summaryrefslogtreecommitdiff
path: root/lib/VMCore/Instruction.cpp
blob: b6bedf474837a1a36928394813bcbda2edf625cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
// This file implements the Instruction class for the VMCore library.
//
//===----------------------------------------------------------------------===//

#include "llvm/Function.h"
#include "llvm/SymbolTable.h"
#include "llvm/Type.h"
#include "Support/LeakDetector.h"

Instruction::Instruction(const Type *ty, unsigned it, const std::string &Name,
                         Instruction *InsertBefore)
  : User(ty, Value::InstructionVal, Name) {
  Parent = 0;
  iType = it;

  // Make sure that we get added to a basicblock
  LeakDetector::addGarbageObject(this);

  // If requested, insert this instruction into a basic block...
  if (InsertBefore) {
    assert(InsertBefore->getParent() &&
           "Instruction to insert before is not in a basic block!");
    InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
  }
}

void Instruction::setParent(BasicBlock *P) {
  if (getParent())
    LeakDetector::addGarbageObject(this);

  Parent = P;

  if (getParent())
    LeakDetector::removeGarbageObject(this);
}

// Specialize setName to take care of symbol table majik
void Instruction::setName(const std::string &name, SymbolTable *ST) {
  BasicBlock *P = 0; Function *PP = 0;
  assert((ST == 0 || !getParent() || !getParent()->getParent() || 
	  ST == &getParent()->getParent()->getSymbolTable()) &&
	 "Invalid symtab argument!");
  if ((P = getParent()) && (PP = P->getParent()) && hasName())
    PP->getSymbolTable().remove(this);
  Value::setName(name);
  if (PP && hasName()) PP->getSymbolTable().insert(this);
}


const char *Instruction::getOpcodeName(unsigned OpCode) {
  switch (OpCode) {
  // Terminators
  case Ret:    return "ret";
  case Br:     return "br";
  case Switch: return "switch";
  case Invoke: return "invoke";
  case Unwind: return "unwind";
    
  // Standard binary operators...
  case Add: return "add";
  case Sub: return "sub";
  case Mul: return "mul";
  case Div: return "div";
  case Rem: return "rem";

  // Logical operators...
  case And: return "and";
  case Or : return "or";
  case Xor: return "xor";

  // SetCC operators...
  case SetLE:  return "setle";
  case SetGE:  return "setge";
  case SetLT:  return "setlt";
  case SetGT:  return "setgt";
  case SetEQ:  return "seteq";
  case SetNE:  return "setne";
    
  // Memory instructions...
  case Malloc:        return "malloc";
  case Free:          return "free";
  case Alloca:        return "alloca";
  case Load:          return "load";
  case Store:         return "store";
  case GetElementPtr: return "getelementptr";
    
  // Other instructions...
  case PHI:     return "phi";
  case Cast:    return "cast";
  case Call:    return "call";
  case Shl:     return "shl";
  case Shr:     return "shr";
  case VANext:  return "vanext";
  case VAArg:   return "vaarg";

  default: return "<Invalid operator> ";
  }
  
  return 0;
}


/// isAssociative - Return true if the instruction is associative:
///
///   Associative operators satisfy:  x op (y op z) === (x op y) op z)
///
/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative, when not
/// applied to floating point types.
///
bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) {
  if (Opcode == Add || Opcode == Mul ||
      Opcode == And || Opcode == Or || Opcode == Xor) {
    // Floating point operations do not associate!
    return !Ty->isFloatingPoint();
  }
  return 0;
}

/// isCommutative - Return true if the instruction is commutative:
///
///   Commutative operators satisfy: (x op y) === (y op x)
///
/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
/// applied to any type.
///
bool Instruction::isCommutative(unsigned op) {
  switch (op) {
  case Add:
  case Mul:
  case And: 
  case Or:
  case Xor:
  case SetEQ:
  case SetNE:
    return true;
  default:
    return false;
  }
}


/// isTrappingInstruction - Return true if the instruction may trap.
///
bool Instruction::isTrapping(unsigned op) {
  switch(op) {
  case Div:
  case Rem:
  case Load:
  case Store:
  case Call:
  case Invoke:
    return true;
  default:
    return false;
  }
}