summaryrefslogtreecommitdiff
path: root/lib/VMCore/Verifier.cpp
blob: 14c14f3c089cddc4f71a6621d9e605c0dcbd40a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full 'java style' security and verifications,
// instead it just tries to ensure that code is well formed.
//
//  * Both of a binary operator's parameters are the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  . All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  . It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  . Function's cannot take a void typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/iMemory.h"
#include "llvm/SymbolTable.h"
#include "llvm/PassManager.h"
#include "llvm/Intrinsics.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/STLExtras.h"
#include <algorithm>

namespace {  // Anonymous namespace for class

  struct Verifier : public FunctionPass, InstVisitor<Verifier> {
    bool Broken;          // Is this module found to be broken?
    bool RealPass;        // Are we not being run by a PassManager?
    bool AbortBroken;     // If broken, should it or should it not abort?
    
    DominatorSet *DS; // Dominator set, caution can be null!

    Verifier() : Broken(false), RealPass(true), AbortBroken(true), DS(0) {}
    Verifier(bool AB) : Broken(false), RealPass(true), AbortBroken(AB), DS(0) {}
    Verifier(DominatorSet &ds) 
      : Broken(false), RealPass(false), AbortBroken(false), DS(&ds) {}


    bool doInitialization(Module &M) {
      verifySymbolTable(M.getSymbolTable());

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      //
      if (RealPass)
        abortIfBroken();
      return false;
    }

    bool runOnFunction(Function &F) {
      // Get dominator information if we are being run by PassManager
      if (RealPass) DS = &getAnalysis<DominatorSet>();
      visit(F);

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      //
      if (RealPass)
        abortIfBroken();

      return false;
    }

    bool doFinalization(Module &M) {
      // Scan through, checking all of the external function's linkage now...
      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
        visitGlobalValue(*I);

      for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
        if (I->isExternal() && I->hasInternalLinkage())
          CheckFailed("Global Variable is external with internal linkage!", I);

      // If the module is broken, abort at this time.
      abortIfBroken();
      return false;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      if (RealPass)
        AU.addRequired<DominatorSet>();
    }

    // abortIfBroken - If the module is broken and we are supposed to abort on
    // this condition, do so.
    //
    void abortIfBroken() const {
      if (Broken && AbortBroken) {
        std::cerr << "Broken module found, compilation aborted!\n";
        abort();
      }
    }


    // Verification methods...
    void verifySymbolTable(SymbolTable &ST);
    void visitGlobalValue(GlobalValue &GV);
    void visitFunction(Function &F);
    void visitBasicBlock(BasicBlock &BB);
    void visitPHINode(PHINode &PN);
    void visitBinaryOperator(BinaryOperator &B);
    void visitShiftInst(ShiftInst &SI);
    void visitVANextInst(VANextInst &VAN) { visitInstruction(VAN); }
    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    void visitCallInst(CallInst &CI);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitInstruction(Instruction &I);
    void visitTerminatorInst(TerminatorInst &I);
    void visitReturnInst(ReturnInst &RI);
    void visitUserOp1(Instruction &I);
    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    void visitIntrinsicFunctionCall(LLVMIntrinsic::ID ID, CallInst &CI);

    // CheckFailed - A check failed, so print out the condition and the message
    // that failed.  This provides a nice place to put a breakpoint if you want
    // to see why something is not correct.
    //
    inline void CheckFailed(const std::string &Message,
                            const Value *V1 = 0, const Value *V2 = 0,
                            const Value *V3 = 0, const Value *V4 = 0) {
      std::cerr << Message << "\n";
      if (V1) std::cerr << *V1 << "\n";
      if (V2) std::cerr << *V2 << "\n";
      if (V3) std::cerr << *V3 << "\n";
      if (V4) std::cerr << *V4 << "\n";
      Broken = true;
    }
  };

