summaryrefslogtreecommitdiff
path: root/lib/VMCore/Dominators.cpp
blob: 14ec3ccd9f37f847f9b142ca1501d5c3949fa758 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators.  Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed.  Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include <algorithm>
using namespace llvm;

//===----------------------------------------------------------------------===//
//  ImmediateDominators Implementation
//===----------------------------------------------------------------------===//
//
// Immediate Dominators construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
//   A Fast Algorithm for Finding Dominators in a Flowgraph
//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
// LINK, but it turns out that the theoretically slower O(n*log(n))
// implementation is actually faster than the "efficient" algorithm (even for
// large CFGs) because the constant overheads are substantially smaller.  The
// lower-complexity version can be enabled with the following #define:
//
#define BALANCE_IDOM_TREE 0
//
//===----------------------------------------------------------------------===//

static RegisterAnalysis<ImmediateDominators>
C("idom", "Immediate Dominators Construction", true);

unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
                                      unsigned N) {
  VInfo.Semi = ++N;
  VInfo.Label = V;

  Vertex.push_back(V);        // Vertex[n] = V;
  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
  //Child[V] = 0;             // Child[v] = 0
  VInfo.Size = 1;             // Size[v] = 1

  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
    InfoRec &SuccVInfo = Info[*SI];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = V;
      N = DFSPass(*SI, SuccVInfo, N);
    }
  }
  return N;
}

void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
  BasicBlock *VAncestor = VInfo.Ancestor;
  InfoRec &VAInfo = Info[VAncestor];
  if (VAInfo.Ancestor == 0)
    return;

  Compress(VAncestor, VAInfo);

  BasicBlock *VAncestorLabel = VAInfo.Label; 
  BasicBlock *VLabel = VInfo.Label;
  if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
    VInfo.Label = VAncestorLabel;

  VInfo.Ancestor = VAInfo.Ancestor;
}

BasicBlock *ImmediateDominators::Eval(BasicBlock *V) {
  InfoRec &VInfo = Info[V];
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  if (VInfo.Ancestor == 0)
    return V;
  Compress(V, VInfo);
  return VInfo.Label;
#else
  // Lower-complexity but slower implementation
  if (VInfo.Ancestor == 0)
    return VInfo.Label;
  Compress(V, VInfo);
  BasicBlock *VLabel = VInfo.Label;

  BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
  if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
    return VLabel;
  else
    return VAncestorLabel;
#endif
}

void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  WInfo.Ancestor = V;
#else
  // Lower-complexity but slower implementation
  BasicBlock *WLabel = WInfo.Label;
  unsigned WLabelSemi = Info[WLabel].Semi;
  BasicBlock *S = W;
  InfoRec *SInfo = &Info[S];
  
  BasicBlock *SChild = SInfo->Child;
  InfoRec *SChildInfo = &Info[SChild];
  
  while (WLabelSemi < Info[SChildInfo->Label].Semi) {
    BasicBlock *SChildChild = SChildInfo->Child;
    if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
      SChildInfo->Ancestor = S;
      SInfo->Child = SChild = SChildChild;
      SChildInfo = &Info[SChild];
    } else {
      SChildInfo->Size = SInfo->Size;
      S = SInfo->Ancestor = SChild;
      SInfo = SChildInfo;
      SChild = SChildChild;
      SChildInfo = &Info[SChild];
    }
  }
  
  InfoRec &VInfo = Info[V];
  SInfo->Label = WLabel;
  
  assert(V != W && "The optimization here will not work in this case!");
  unsigned WSize = WInfo.Size;
  unsigned VSize = (VInfo.Size += WSize);
  
  if (VSize < 2*WSize)
    std::swap(S, VInfo.Child);
  
  while (S) {
    SInfo = &Info[S];
    SInfo->Ancestor = V;
    S = SInfo->Child;
  }
#endif
}



bool ImmediateDominators::runOnFunction(Function &F) {
  IDoms.clear();     // Reset from the last time we were run...
  BasicBlock *Root = &F.getEntryBlock();
  Roots.clear();
  Roots.push_back(Root);

  Vertex.push_back(0);
  
