summaryrefslogtreecommitdiff
path: root/lib/VMCore/PassManagerT.h
blob: 6c60a2d022d9fa10104937d62a5f096ef012097e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
//===- PassManagerT.h - Container for Passes --------------------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerT class.  This class is used to hold,
// maintain, and optimize execution of Pass's.  The PassManager class ensures
// that analysis results are available before a pass runs, and that Pass's are
// destroyed when the PassManager is destroyed.
//
// The PassManagerT template is instantiated three times to do its job.  The
// public PassManager class is a Pimpl around the PassManagerT<Module> interface
// to avoid having all of the PassManager clients being exposed to the
// implementation details herein.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_PASSMANAGER_T_H
#define LLVM_PASSMANAGER_T_H

#include "llvm/Pass.h"
#include "Support/CommandLine.h"
#include "Support/LeakDetector.h"
#include "Support/Timer.h"
#include <algorithm>
#include <iostream>

namespace llvm {

//===----------------------------------------------------------------------===//
// Pass debugging information.  Often it is useful to find out what pass is
// running when a crash occurs in a utility.  When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//

// Different debug levels that can be enabled...
enum PassDebugLevel {
  None, Arguments, Structure, Executions, Details
};

static cl::opt<enum PassDebugLevel>
PassDebugging("debug-pass", cl::Hidden,
              cl::desc("Print PassManager debugging information"),
              cl::values(
  clEnumVal(None      , "disable debug output"),
  clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
  clEnumVal(Structure , "print pass structure before run()"),
  clEnumVal(Executions, "print pass name before it is executed"),
  clEnumVal(Details   , "print pass details when it is executed"),
                         clEnumValEnd));

//===----------------------------------------------------------------------===//
// PMDebug class - a set of debugging functions, that are not to be
// instantiated by the template.
//
struct PMDebug {
  static void PerformPassStartupStuff(Pass *P) {
    // If debugging is enabled, print out argument information...
    if (PassDebugging >= Arguments) {
      std::cerr << "Pass Arguments: ";
      PrintArgumentInformation(P);
      std::cerr << "\n";

      // Print the pass execution structure
      if (PassDebugging >= Structure)
        P->dumpPassStructure();
    }
  }

  static void PrintArgumentInformation(const Pass *P);
  static void PrintPassInformation(unsigned,const char*,Pass *, Module *);
  static void PrintPassInformation(unsigned,const char*,Pass *, Function *);
  static void PrintPassInformation(unsigned,const char*,Pass *, BasicBlock *);
  static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
                                   const std::vector<AnalysisID> &);
};


//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute.  This only happens when
// -time-passes is enabled on the command line.
//

class TimingInfo {
  std::map<Pass*, Timer> TimingData;
  TimerGroup TG;

  // Private ctor, must use 'create' member
  TimingInfo() : TG("... Pass execution timing report ...") {}
public:
  // TimingDtor - Print out information about timing information
  ~TimingInfo() {
    // Delete all of the timers...
    TimingData.clear();
    // TimerGroup is deleted next, printing the report.
  }

  // createTheTimeInfo - This method either initializes the TheTimeInfo pointer
  // to a non null value (if the -time-passes option is enabled) or it leaves it
  // null.  It may be called multiple times.
  static void createTheTimeInfo();

  void passStarted(Pass *P) {
    if (dynamic_cast<AnalysisResolver*>(P)) return;
    std::map<Pass*, Timer>::iterator I = TimingData.find(P);
    if (I == TimingData.end())
      I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first;
    I->second.startTimer();
  }
  void passEnded(Pass *P) {
    if (dynamic_cast<AnalysisResolver*>(P)) return;
    std::map<Pass*, Timer>::iterator I = TimingData.find(P);
    assert (I != TimingData.end() && "passStarted/passEnded not nested right!");
    I->second.stopTimer();
  }
};

static TimingInfo *TheTimeInfo;

//===----------------------------------------------------------------------===//
// Declare the PassManagerTraits which will be specialized...
//
template<class UnitType> class PassManagerTraits;   // Do not define.