  RegisterPass<Verifier> X("verify", "Module Verifier");
}

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
  do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)


void Verifier::visitGlobalValue(GlobalValue &GV) {
  Assert1(!GV.isExternal() || GV.hasExternalLinkage(),
          "Global value has Internal Linkage!", &GV);
  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
          "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    GlobalVariable &GVar = cast<GlobalVariable>(GV);
    Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
            "Only global arrays can have appending linkage!", &GV);
  }
}

// verifySymbolTable - Verify that a function or module symbol table is ok
//
void Verifier::verifySymbolTable(SymbolTable &ST) {
  // Loop over all of the types in the symbol table...
  for (SymbolTable::iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI)
    for (SymbolTable::type_iterator I = TI->second.begin(),
           E = TI->second.end(); I != E; ++I) {
      Value *V = I->second;

      // Check that there are no void typed values in the symbol table.  Values
      // with a void type cannot be put into symbol tables because they cannot
      // have names!
      Assert1(V->getType() != Type::VoidTy,
              "Values with void type are not allowed to have names!", V);
    }
}


// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
  // Check function arguments...
  const FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.getArgumentList().size();

  Assert2(FT->getNumParams() == NumArgs,
          "# formal arguments must match # of arguments for function type!",
          &F, FT);

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i)
    Assert2(I->getType() == FT->getParamType(i),
            "Argument value does not match function argument type!",
            I, FT->getParamType(i));

  if (!F.isExternal()) {
    verifySymbolTable(F.getSymbolTable());

    // Check the entry node
    BasicBlock *Entry = &F.getEntryBlock();
    Assert1(pred_begin(Entry) == pred_end(Entry),
            "Entry block to function must not have predecessors!", Entry);
  }
}


// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    std::vector<BasicBlock*> Preds(pred_begin(&BB), pred_end(&BB));
    std::sort(Preds.begin(), Preds.end());
    
    for (BasicBlock::iterator I = BB.begin();
         PHINode *PN = dyn_cast<PHINode>(I); ++I) {

      // Ensure that PHI nodes have at least one entry!
      Assert1(PN->getNumIncomingValues() != 0,
              "PHI nodes must have at least one entry.  If the block is dead, "
              "the PHI should be removed!", PN);
      Assert1(PN->getNumIncomingValues() >= Preds.size(),
              "PHINode has more entries than the basic block has predecessors!",
              PN);
      Assert1(PN->getNumIncomingValues() <= Preds.size(),
              "PHINode has less entries than the basic block has predecessors!",
              PN);
      
      // Get and sort all incoming values in the PHI node...
      std::vector<std::pair<BasicBlock*, Value*> > Values;
      Values.reserve(PN->getNumIncomingValues());
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
                                        PN->getIncomingValue(i)));
      std::sort(Values.begin(), Values.end());
      
      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
                Values[i].second == Values[i-1].second,
                "PHI node has multiple entries for the same basic block with "
                "different incoming values!", PN, Values[i].first,
                Values[i].second, Values[i-1].second);
        
        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert3(Values[i].first == Preds[i],
                "PHI node entries do not match predecessors!", PN,
                Values[i].first, Preds[i]);        
      }
    }
  }

  // Ensure that basic blocks have terminators!
  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
}

void Verifier::visitTerminatorInst(TerminatorInst &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert1(&I == I.getParent()->getTerminator(),
          "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  if (RI.getNumOperands() == 0)
    Assert1(F->getReturnType() == Type::VoidTy,
            "Function returns no value, but ret instruction found that does!",
            &RI);
  else
    Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
            "Function return type does not match operand "
            "type of return inst!", &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminatorInst(RI);
}

// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of a
// pass, if any exist, it's an error.
//
void Verifier::visitUserOp1(Instruction &I) {
  Assert1(0, "User-defined operators should not live outside of a pass!",
          &I);
}

// visitPHINode - Ensure that a PHI node is well formed.
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()),
          "PHI nodes not grouped at top of basic block!",
          &PN, PN.getParent());

