summaryrefslogtreecommitdiff
path: root/lib/VMCore/Dominators.cpp
blob: 2f080d3c55d424d2194bfbe161831f37ef87f3ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators.  Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed.  Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DominanceFrontier.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;

// Always verify dominfo if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyDomInfo = true;
#else
static bool VerifyDomInfo = false;
#endif
static cl::opt<bool,true>
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
               cl::desc("Verify dominator info (time consuming)"));

//===----------------------------------------------------------------------===//
//  DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// Provide public access to DominatorTree information.  Implementation details
// can be found in DominatorCalculation.h.
//
//===----------------------------------------------------------------------===//

TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);

char DominatorTree::ID = 0;
INITIALIZE_PASS(DominatorTree, "domtree",
                "Dominator Tree Construction", true, true)

bool DominatorTree::runOnFunction(Function &F) {
  DT->recalculate(F);
  return false;
}

void DominatorTree::verifyAnalysis() const {
  if (!VerifyDomInfo) return;

  Function &F = *getRoot()->getParent();

  DominatorTree OtherDT;
  OtherDT.getBase().recalculate(F);
  if (compare(OtherDT)) {
    errs() << "DominatorTree is not up to date!  Computed:\n";
    print(errs());
    
    errs() << "\nActual:\n";
    OtherDT.print(errs());
    abort();
  }
}

void DominatorTree::print(raw_ostream &OS, const Module *) const {
  DT->print(OS);
}

// dominates - Return true if A dominates a use in B. This performs the
// special checks necessary if A and B are in the same basic block.
bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
  const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
  
  // If A is an invoke instruction, its value is only available in this normal
  // successor block.
  if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
    BBA = II->getNormalDest();
  
  if (BBA != BBB) return dominates(BBA, BBB);
  
  // It is not possible to determine dominance between two PHI nodes 
  // based on their ordering.
  if (isa<PHINode>(A) && isa<PHINode>(B)) 
    return false;
  
  // Loop through the basic block until we find A or B.
  BasicBlock::const_iterator I = BBA->begin();
  for (; &*I != A && &*I != B; ++I)
    /*empty*/;
  
  return &*I == A;
}



//===----------------------------------------------------------------------===//
//  DominanceFrontier Implementation
//===----------------------------------------------------------------------===//

char DominanceFrontier::ID = 0;
INITIALIZE_PASS_BEGIN(DominanceFrontier, "domfrontier",
                "Dominance Frontier Construction", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(DominanceFrontier, "domfrontier",
                "Dominance Frontier Construction", true, true)

void DominanceFrontier::verifyAnalysis() const {
  if (!VerifyDomInfo) return;

  DominatorTree &DT = getAnalysis<DominatorTree>();

  DominanceFrontier OtherDF;
  const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
  OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
  assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
}

// NewBB is split and now it has one successor. Update dominance frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
  assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
         "NewBB should have a single successor!");
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);

  // NewBBSucc inherits original NewBB frontier.
  DominanceFrontier::iterator NewBBI = find(NewBB);
  if (NewBBI != end())
    addBasicBlock(NewBBSucc, NewBBI->second);

  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
  // DF(NewBBSucc) without the stuff that the new block does not dominate
  // a predecessor of.
  DominatorTree &DT = getAnalysis<DominatorTree>();
  DomTreeNode *NewBBNode = DT.getNode(NewBB);
  DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
  if (DT.dominates(NewBBNode, NewBBSuccNode)) {
    DominanceFrontier::iterator DFI = find(NewBBSucc);
    if (DFI != end()) {
      DominanceFrontier::DomSetType Set = DFI->second;
      // Filter out stuff in Set that we do not dominate a predecessor of.
      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
             E = Set.end(); SetI != E;) {
        bool DominatesPred = false;
        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
             PI != E; ++PI)
          if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
            DominatesPred = true;
            break;
          }
        if (!DominatesPred)
          Set.erase(SetI++);
        else
          ++SetI;
      }

      if (NewBBI != end()) {
        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
               E = Set.end(); SetI != E; ++SetI) {
          BasicBlock *SB = *SetI;
          addToFrontier(NewBBI, SB);
        }
      } else 
        addBasicBlock(NewBB, Set);
    }
    
  } else {
    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
    DominanceFrontier::DomSetType NewDFSet;
    NewDFSet.insert(NewBBSucc);
    addBasicBlock(NewBB, NewDFSet);
  }

  // Now update dominance frontiers which either used to contain NewBBSucc
  // or which now need to include NewBB.