//===----------------------------------------------------------------------===//
// PassManagerT - Container object for passes.  The PassManagerT destructor
// deletes all passes contained inside of the PassManagerT, so you shouldn't 
// delete passes manually, and all passes should be dynamically allocated.
//
template<typename UnitType>
class PassManagerT : public PassManagerTraits<UnitType>,public AnalysisResolver{
  typedef PassManagerTraits<UnitType> Traits;
  typedef typename Traits::PassClass       PassClass;
  typedef typename Traits::SubPassClass SubPassClass;
  typedef typename Traits::BatcherClass BatcherClass;
  typedef typename Traits::ParentClass   ParentClass;

#ifndef _MSC_VER
  friend class PassManagerTraits<UnitType>::PassClass;
  friend class PassManagerTraits<UnitType>::SubPassClass;  
#else
  friend PassClass;
  friend SubPassClass;
#endif
  friend class PassManagerTraits<UnitType>;
  friend class ImmutablePass;

  std::vector<PassClass*> Passes;    // List of passes to run
  std::vector<ImmutablePass*> ImmutablePasses;  // List of immutable passes

  // The parent of this pass manager...
  ParentClass * const Parent;

  // The current batcher if one is in use, or null
  BatcherClass *Batcher;

  // CurrentAnalyses - As the passes are being run, this map contains the
  // analyses that are available to the current pass for use.  This is accessed
  // through the getAnalysis() function in this class and in Pass.
  //
  std::map<AnalysisID, Pass*> CurrentAnalyses;

  // LastUseOf - This map keeps track of the last usage in our pipeline of a
  // particular pass.  When executing passes, the memory for .first is free'd
  // after .second is run.
  //
  std::map<Pass*, Pass*> LastUseOf;

public:
  PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
  ~PassManagerT() {
    // Delete all of the contained passes...
    for (typename std::vector<PassClass*>::iterator
           I = Passes.begin(), E = Passes.end(); I != E; ++I)
      delete *I;

    for (std::vector<ImmutablePass*>::iterator
           I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
      delete *I;
  }

  // run - Run all of the queued passes on the specified module in an optimal
  // way.
  virtual bool runOnUnit(UnitType *M) {
    bool MadeChanges = false;
    closeBatcher();
    CurrentAnalyses.clear();

    TimingInfo::createTheTimeInfo();

    // Add any immutable passes to the CurrentAnalyses set...
    for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
      ImmutablePass *IPass = ImmutablePasses[i];
      if (const PassInfo *PI = IPass->getPassInfo()) {
        CurrentAnalyses[PI] = IPass;

        const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
        for (unsigned i = 0, e = II.size(); i != e; ++i)
          CurrentAnalyses[II[i]] = IPass;
      }
    }

    // LastUserOf - This contains the inverted LastUseOfMap...
    std::map<Pass *, std::vector<Pass*> > LastUserOf;
    for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
                                          E = LastUseOf.end(); I != E; ++I)
      LastUserOf[I->second].push_back(I->first);

    // Output debug information...
    if (Parent == 0) PMDebug::PerformPassStartupStuff(this);

    // Run all of the passes
    for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
      PassClass *P = Passes[i];
      
      PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, M);

      // Get information about what analyses the pass uses...
      AnalysisUsage AnUsage;
      P->getAnalysisUsage(AnUsage);
      PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P,
                                    AnUsage.getRequiredSet());

      // All Required analyses should be available to the pass as it runs!  Here
      // we fill in the AnalysisImpls member of the pass so that it can
      // successfully use the getAnalysis() method to retrieve the
      // implementations it needs.
      //
      P->AnalysisImpls.clear();
      P->AnalysisImpls.reserve(AnUsage.getRequiredSet().size());
      for (std::vector<const PassInfo *>::const_iterator
             I = AnUsage.getRequiredSet().begin(), 
             E = AnUsage.getRequiredSet().end(); I != E; ++I) {
        Pass *Impl = getAnalysisOrNullUp(*I);
        if (Impl == 0) {
          std::cerr << "Analysis '" << (*I)->getPassName()
                    << "' used but not available!";
          assert(0 && "Analysis used but not available!");
        } else if (PassDebugging == Details) {
          if ((*I)->getPassName() != std::string(Impl->getPassName()))
            std::cerr << "    Interface '" << (*I)->getPassName()
                    << "' implemented by '" << Impl->getPassName() << "'\n";
        }
        P->AnalysisImpls.push_back(std::make_pair(*I, Impl));
      }

      // Run the sub pass!
      if (TheTimeInfo) TheTimeInfo->passStarted(P);
      bool Changed = runPass(P, M);
      if (TheTimeInfo) TheTimeInfo->passEnded(P);
      MadeChanges |= Changed;

      // Check for memory leaks by the pass...
      LeakDetector::checkForGarbage(std::string("after running pass '") +
                                    P->getPassName() + "'");

      if (Changed)
        PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P, M);
      PMDebug::PrintAnalysisSetInfo(getDepth(), "Preserved", P,
                                    AnUsage.getPreservedSet());