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::visitCallInst(CallInst &CI) {
  Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
          "Called function must be a pointer!", &CI);
  const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
  Assert1(isa<FunctionType>(FPTy->getElementType()),
          "Called function is not pointer to function type!", &CI);

  const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
            "Called function requires more parameters than were provided!",&CI);
  else
    Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
            "Incorrect number of arguments passed to called function!", &CI);

  // Verify that all arguments to the call match the function type...
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert2(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
            "Call parameter type does not match function signature!",
            CI.getOperand(i+1), FTy->getParamType(i));

  if (Function *F = CI.getCalledFunction())
    if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID())
      visitIntrinsicFunctionCall(ID, CI);

  visitInstruction(CI);
}

// visitBinaryOperator - Check that both arguments to the binary operator are
// of the same type!
//
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
          "Both operands to a binary operator are not of the same type!", &B);

  // Check that logical operators are only used with integral operands.
  if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or ||
      B.getOpcode() == Instruction::Xor) {
    Assert1(B.getType()->isIntegral(),
            "Logical operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Logical operators must have same type for operands and result!",
            &B);
  } else if (isa<SetCondInst>(B)) {
    // Check that setcc instructions return bool
    Assert1(B.getType() == Type::BoolTy,
            "setcc instructions must return boolean values!", &B);
  } else {
    // Arithmetic operators only work on integer or fp values
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Arithmetic operators must have same type for operands and result!",
            &B);
    Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint(),
            "Arithmetic operators must have integer or fp type!", &B);
  }
  
  visitInstruction(B);
}

void Verifier::visitShiftInst(ShiftInst &SI) {
  Assert1(SI.getType()->isInteger(),
          "Shift must return an integer result!", &SI);
  Assert1(SI.getType() == SI.getOperand(0)->getType(),
          "Shift return type must be same as first operand!", &SI);
  Assert1(SI.getOperand(1)->getType() == Type::UByteTy,
          "Second operand to shift must be ubyte type!", &SI);
  visitInstruction(SI);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  const Type *ElTy =
    GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
                   std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true);
  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
  Assert2(PointerType::get(ElTy) == GEP.getType(),
          "GEP is not of right type for indices!", &GEP, ElTy);
  visitInstruction(GEP);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  const Type *ElTy =
    cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
  Assert2(ElTy == LI.getType(),
          "Load is not of right type for indices!", &LI, ElTy);
  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  const Type *ElTy =
    cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
  Assert2(ElTy == SI.getOperand(0)->getType(),
          "Stored value is not of right type for indices!", &SI, ElTy);
  visitInstruction(SI);
}


// verifyInstruction - Verify that an instruction is well formed.
//
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();  
  Assert1(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
         UI != UE; ++UI)
      Assert1(*UI != (User*)&I,
              "Only PHI nodes may reference their own value!", &I);
  }

  // Check that void typed values don't have names
  Assert1(I.getType() != Type::VoidTy || !I.hasName(),
          "Instruction has a name, but provides a void value!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  //
  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
       UI != UE; ++UI) {
    Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
            *UI);
    Instruction *Used = cast<Instruction>(*UI);
    Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
            " embeded in a basic block!", &I, Used);
  }

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    // Check to make sure that the "address of" an intrinsic function is never
    // taken.
    if (Function *F = dyn_cast<Function>(I.getOperand(i)))
      Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
              "Cannot take the address of an intrinsic!", &I);

    else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
      // Check that a definition dominates all of its uses.
      //
      if (!isa<PHINode>(I)) {
        // Definition must dominate use unless use is unreachable!
        Assert2(DS->dominates(Op->getParent(), BB) ||
                !DS->dominates(&BB->getParent()->getEntryBlock(), BB),
                "Instruction does not dominate all uses!", Op, &I);
      } else {
        // PHI nodes are more difficult than other nodes because they actually
        // "use" the value in the predecessor basic blocks they correspond to.
        BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
        Assert2(DS->dominates(Op->getParent(), PredBB) ||
                !DS->dominates(&BB->getParent()->getEntryBlock(), PredBB),
                "Instruction does not dominate all uses!", Op, &I);
      }
    }
  }
}

