summaryrefslogtreecommitdiff
path: root/runtime/GCCLibraries/libpoolalloc/PoolAllocatorChained.c
blob: ca94656f25f4c19a449e21ce9cb7a4138b0b64a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#include <assert.h>
#include <stdlib.h>

#undef assert
#define assert(X)


#define NODES_PER_SLAB 65536

typedef struct PoolTy {
  void    *Data;
  unsigned NodeSize;
  unsigned FreeablePool; /* Set to false if the memory from this pool cannot be
			    freed before destroy*/
  
} PoolTy;

/* PoolSlab Structure - Hold NODES_PER_SLAB objects of the current node type.
 *   Invariants: FirstUnused <= LastUsed+1
 */
typedef struct PoolSlab {
  unsigned FirstUnused;     /* First empty node in slab    */
  int LastUsed;             /* Last allocated node in slab */
  struct PoolSlab *Next;
  unsigned char AllocatedBitVector[NODES_PER_SLAB/8];
  unsigned char StartOfAllocation[NODES_PER_SLAB/8];
  char Data[1];   /* Buffer to hold data in this slab... variable sized */

} PoolSlab;

#define NODE_ALLOCATED(POOLSLAB, NODENUM) \
   ((POOLSLAB)->AllocatedBitVector[(NODENUM) >> 3] & (1 << ((NODENUM) & 7)))
#define MARK_NODE_ALLOCATED(POOLSLAB, NODENUM) \
   (POOLSLAB)->AllocatedBitVector[(NODENUM) >> 3] |= 1 << ((NODENUM) & 7)
#define MARK_NODE_FREE(POOLSLAB, NODENUM) \
   (POOLSLAB)->AllocatedBitVector[(NODENUM) >> 3] &= ~(1 << ((NODENUM) & 7))
#define ALLOCATION_BEGINS(POOLSLAB, NODENUM) \
   ((POOLSLAB)->StartOfAllocation[(NODENUM) >> 3] & (1 << ((NODENUM) & 7)))
#define SET_START_BIT(POOLSLAB, NODENUM) \
   (POOLSLAB)->StartOfAllocation[(NODENUM) >> 3] |= 1 << ((NODENUM) & 7)
#define CLEAR_START_BIT(POOLSLAB, NODENUM) \
   (POOLSLAB)->StartOfAllocation[(NODENUM) >> 3] &= ~(1 << ((NODENUM) & 7))


/* poolinit - Initialize a pool descriptor to empty
 */
void poolinit(PoolTy *Pool, unsigned NodeSize) {
  assert(Pool && "Null pool pointer passed into poolinit!");

  Pool->NodeSize = NodeSize;
  Pool->Data = 0;

  Pool->FreeablePool = 1;

}

void poolmakeunfreeable(PoolTy *Pool) {
  assert(Pool && "Null pool pointer passed in to poolmakeunfreeable!");
  Pool->FreeablePool = 0;
}

/* pooldestroy - Release all memory allocated for a pool
 */
void pooldestroy(PoolTy *Pool) {
  PoolSlab *PS;
  assert(Pool && "Null pool pointer passed in to pooldestroy!");
  PS = (PoolSlab*)Pool->Data;
  while (PS) {
    PoolSlab *Next = PS->Next;
    free(PS);
    PS = Next;
  }
}

static void *FindSlabEntry(PoolSlab *PS, unsigned NodeSize) {
  /* Loop through all of the slabs looking for one with an opening */
  for (; PS; PS = PS->Next) {
    /* Check to see if there are empty entries at the end of the slab... */
    if (PS->LastUsed < NODES_PER_SLAB-1) {
      /* Mark the returned entry used */
      MARK_NODE_ALLOCATED(PS, PS->LastUsed+1);
      SET_START_BIT(PS, PS->LastUsed+1);

      /* If we are allocating out the first unused field, bump its index also */
      if (PS->FirstUnused == PS->LastUsed+1)
        PS->FirstUnused++;

      /* Return the entry, increment LastUsed field. */
      return &PS->Data[0] + ++PS->LastUsed * NodeSize;
    }