  // Collect the set of blocks which dominate a predecessor of NewBB or
  // NewSuccBB and which don't dominate both. This is an initial
  // approximation of the blocks whose dominance frontiers will need updates.
  SmallVector<DomTreeNode *, 16> AllPredDoms;

  // Compute the block which dominates both NewBBSucc and NewBB. This is
  // the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
  // The code below which climbs dominator trees will stop at this point,
  // because from this point up, dominance frontiers are unaffected.
  DomTreeNode *DominatesBoth = 0;
  if (NewBBSuccNode) {
    DominatesBoth = NewBBSuccNode->getIDom();
    if (DominatesBoth == NewBBNode)
      DominatesBoth = NewBBNode->getIDom();
  }

  // Collect the set of all blocks which dominate a predecessor of NewBB.
  SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
    for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
      if (DTN == DominatesBoth)
        break;
      if (!NewBBPredDoms.insert(DTN))
        break;
      AllPredDoms.push_back(DTN);
    }

  // Collect the set of all blocks which dominate a predecessor of NewSuccBB.
  SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
  for (pred_iterator PI = pred_begin(NewBBSucc),
       E = pred_end(NewBBSucc); PI != E; ++PI)
    for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
      if (DTN == DominatesBoth)
        break;
      if (!NewBBSuccPredDoms.insert(DTN))
        break;
      if (!NewBBPredDoms.count(DTN))
        AllPredDoms.push_back(DTN);
    }

  // Visit all relevant dominance frontiers and make any needed updates.
  for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
       E = AllPredDoms.end(); I != E; ++I) {
    DomTreeNode *DTN = *I;
    iterator DFI = find((*I)->getBlock());

    // Only consider nodes that have NewBBSucc in their dominator frontier.
    if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;

    // If the block dominates a predecessor of NewBB but does not properly
    // dominate NewBB itself, add NewBB to its dominance frontier.
    if (NewBBPredDoms.count(DTN) &&
        !DT.properlyDominates(DTN, NewBBNode))
      addToFrontier(DFI, NewBB);

    // If the block does not dominate a predecessor of NewBBSucc or
    // properly dominates NewBBSucc itself, remove NewBBSucc from its
    // dominance frontier.
    if (!NewBBSuccPredDoms.count(DTN) ||
        DT.properlyDominates(DTN, NewBBSuccNode))
      removeFromFrontier(DFI, NewBBSucc);
  }
}

namespace {
  class DFCalculateWorkObject {
  public:
    DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, 
                          const DomTreeNode *N,
                          const DomTreeNode *PN)
    : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
    BasicBlock *currentBB;
    BasicBlock *parentBB;
    const DomTreeNode *Node;
    const DomTreeNode *parentNode;
  };
}

const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
                             const DomTreeNode *Node) {
  BasicBlock *BB = Node->getBlock();
  DomSetType *Result = NULL;

  std::vector<DFCalculateWorkObject> workList;
  SmallPtrSet<BasicBlock *, 32> visited;

  workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
  do {
    DFCalculateWorkObject *currentW = &workList.back();
    assert (currentW && "Missing work object.");

    BasicBlock *currentBB = currentW->currentBB;
    BasicBlock *parentBB = currentW->parentBB;
    const DomTreeNode *currentNode = currentW->Node;
    const DomTreeNode *parentNode = currentW->parentNode;
    assert (currentBB && "Invalid work object. Missing current Basic Block");
    assert (currentNode && "Invalid work object. Missing current Node");
    DomSetType &S = Frontiers[currentBB];

    // Visit each block only once.
    if (visited.count(currentBB) == 0) {
      visited.insert(currentBB);

      // Loop over CFG successors to calculate DFlocal[currentNode]
      for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
           SI != SE; ++SI) {
        // Does Node immediately dominate this successor?
        if (DT[*SI]->getIDom() != currentNode)
          S.insert(*SI);
      }
    }

    // At this point, S is DFlocal.  Now we union in DFup's of our children...
    // Loop through and visit the nodes that Node immediately dominates (Node's
    // children in the IDomTree)
    bool visitChild = false;
    for (DomTreeNode::const_iterator NI = currentNode->begin(), 
           NE = currentNode->end(); NI != NE; ++NI) {
      DomTreeNode *IDominee = *NI;
      BasicBlock *childBB = IDominee->getBlock();
      if (visited.count(childBB) == 0) {
        workList.push_back(DFCalculateWorkObject(childBB, currentBB,
                                                 IDominee, currentNode));
        visitChild = true;
      }
    }

    // If all children are visited or there is any child then pop this block
    // from the workList.
    if (!visitChild) {

      if (!parentBB) {
        Result = &S;
        break;
      }

      DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
      DomSetType &parentSet = Frontiers[parentBB];
      for (; CDFI != CDFE; ++CDFI) {
        if (!DT.properlyDominates(parentNode, DT[*CDFI]))
          parentSet.insert(*CDFI);
      }
      workList.pop_back();
    }

  } while (!workList.empty());

  return *Result;
}

void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    OS << "  DomFrontier for BB ";
    if (I->first)
      WriteAsOperand(OS, I->first, false);
    else
      OS << " <<exit node>>";
    OS << " is:\t";
    
    const std::set<BasicBlock*> &BBs = I->second;
    
    for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
         I != E; ++I) {
      OS << ' ';
      if (*I)
        WriteAsOperand(OS, *I, false);
      else
        OS << "<<exit node>>";
    }
    OS << "\n";
  }
}

void DominanceFrontierBase::dump() const {
  print(dbgs());
}