/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
void Verifier::visitIntrinsicFunctionCall(LLVMIntrinsic::ID ID, CallInst &CI) {
  Function *IF = CI.getCalledFunction();
  const FunctionType *FT = IF->getFunctionType();
  Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF);
  unsigned NumArgs = 0;

  // FIXME: this should check the return type of each intrinsic as well, also
  // arguments!
  switch (ID) {
  case LLVMIntrinsic::va_start:
    Assert1(CI.getParent()->getParent()->getFunctionType()->isVarArg(),
            "llvm.va_start intrinsic may only occur in function with variable"
            " args!", &CI);
    NumArgs = 0;
    break;
  case LLVMIntrinsic::va_end:          NumArgs = 1; break;
  case LLVMIntrinsic::va_copy:         NumArgs = 1; break;

  case LLVMIntrinsic::setjmp:          NumArgs = 1; break;
  case LLVMIntrinsic::longjmp:         NumArgs = 2; break;
  case LLVMIntrinsic::sigsetjmp:       NumArgs = 2; break;
  case LLVMIntrinsic::siglongjmp:      NumArgs = 2; break;
 
  case LLVMIntrinsic::alpha_ctlz:      NumArgs = 1; break;
  case LLVMIntrinsic::alpha_cttz:      NumArgs = 1; break;
  case LLVMIntrinsic::alpha_ctpop:     NumArgs = 1; break;
  case LLVMIntrinsic::alpha_umulh:     NumArgs = 2; break;
  case LLVMIntrinsic::alpha_vecop:     NumArgs = 4; break;
  case LLVMIntrinsic::alpha_pup:       NumArgs = 3; break;
  case LLVMIntrinsic::alpha_bytezap:   NumArgs = 2; break;
  case LLVMIntrinsic::alpha_bytemanip: NumArgs = 3; break;
  case LLVMIntrinsic::alpha_dfpbop:    NumArgs = 3; break;
  case LLVMIntrinsic::alpha_dfpuop:    NumArgs = 2; break;
  case LLVMIntrinsic::alpha_unordered: NumArgs = 2; break;
  case LLVMIntrinsic::alpha_uqtodfp:   NumArgs = 2; break;
  case LLVMIntrinsic::alpha_uqtosfp:   NumArgs = 2; break;
  case LLVMIntrinsic::alpha_dfptosq:   NumArgs = 2; break;
  case LLVMIntrinsic::alpha_sfptosq:   NumArgs = 2; break;

  case LLVMIntrinsic::not_intrinsic: 
    assert(0 && "Invalid intrinsic!"); NumArgs = 0; break;
  }

  Assert1(FT->getNumParams() == NumArgs || (FT->getNumParams() < NumArgs &&
                                             FT->isVarArg()),
          "Illegal # arguments for intrinsic function!", IF);
}


//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *createVerifierPass() {
  return new Verifier();
}


// verifyFunction - Create 
bool verifyFunction(const Function &f) {
  Function &F = (Function&)f;
  assert(!F.isExternal() && "Cannot verify external functions");

  DominatorSet DS;
  DS.doInitialization(*F.getParent());
  DS.runOnFunction(F);

  Verifier V(DS);
  V.runOnFunction(F);

  DS.doFinalization(*F.getParent());

  return V.Broken;
}

// verifyModule - Check a module for errors, printing messages on stderr.
// Return true if the module is corrupt.
//
bool verifyModule(const Module &M) {
  PassManager PM;
  Verifier *V = new Verifier();
  PM.add(V);
  PM.run((Module&)M);
  return V->Broken;
}