    /* If not, check to see if this node has a declared "FirstUnused" value that
     * is less than the number of nodes allocated...
     */
    if (PS->FirstUnused < NODES_PER_SLAB) {
      /* Successfully allocate out the first unused node */
      unsigned Idx = PS->FirstUnused;

      MARK_NODE_ALLOCATED(PS, Idx);
      SET_START_BIT(PS, Idx);

      /* Increment FirstUnused to point to the new first unused value... */
      do {
        ++PS->FirstUnused;
      } while (PS->FirstUnused < NODES_PER_SLAB &&
               NODE_ALLOCATED(PS, PS->FirstUnused));

      return &PS->Data[0] + Idx*NodeSize;
    }
  }

  /* No empty nodes available, must grow # slabs! */
  return 0;
}

char *poolalloc(PoolTy *Pool) {
  unsigned NodeSize;
  PoolSlab *PS;
  void *Result;

  assert(Pool && "Null pool pointer passed in to poolalloc!");
  NodeSize = Pool->NodeSize;
  PS = (PoolSlab*)Pool->Data;

  if ((Result = FindSlabEntry(PS, NodeSize)))
    return Result;

  /* Otherwise we must allocate a new slab and add it to the list */
  PS = (PoolSlab*)malloc(sizeof(PoolSlab)+NodeSize*NODES_PER_SLAB-1);

  assert (PS && "Could not allocate memory!");

  /* Initialize the slab to indicate that the first element is allocated */
  PS->FirstUnused = 1;
  PS->LastUsed = 0;
  
  MARK_NODE_ALLOCATED(PS, 0);
  SET_START_BIT(PS, 0);

  /* Add the slab to the list... */
  PS->Next = (PoolSlab*)Pool->Data;
  Pool->Data = PS;
  return &PS->Data[0];
}

void poolfree(PoolTy *Pool, char *Node) {
  unsigned NodeSize, Idx;
  PoolSlab *PS;
  PoolSlab **PPS;
  unsigned idxiter;

  assert(Pool && "Null pool pointer passed in to poolfree!");
  NodeSize = Pool->NodeSize;
  PS = (PoolSlab*)Pool->Data;
  PPS = (PoolSlab**)&Pool->Data;

  /* Seach for the slab that contains this node... */
  while (&PS->Data[0] > Node || &PS->Data[NodeSize*NODES_PER_SLAB] < Node) {
    assert(PS && "free'd node not found in allocation pool specified!");
    PPS = &PS->Next;
    PS = PS->Next;
  }

  Idx = (Node-&PS->Data[0])/NodeSize;
  assert(Idx < NODES_PER_SLAB && "Pool slab searching loop broken!");

  assert(ALLOCATION_BEGINS(PS, Idx) && 
	 "Attempt to free middle of allocated array");

  /* Free the first node */
  CLEAR_START_BIT(PS, Idx);
  MARK_NODE_FREE(PS, Idx);

  // Free all nodes 
  idxiter = Idx + 1;
  while (idxiter < NODES_PER_SLAB && (!ALLOCATION_BEGINS(PS,idxiter)) && 
	 (NODE_ALLOCATED(PS, idxiter))) {
    MARK_NODE_FREE(PS, idxiter);
  }

  /* Update the first free field if this node is below the free node line */
  if (Idx < PS->FirstUnused) PS->FirstUnused = Idx;
  
  /* If we are not freeing the last element in a slab... */
  if (idxiter - 1 != PS->LastUsed) {
    return;
  }

  /* Otherwise we are freeing the last element in a slab... shrink the
   * LastUsed marker down to last used node.
   */
  PS->LastUsed = Idx;
  do {
    --PS->LastUsed;
    /* Fixme, this should scan the allocated array an entire byte at a time for
     * performance!
     */
  } while (PS->LastUsed >= 0 && (!NODE_ALLOCATED(PS, PS->LastUsed)));
  
  assert(PS->FirstUnused <= PS->LastUsed+1 &&
         "FirstUnused field was out of date!");
    