  // Step #1: Number blocks in depth-first order and initialize variables used
  // in later stages of the algorithm.
  unsigned N = 0;
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    N = DFSPass(Roots[i], Info[Roots[i]], 0);

  for (unsigned i = N; i >= 2; --i) {
    BasicBlock *W = Vertex[i];
    InfoRec &WInfo = Info[W];

    // Step #2: Calculate the semidominators of all vertices
    for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
      if (Info.count(*PI)) {  // Only if this predecessor is reachable!
        unsigned SemiU = Info[Eval(*PI)].Semi;
        if (SemiU < WInfo.Semi)
          WInfo.Semi = SemiU;
      }
    
    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);

    BasicBlock *WParent = WInfo.Parent;
    Link(WParent, W, WInfo);

    // Step #3: Implicitly define the immediate dominator of vertices
    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
    while (!WParentBucket.empty()) {
      BasicBlock *V = WParentBucket.back();
      WParentBucket.pop_back();
      BasicBlock *U = Eval(V);
      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
    }
  }

  // Step #4: Explicitly define the immediate dominator of each vertex
  for (unsigned i = 2; i <= N; ++i) {
    BasicBlock *W = Vertex[i];
    BasicBlock *&WIDom = IDoms[W];
    if (WIDom != Vertex[Info[W].Semi])
      WIDom = IDoms[WIDom];
  }

  // Free temporary memory used to construct idom's
  Info.clear();
  std::vector<BasicBlock*>().swap(Vertex);

  return false;
}

void ImmediateDominatorsBase::print(std::ostream &o) const {
  Function *F = getRoots()[0]->getParent();
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
    o << "  Immediate Dominator For Basic Block:";
    WriteAsOperand(o, I, false);
    o << " is:";
    if (BasicBlock *ID = get(I))
      WriteAsOperand(o, ID, false);
    else
      o << " <<exit node>>";
    o << "\n";
  }
  o << "\n";
}



//===----------------------------------------------------------------------===//
//  DominatorSet Implementation
//===----------------------------------------------------------------------===//

static RegisterAnalysis<DominatorSet>
B("domset", "Dominator Set Construction", true);

// dominates - Return true if A dominates B.  This performs the special checks
// necessary if A and B are in the same basic block.
//
bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
  BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
  if (BBA != BBB) return dominates(BBA, BBB);
  
  // Loop through the basic block until we find A or B.
  BasicBlock::iterator I = BBA->begin();
  for (; &*I != A && &*I != B; ++I) /*empty*/;
  
  // A dominates B if it is found first in the basic block...
  return &*I == A;
}


// runOnFunction - This method calculates the forward dominator sets for the
// specified function.
//
bool DominatorSet::runOnFunction(Function &F) {
  BasicBlock *Root = &F.getEntryBlock();
  Roots.clear();
  Roots.push_back(Root);
  assert(pred_begin(Root) == pred_end(Root) &&
	 "Root node has predecessors in function!");

  ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
  Doms.clear();
  if (Roots.empty()) return false;

  // Root nodes only dominate themselves.
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    Doms[Roots[i]].insert(Roots[i]);

  // Loop over all of the blocks in the function, calculating dominator sets for
  // each function.
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (BasicBlock *IDom = ID[I]) {   // Get idom if block is reachable
      DomSetType &DS = Doms[I];
      assert(DS.empty() && "Domset already filled in for this block?");
      DS.insert(I);  // Blocks always dominate themselves
      
      // Insert all dominators into the set... 
      while (IDom) {
        // If we have already computed the dominator sets for our immediate
        // dominator, just use it instead of walking all the way up to the root.
        DomSetType &IDS = Doms[IDom];
        if (!IDS.empty()) {
          DS.insert(IDS.begin(), IDS.end());
          break;
        } else {
          DS.insert(IDom);
          IDom = ID[IDom];
        }
      }
    } else {
      // Ensure that every basic block has at least an empty set of nodes.  This
      // is important for the case when there is unreachable blocks.
      Doms[I];
    }

  return false;
}

namespace llvm {
static std::ostream &operator<<(std::ostream &o,
                                const std::set<BasicBlock*> &BBs) {
  for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
       I != E; ++I)
    if (*I)
      WriteAsOperand(o, *I, false);
    else
      o << " <<exit node>>";
  return o;
}
}

void DominatorSetBase::print(std::ostream &o) const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    o << "  DomSet For BB: ";
    if (I->first)
      WriteAsOperand(o, I->first, false);
    else
      o << " <<exit node>>";
    o << " is:\t" << I->second << "\n";
  }
}

