::get(const string&) - Return an array that is initialized to
// contain the specified string.  A null terminator is added to the specified
// string so that it may be used in a natural way...
//
Constant *ConstantArray::get(const std::string &Str) {
  std::vector<Constant*> ElementVals;

  for (unsigned i = 0; i < Str.length(); ++i)
    ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));

  // Add a null terminator to the string...
  ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));

  ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
  return ConstantArray::get(ATy, ElementVals);
}

/// isString - This method returns true if the array is an array of sbyte or
/// ubyte, and if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
  // Check the element type for sbyte or ubyte...
  if (getType()->getElementType() != Type::UByteTy &&
      getType()->getElementType() != Type::SByteTy)
    return false;
  // Check the elements to make sure they are all integers, not constant
  // expressions.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (!isa<ConstantInt>(getOperand(i)))
      return false;
  return true;
}

// getAsString - If the sub-element type of this array is either sbyte or ubyte,
// then this method converts the array to an std::string and returns it.
// Otherwise, it asserts out.
//
std::string ConstantArray::getAsString() const {
  assert(isString() && "Not a string!");
  std::string Result;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    Result += (char)cast<ConstantInt>(getOperand(i))->getRawValue();
  return Result;
}


//---- ConstantStruct::get() implementation...
//

namespace llvm {
  template<>
  struct ConvertConstantType<ConstantStruct, StructType> {
    static void convert(ConstantStruct *OldC, const StructType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantStruct::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");
      
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

static ValueMap<std::vector<Constant*>, StructType, 
                ConstantStruct> StructConstants;

static std::vector<Constant*> getValType(ConstantStruct *CS) {
  std::vector<Constant*> Elements;
  Elements.reserve(CS->getNumOperands());
  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
    Elements.push_back(cast<Constant>(CS->getOperand(i)));
  return Elements;
}

Constant *ConstantStruct::get(const StructType *Ty,
                              const std::vector<Constant*> &V) {
  // Create a ConstantAggregateZero value if all elements are zeros...
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    if (!V[i]->isNullValue())
      return StructConstants.getOrCreate(Ty, V);

  return ConstantAggregateZero::get(Ty);
}

Constant *ConstantStruct::get(const std::vector<Constant*> &V) {
  std::vector<const Type*> StructEls;
  StructEls.reserve(V.size());
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    StructEls.push_back(V[i]->getType());
  return get(StructType::get(StructEls), V);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
  StructConstants.remove(this);
  destroyConstantImpl();
}

//---- ConstantPacked::get() implementation...
//
namespace llvm {
  template<>
  struct ConvertConstantType<ConstantPacked, PackedType> {
    static void convert(ConstantPacked *OldC, const PackedType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantPacked::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

static std::vector<Constant*> getValType(ConstantPacked *CP) {
  std::vector<Constant*> Elements;
  Elements.reserve(CP->getNumOperands());
  for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    Elements.push_back(CP->getOperand(i));
  return Elements;
}

static ValueMap<std::vector<Constant*>, PackedType,
                ConstantPacked> PackedConstants;

Constant *ConstantPacked::get(const PackedType *Ty,
                              const std::vector<Constant*> &V) {
  // If this is an all-zero packed, return a ConstantAggregateZero object
  if (!V.empty()) {
    Constant *C = V[0];
    if (!C->isNullValue())
      return PackedConstants.getOrCreate(Ty, V);
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C)
        return PackedConstants.getOrCreate(Ty, V);
  }
  return ConstantAggregateZero::get(Ty);
}

Constant *ConstantPacked::get(const std::vector<Constant*> &V) {
  assert(!V.empty() && "Cannot infer type if V is empty");
  return get(PackedType::get(V.front()->getType(),V.size()), V);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantPacked::destroyConstant() {
  PackedConstants.remove(this);
  destroyConstantImpl();
}

//---- ConstantPointerNull::get() implementation...
//

namespace llvm {
  // ConstantPointerNull does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
    static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
      return new ConstantPointerNull(Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantPointerNull, PointerType> {
    static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
      // Make everyone now use a constant of the new type...
      Constant *New = ConstantPointerNull::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;

static char getValType(ConstantPointerNull *) {
  return 0;
}


ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
  return NullPtrConstants.getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
  NullPtrConstants.remove(this);
  destroyConstantImpl();
}


//---- ConstantExpr::get() implementations...
//
typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;

namespace llvm {
  template<>
  struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
    static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
      if (V.first == Instruction::Cast)
        return new ConstantExpr(Instruction::Cast, V.second[0], Ty);
      if ((V.first >= Instruction::BinaryOpsBegin &&
           V.first < Instruction::BinaryOpsEnd) ||
          V.first == Instruction::Shl || V.first == Instruction::Shr)
        return new ConstantExpr(V.first, V.second[0], V.second[1]);
      if (V.first == Instruction::Select)
        return new ConstantExpr(V.second[0], V.second[1], V.second[2]);
      
      assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");
      