      // Erase all analyses not in the preserved set...
      if (!AnUsage.getPreservesAll()) {
        const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
        for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
               E = CurrentAnalyses.end(); I != E; )
          if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) !=
              PreservedSet.end())
            ++I; // This analysis is preserved, leave it in the available set...
          else {
            if (!dynamic_cast<ImmutablePass*>(I->second)) {
              std::map<AnalysisID, Pass*>::iterator J = I++;
              CurrentAnalyses.erase(J);   // Analysis not preserved!
            } else {
              ++I;
            }
          }
      }

      // Add the current pass to the set of passes that have been run, and are
      // thus available to users.
      //
      if (const PassInfo *PI = P->getPassInfo()) {
        CurrentAnalyses[PI] = P;

        // This pass is the current implementation of all of the interfaces it
        // implements as well.
        //
        const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
        for (unsigned i = 0, e = II.size(); i != e; ++i)
          CurrentAnalyses[II[i]] = P;
      }

      // Free memory for any passes that we are the last use of...
      std::vector<Pass*> &DeadPass = LastUserOf[P];
      for (std::vector<Pass*>::iterator I = DeadPass.begin(),E = DeadPass.end();
           I != E; ++I) {
        PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I, M);
        (*I)->releaseMemory();
      }

      // Make sure to remove dead passes from the CurrentAnalyses list...
      for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin();
           I != CurrentAnalyses.end(); ) {
        std::vector<Pass*>::iterator DPI = std::find(DeadPass.begin(),
                                                     DeadPass.end(), I->second);
        if (DPI != DeadPass.end()) {    // This pass is dead now... remove it
          std::map<AnalysisID, Pass*>::iterator IDead = I++;
          CurrentAnalyses.erase(IDead);
        } else {
          ++I;  // Move on to the next element...
        }
      }
    }

    return MadeChanges;
  }

  // dumpPassStructure - Implement the -debug-passes=PassStructure option
  virtual void dumpPassStructure(unsigned Offset = 0) {
    // Print out the immutable passes...
    for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i)
      ImmutablePasses[i]->dumpPassStructure(0);

    std::cerr << std::string(Offset*2, ' ') << Traits::getPMName()
              << " Pass Manager\n";
    for (typename std::vector<PassClass*>::iterator
           I = Passes.begin(), E = Passes.end(); I != E; ++I) {
      PassClass *P = *I;
      P->dumpPassStructure(Offset+1);

      // Loop through and see which classes are destroyed after this one...
      for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
                                            E = LastUseOf.end(); I != E; ++I) {
        if (P == I->second) {
          std::cerr << "--" << std::string(Offset*2, ' ');
          I->first->dumpPassStructure(0);
        }
      }
    }
  }

  Pass *getImmutablePassOrNull(const PassInfo *ID) const {
    for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
      const PassInfo *IPID = ImmutablePasses[i]->getPassInfo();
      if (IPID == ID)
        return ImmutablePasses[i];
      
      // This pass is the current implementation of all of the interfaces it
      // implements as well.
      //
      const std::vector<const PassInfo*> &II =
        IPID->getInterfacesImplemented();
      for (unsigned j = 0, e = II.size(); j != e; ++j)
        if (II[j] == ID) return ImmutablePasses[i];
    }
    return 0;
  }

  Pass *getAnalysisOrNullDown(const PassInfo *ID) const {
    std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);

    if (I != CurrentAnalyses.end())
      return I->second;  // Found it.

    if (Pass *P = getImmutablePassOrNull(ID))
      return P;

    if (Batcher)
      return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
    return 0;
  }

  Pass *getAnalysisOrNullUp(const PassInfo *ID) const {
    std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
    if (I != CurrentAnalyses.end())
      return I->second;  // Found it.

    if (Parent)          // Try scanning...
      return Parent->getAnalysisOrNullUp(ID);
    else if (!ImmutablePasses.empty())
      return getImmutablePassOrNull(ID);
    return 0;
  }

  // markPassUsed - Inform higher level pass managers (and ourselves)
  // that these analyses are being used by this pass.  This is used to
  // make sure that analyses are not free'd before we have to use
  // them...
  //
  void markPassUsed(const PassInfo *P, Pass *User) {
    std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(P);

    if (I != CurrentAnalyses.end()) {
      LastUseOf[I->second] = User;    // Local pass, extend the lifetime