//===----------------------------------------------------------------------===//
//  DominatorTree Implementation
//===----------------------------------------------------------------------===//

static RegisterAnalysis<DominatorTree>
E("domtree", "Dominator Tree Construction", true);

// DominatorTreeBase::reset - Free all of the tree node memory.
//
void DominatorTreeBase::reset() { 
  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
    delete I->second;
  Nodes.clear();
  RootNode = 0;
}

void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
  assert(IDom && "No immediate dominator?");
  if (IDom != NewIDom) {
    std::vector<Node*>::iterator I =
      std::find(IDom->Children.begin(), IDom->Children.end(), this);
    assert(I != IDom->Children.end() &&
           "Not in immediate dominator children set!");
    // I am no longer your child...
    IDom->Children.erase(I);

    // Switch to new dominator
    IDom = NewIDom;
    IDom->Children.push_back(this);
  }
}

DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
  Node *&BBNode = Nodes[BB];
  if (BBNode) return BBNode;

  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate dominator.
  BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
  Node *IDomNode = getNodeForBlock(IDom);
    
  // Add a new tree node for this BasicBlock, and link it as a child of
  // IDomNode
  return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
}

void DominatorTree::calculate(const ImmediateDominators &ID) {
  assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
  BasicBlock *Root = Roots[0];
  Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...

  Function *F = Root->getParent();
  // Loop over all of the reachable blocks in the function...
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
    if (BasicBlock *ImmDom = ID.get(I)) {  // Reachable block.
      Node *&BBNode = Nodes[I];
      if (!BBNode) {  // Haven't calculated this node yet?
        // Get or calculate the node for the immediate dominator
        Node *IDomNode = getNodeForBlock(ImmDom);

        // Add a new tree node for this BasicBlock, and link it as a child of
        // IDomNode
        BBNode = IDomNode->addChild(new Node(I, IDomNode));
      }
    }
}

static std::ostream &operator<<(std::ostream &o,
                                const DominatorTreeBase::Node *Node) {
  if (Node->getBlock())
    WriteAsOperand(o, Node->getBlock(), false);
  else
    o << " <<exit node>>";
  return o << "\n";
}

static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
                         unsigned Lev) {
  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
  for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); 
       I != E; ++I)
    PrintDomTree(*I, o, Lev+1);
}

void DominatorTreeBase::print(std::ostream &o) const {
  o << "=============================--------------------------------\n"
    << "Inorder Dominator Tree:\n";
  PrintDomTree(getRootNode(), o, 1);
}


//===----------------------------------------------------------------------===//
//  DominanceFrontier Implementation
//===----------------------------------------------------------------------===//

static RegisterAnalysis<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", true);

const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT, 
                             const DominatorTree::Node *Node) {
  // Loop over CFG successors to calculate DFlocal[Node]
  BasicBlock *BB = Node->getBlock();
  DomSetType &S = Frontiers[BB];       // The new set to fill in...

  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
       SI != SE; ++SI) {
    // Does Node immediately dominate this successor?
    if (DT[*SI]->getIDom() != Node)
      S.insert(*SI);
  }

  // At this point, S is DFlocal.  Now we union in DFup's of our children...
  // Loop through and visit the nodes that Node immediately dominates (Node's
  // children in the IDomTree)
  //
  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
       NI != NE; ++NI) {
    DominatorTree::Node *IDominee = *NI;
    const DomSetType &ChildDF = calculate(DT, IDominee);

    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
    for (; CDFI != CDFE; ++CDFI) {
      if (!Node->dominates(DT[*CDFI]))
	S.insert(*CDFI);
    }
  }

  return S;
}

void DominanceFrontierBase::print(std::ostream &o) const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    o << "  DomFrontier for BB";
    if (I->first)
      WriteAsOperand(o, I->first, false);
    else
      o << " <<exit node>>";
    o << " is:\t" << I->second << "\n";
  }
}