      std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
      return new ConstantExpr(V.second[0], IdxList, Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantExpr, Type> {
    static void convert(ConstantExpr *OldC, const Type *NewTy) {
      Constant *New;
      switch (OldC->getOpcode()) {
      case Instruction::Cast:
        New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
        break;
      case Instruction::Select:
        New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
                                        OldC->getOperand(1),
                                        OldC->getOperand(2));
        break;
      case Instruction::Shl:
      case Instruction::Shr:
        New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
                                     OldC->getOperand(0), OldC->getOperand(1));
        break;
      default:
        assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
               OldC->getOpcode() < Instruction::BinaryOpsEnd);
        New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
                                  OldC->getOperand(1));
        break;
      case Instruction::GetElementPtr:
        // Make everyone now use a constant of the new type... 
        std::vector<Constant*> C;
        for (unsigned i = 1, e = OldC->getNumOperands(); i != e; ++i)
          C.push_back(cast<Constant>(OldC->getOperand(i)));
        New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), C);
        break;
      }
      
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
} // end namespace llvm


static ExprMapKeyType getValType(ConstantExpr *CE) {
  std::vector<Constant*> Operands;
  Operands.reserve(CE->getNumOperands());
  for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
    Operands.push_back(cast<Constant>(CE->getOperand(i)));
  return ExprMapKeyType(CE->getOpcode(), Operands);
}

static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;

Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");

  if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> argVec(1, C);
  ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
  return ExprConstants.getOrCreate(Ty, Key);
}

Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
  assert(C->getType()->isInteger() && Ty->isInteger() &&
         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
         "This is an illegal sign extension!");
  C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
  return ConstantExpr::getCast(C, Ty);
}

Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
  assert(C->getType()->isInteger() && Ty->isInteger() &&
         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
         "This is an illegal zero extension!");
  C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
  return ConstantExpr::getCast(C, Ty);
}

Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
                              Constant *C1, Constant *C2) {
  if (Opcode == Instruction::Shl || Opcode == Instruction::Shr)
    return getShiftTy(ReqTy, Opcode, C1, C2);
  // Check the operands for consistency first
  assert((Opcode >= Instruction::BinaryOpsBegin &&
          Opcode < Instruction::BinaryOpsEnd) &&
         "Invalid opcode in binary constant expression");
  assert(C1->getType() == C2->getType() &&
         "Operand types in binary constant expression should match");

  if (ReqTy == C1->getType() || (Instruction::isRelational(Opcode) &&
                                 ReqTy == Type::BoolTy))
    if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
      return FC;          // Fold a few common cases...

  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
  ExprMapKeyType Key = std::make_pair(Opcode, argVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
#ifndef NDEBUG
  switch (Opcode) {
  case Instruction::Add: case Instruction::Sub:
  case Instruction::Mul: case Instruction::Div:
  case Instruction::Rem:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint()) && 
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isIntegral() &&
           "Tried to create an logical operation on a non-integral type!");
    break;
  case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE:
  case Instruction::SetGE: case Instruction::SetEQ: case Instruction::SetNE:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    break;
  case Instruction::Shl:
  case Instruction::Shr:
    assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!");
    assert(C1->getType()->isInteger() &&
           "Tried to create a shift operation on a non-integer type!");
    break;
  default:
    break;
  }
#endif

  if (Instruction::isRelational(Opcode))
    return getTy(Type::BoolTy, Opcode, C1, C2);
  else
    return getTy(C1->getType(), Opcode, C1, C2);
}

Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
                                    Constant *V1, Constant *V2) {
  assert(C->getType() == Type::BoolTy && "Select condition must be bool!");
  assert(V1->getType() == V2->getType() && "Select value types must match!");
  assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");

  if (ReqTy == V1->getType())
    if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
      return SC;        // Fold common cases

  std::vector<Constant*> argVec(3, C);
  argVec[1] = V1;
  argVec[2] = V2;
  ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

/// getShiftTy - Return a shift left or shift right constant expr
Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
                                   Constant *C1, Constant *C2) {
  // Check the operands for consistency first
  assert((Opcode == Instruction::Shl ||
          Opcode == Instruction::Shr) &&
         "Invalid opcode in binary constant expression");
  assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
         "Invalid operand types for Shift constant expr!");

  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
  ExprMapKeyType Key = std::make_pair(Opcode, argVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}


Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
                                        const std::vector<Constant*> &IdxList) {
  assert(GetElementPtrInst::getIndexedType(C->getType(),
                   std::vector<Value*>(IdxList.begin(), IdxList.end()), true) &&
         "GEP indices invalid!");

  if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
    return FC;          // Fold a few common cases...

  assert(isa<PointerType>(C->getType()) &&
         "Non-pointer type for constant GetElementPtr expression");
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> argVec(1, C);
  argVec.insert(argVec.end(), IdxList.begin(), IdxList.end());
  const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,argVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getGetElementPtr(Constant *C,
                                         const std::vector<Constant*> &IdxList){
  // Get the result type of the getelementptr!
  std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());

  const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
                                                     true);
  assert(Ty && "GEP indices invalid!");
  return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
}


// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
  ExprConstants.remove(this);
  destroyConstantImpl();
}

const char *ConstantExpr::getOpcodeName() const {
  return Instruction::getOpcodeName(getOpcode());
}