      // Prolong live range of analyses that are needed after an analysis pass
      // is destroyed, for querying by subsequent passes
      AnalysisUsage AnUsage;
      I->second->getAnalysisUsage(AnUsage);
      const std::vector<AnalysisID> &IDs = AnUsage.getRequiredTransitiveSet();
      for (std::vector<AnalysisID>::const_iterator i = IDs.begin(),
             e = IDs.end(); i != e; ++i)
        markPassUsed(*i, User);

    } else {
      // Pass not in current available set, must be a higher level pass
      // available to us, propagate to parent pass manager...  We tell the
      // parent that we (the passmanager) are using the analysis so that it
      // frees the analysis AFTER this pass manager runs.
      //
      if (Parent) {
        Parent->markPassUsed(P, this);
      } else {
        assert(getAnalysisOrNullUp(P) && 
               dynamic_cast<ImmutablePass*>(getAnalysisOrNullUp(P)) &&
               "Pass available but not found! "
               "Perhaps this is a module pass requiring a function pass?");
      }
    }
  }
  
  // Return the number of parent PassManagers that exist
  virtual unsigned getDepth() const {
    if (Parent == 0) return 0;
    return 1 + Parent->getDepth();
  }

  virtual unsigned getNumContainedPasses() const { return Passes.size(); }
  virtual const Pass *getContainedPass(unsigned N) const {
    assert(N < Passes.size() && "Pass number out of range!");
    return Passes[N];
  }

  // add - Add a pass to the queue of passes to run.  This gives ownership of
  // the Pass to the PassManager.  When the PassManager is destroyed, the pass
  // will be destroyed as well, so there is no need to delete the pass.  This
  // implies that all passes MUST be new'd.
  //
  void add(PassClass *P) {
    // Get information about what analyses the pass uses...
    AnalysisUsage AnUsage;
    P->getAnalysisUsage(AnUsage);
    const std::vector<AnalysisID> &Required = AnUsage.getRequiredSet();

    // Loop over all of the analyses used by this pass,
    for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
           E = Required.end(); I != E; ++I) {
      if (getAnalysisOrNullDown(*I) == 0) {
        Pass *AP = (*I)->createPass();
        if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (AP)) { add(IP); }
        else if (PassClass *RP = dynamic_cast<PassClass *> (AP)) { add(RP); }
        else { assert (0 && "Wrong kind of pass for this PassManager"); }
      }
    }

    // Tell the pass to add itself to this PassManager... the way it does so
    // depends on the class of the pass, and is critical to laying out passes in
    // an optimal order..
    //
    P->addToPassManager(this, AnUsage);
  }

  // add - H4x0r an ImmutablePass into a PassManager that might not be
  // expecting one.
  //
  void add(ImmutablePass *P) {
    // Get information about what analyses the pass uses...
    AnalysisUsage AnUsage;
    P->getAnalysisUsage(AnUsage);
    const std::vector<AnalysisID> &Required = AnUsage.getRequiredSet();

    // Loop over all of the analyses used by this pass,
    for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
           E = Required.end(); I != E; ++I) {
      if (getAnalysisOrNullDown(*I) == 0) {
        Pass *AP = (*I)->createPass();
        if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (AP)) add(IP);
        else if (PassClass *RP = dynamic_cast<PassClass *> (AP)) add(RP);
        else assert (0 && "Wrong kind of pass for this PassManager");
      }
    }

    // Add the ImmutablePass to this PassManager.
    addPass(P, AnUsage);
  }

private:
  // addPass - These functions are used to implement the subclass specific
  // behaviors present in PassManager.  Basically the add(Pass*) method ends up
  // reflecting its behavior into a Pass::addToPassManager call.  Subclasses of
  // Pass override it specifically so that they can reflect the type
  // information inherent in "this" back to the PassManager.
  //
  // For generic Pass subclasses (which are interprocedural passes), we simply
  // add the pass to the end of the pass list and terminate any accumulation of
  // FunctionPass's that are present.
  //
  void addPass(PassClass *P, AnalysisUsage &AnUsage) {
    const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();

    // FIXME: If this pass being added isn't killed by any of the passes in the
    // batcher class then we can reorder to pass to execute before the batcher
    // does, which will potentially allow us to batch more passes!
    //
    //const std::vector<AnalysisID> &ProvidedSet = AnUsage.getProvidedSet();
    if (Batcher /*&& ProvidedSet.empty()*/)
      closeBatcher();                     // This pass cannot be batched!
    
    // Set the Resolver instance variable in the Pass so that it knows where to 
    // find this object...
    //
    setAnalysisResolver(P, this);
    Passes.push_back(P);

    // Inform higher level pass managers (and ourselves) that these analyses are
    // being used by this pass.  This is used to make sure that analyses are not
    // free'd before we have to use them...
    //
    for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
           E = RequiredSet.end(); I != E; ++I)
      markPassUsed(*I, P);     // Mark *I as used by P

    // Erase all analyses not in the preserved set...
    if (!AnUsage.getPreservesAll()) {
      const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
      for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
             E = CurrentAnalyses.end(); I != E; ) {
        if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) ==
            PreservedSet.end()) {             // Analysis not preserved!
          CurrentAnalyses.erase(I);           // Remove from available analyses
          I = CurrentAnalyses.begin();
        } else {
          ++I;
        }
      }
    }

    // Add this pass to the currently available set...
    if (const PassInfo *PI = P->getPassInfo()) {
      CurrentAnalyses[PI] = P;

      // This pass is the current implementation of all of the interfaces it
      // implements as well.
      //
      const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
      for (unsigned i = 0, e = II.size(); i != e; ++i)
        CurrentAnalyses[II[i]] = P;
    }

    // For now assume that our results are never used...
    LastUseOf[P] = P;
  }
  
  // For FunctionPass subclasses, we must be sure to batch the FunctionPass's
  // together in a BatcherClass object so that all of the analyses are run
  // together a function at a time.
  //
  void addPass(SubPassClass *MP, AnalysisUsage &AnUsage) {
    if (Batcher == 0) // If we don't have a batcher yet, make one now.
      Batcher = new BatcherClass(this);
    // The Batcher will queue the passes up
    MP->addToPassManager(Batcher, AnUsage);
  }

  // closeBatcher - Terminate the batcher that is being worked on.
  void closeBatcher() {
    if (Batcher) {
      Passes.push_back(Batcher);
      Batcher = 0;
    }
  }

public:
  // When an ImmutablePass is added, it gets added to the top level pass
  // manager.
  void addPass(ImmutablePass *IP, AnalysisUsage &AU) {
    if (Parent) { // Make sure this request goes to the top level passmanager...
      Parent->addPass(IP, AU);
      return;
    }

    // Set the Resolver instance variable in the Pass so that it knows where to 
    // find this object...
    //
    setAnalysisResolver(IP, this);
    ImmutablePasses.push_back(IP);

    // All Required analyses should be available to the pass as it initializes!
    // Here we fill in the AnalysisImpls member of the pass so that it can
    // successfully use the getAnalysis() method to retrieve the implementations
    // it needs.
    //
    IP->AnalysisImpls.clear();
    IP->AnalysisImpls.reserve(AU.getRequiredSet().size());
    for (std::vector<const PassInfo *>::const_iterator 
           I = AU.getRequiredSet().begin(),
           E = AU.getRequiredSet().end(); I != E; ++I) {
      Pass *Impl = getAnalysisOrNullUp(*I);
      if (Impl == 0) {
        std::cerr << "Analysis '" << (*I)->getPassName()
                  << "' used but not available!";
        assert(0 && "Analysis used but not available!");
      } else if (PassDebugging == Details) {
        if ((*I)->getPassName() != std::string(Impl->getPassName()))
          std::cerr << "    Interface '" << (*I)->getPassName()
                    << "' implemented by '" << Impl->getPassName() << "'\n";
      }
      IP->AnalysisImpls.push_back(std::make_pair(*I, Impl));
    }
    
    // Initialize the immutable pass...
    IP->initializePass();
  }
};



//===----------------------------------------------------------------------===//
// PassManagerTraits<BasicBlock> Specialization
//
// This pass manager is used to group together all of the BasicBlockPass's
// into a single unit.
//
template<> struct PassManagerTraits<BasicBlock> : public BasicBlockPass {
  // PassClass - The type of passes tracked by this PassManager
  typedef BasicBlockPass PassClass;

  // SubPassClass - The types of classes that should be collated together
  // This is impossible to match, so BasicBlock instantiations of PassManagerT
  // do not collate.
  //
  typedef PassManagerT<Module> SubPassClass;

  // BatcherClass - The type to use for collation of subtypes... This class is
  // never instantiated for the PassManager<BasicBlock>, but it must be an 
  // instance of PassClass to typecheck.
  //
  typedef PassClass BatcherClass;

  // ParentClass - The type of the parent PassManager...
  typedef PassManagerT<Function> ParentClass;

  // PMType - The type of the passmanager that subclasses this class
  typedef PassManagerT<BasicBlock> PMType;

  // runPass - Specify how the pass should be run on the UnitType
  static bool runPass(PassClass *P, BasicBlock *M) {
    // todo, init and finalize
    return P->runOnBasicBlock(*M);
  }

  // getPMName() - Return the name of the unit the PassManager operates on for
  // debugging.
  const char *getPMName() const { return "BasicBlock"; }
  virtual const char *getPassName() const { return "BasicBlock Pass Manager"; }

  // Implement the BasicBlockPass interface...
  virtual bool doInitialization(Module &M);
  virtual bool doInitialization(Function &F);
  virtual bool runOnBasicBlock(BasicBlock &BB);
  virtual bool doFinalization(Function &F);
  virtual bool doFinalization(Module &M);

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }
};



//===----------------------------------------------------------------------===//
// PassManagerTraits<Function> Specialization
//
// This pass manager is used to group together all of the FunctionPass's
// into a single unit.
//
template<> struct PassManagerTraits<Function> : public FunctionPass {
  // PassClass - The type of passes tracked by this PassManager
  typedef FunctionPass PassClass;

  // SubPassClass - The types of classes that should be collated together
  typedef BasicBlockPass SubPassClass;

  // BatcherClass - The type to use for collation of subtypes...
  typedef PassManagerT<BasicBlock> BatcherClass;

  // ParentClass - The type of the parent PassManager...
  typedef PassManagerT<Module> ParentClass;

  // PMType - The type of the passmanager that subclasses this class
  typedef PassManagerT<Function> PMType;

  // runPass - Specify how the pass should be run on the UnitType
  static bool runPass(PassClass *P, Function *F) {
    return P->runOnFunction(*F);
  }

  // getPMName() - Return the name of the unit the PassManager operates on for
  // debugging.
  const char *getPMName() const { return "Function"; }
  virtual const char *getPassName() const { return "Function Pass Manager"; }

  // Implement the FunctionPass interface...
  virtual bool doInitialization(Module &M);
  virtual bool runOnFunction(Function &F);
  virtual bool doFinalization(Module &M);

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }
};



//===----------------------------------------------------------------------===//
// PassManagerTraits<Module> Specialization
//
// This is the top level PassManager implementation that holds generic passes.
//
template<> struct PassManagerTraits<Module> : public Pass {
  // PassClass - The type of passes tracked by this PassManager
  typedef Pass PassClass;

  // SubPassClass - The types of classes that should be collated together
  typedef FunctionPass SubPassClass;

  // BatcherClass - The type to use for collation of subtypes...
  typedef PassManagerT<Function> BatcherClass;

  // ParentClass - The type of the parent PassManager...
  typedef AnalysisResolver ParentClass;

  // runPass - Specify how the pass should be run on the UnitType
  static bool runPass(PassClass *P, Module *M) { return P->run(*M); }

  // getPMName() - Return the name of the unit the PassManager operates on for
  // debugging.
  const char *getPMName() const { return "Module"; }
  virtual const char *getPassName() const { return "Module Pass Manager"; }

  // run - Implement the PassManager interface...
  bool run(Module &M) {
    return ((PassManagerT<Module>*)this)->runOnUnit(&M);
  }
};



//===----------------------------------------------------------------------===//
// PassManagerTraits Method Implementations
//

// PassManagerTraits<BasicBlock> Implementations
//
inline bool PassManagerTraits<BasicBlock>::doInitialization(Module &M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doInitialization(M);
  return Changed;
}

inline bool PassManagerTraits<BasicBlock>::doInitialization(Function &F) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doInitialization(F);
  return Changed;
}

inline bool PassManagerTraits<BasicBlock>::runOnBasicBlock(BasicBlock &BB) {
  return ((PMType*)this)->runOnUnit(&BB);
}

inline bool PassManagerTraits<BasicBlock>::doFinalization(Function &F) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doFinalization(F);
  return Changed;
}

inline bool PassManagerTraits<BasicBlock>::doFinalization(Module &M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doFinalization(M);
  return Changed;
}


// PassManagerTraits<Function> Implementations
//
inline bool PassManagerTraits<Function>::doInitialization(Module &M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doInitialization(M);
  return Changed;
}

inline bool PassManagerTraits<Function>::runOnFunction(Function &F) {
  return ((PMType*)this)->runOnUnit(&F);
}

inline bool PassManagerTraits<Function>::doFinalization(Module &M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doFinalization(M);
  return Changed;
}

} // End llvm namespace

#endif