  /* Ok, if this slab is empty, we unlink it from the of slabs and either move
   * it to the head of the list, or free it, depending on whether or not there
   * is already an empty slab at the head of the list.
   */
  /* Do this only if the pool is freeable */
  if (Pool->FreeablePool) {
    if (PS->LastUsed == -1) {   /* Empty slab? */
      PoolSlab *HeadSlab;
      *PPS = PS->Next;   /* Unlink from the list of slabs... */
      
      HeadSlab = (PoolSlab*)Pool->Data;
      if (HeadSlab && HeadSlab->LastUsed == -1){/* List already has empty slab? */
	free(PS);                               /* Free memory for slab */
      } else {
	PS->Next = HeadSlab;                    /* No empty slab yet, add this */
	Pool->Data = PS;                        /* one to the head of the list */
      }
    }
  } else {
    /* Pool is not freeable for safety reasons */
    /* Leave it in the list of PoolSlabs as an empty PoolSlab */
    if (PS->LastUsed == -1) {
      PS->FirstUnused = 0;
      
      /* Do not free the pool, but move it to the head of the list if there is no
	 empty slab there already */
      PoolSlab *HeadSlab;
      HeadSlab = (PoolSlab*)Pool->Data;
      if (HeadSlab && HeadSlab->LastUsed != -1) {
	PS->Next = HeadSlab;
	Pool->Data = PS;
      }
    }
  }
}

/* The poolallocarray version of FindSlabEntry */
static void *FindSlabEntryArray(PoolSlab *PS, unsigned NodeSize, 
				unsigned Size) {
  unsigned i;

  /* Loop through all of the slabs looking for one with an opening */
  for (; PS; PS = PS->Next) {
    /* Check to see if there are empty entries at the end of the slab... */
    if (PS->LastUsed < NODES_PER_SLAB-Size) {
      /* Mark the returned entry used and set the start bit*/
      SET_START_BIT(PS, PS->LastUsed + 1);
      for (i = PS->LastUsed + 1; i <= PS->LastUsed + Size; ++i)
	MARK_NODE_ALLOCATED(PS, i);

      /* If we are allocating out the first unused field, bump its index also */
      if (PS->FirstUnused == PS->LastUsed+1)
        PS->FirstUnused += Size;

      /* Increment LastUsed */
      PS->LastUsed += Size;

      /* Return the entry */
      return &PS->Data[0] + (PS->LastUsed - Size + 1) * NodeSize;
    }

    /* If not, check to see if this node has a declared "FirstUnused" value
     * starting which Size nodes can be allocated
     */
    if (PS->FirstUnused < NODES_PER_SLAB - Size + 1 &&
	(PS->LastUsed < PS->FirstUnused || 
	 PS->LastUsed - PS->FirstUnused >= Size)) {
      unsigned Idx = PS->FirstUnused, foundArray;
      
      /* Check if there is a continuous array of Size nodes starting 
	 FirstUnused */
      foundArray = 1;
      for (i = Idx; (i < Idx + Size) && foundArray; ++i)
	if (NODE_ALLOCATED(PS, i))
	  foundArray = 0;

      if (foundArray) {
	/* Successfully allocate out the first unused node */
	SET_START_BIT(PS, Idx);
	for (i = Idx; i < Idx + Size; ++i)
	  MARK_NODE_ALLOCATED(PS, i);
	
	PS->FirstUnused += Size;
	while (PS->FirstUnused < NODES_PER_SLAB &&
               NODE_ALLOCATED(PS, PS->FirstUnused)) {
	  ++PS->FirstUnused;
	}
	return &PS->Data[0] + Idx*NodeSize;
      }
      
    }
  }

  /* No empty nodes available, must grow # slabs! */
  return 0;
}

char* poolallocarray(PoolTy* Pool, unsigned Size) {
  unsigned NodeSize;
  PoolSlab *PS;
  void *Result;
  unsigned i;

  assert(Pool && "Null pool pointer passed in to poolallocarray!");
  NodeSize = Pool->NodeSize;
  PS = (PoolSlab*)Pool->Data;

  assert(Size <= NODES_PER_SLAB && 
	 "Exceeded the maximum size of an individual malloc");

  if ((Result = FindSlabEntryArray(PS, NodeSize,Size)))
    return Result;

  /* Otherwise we must allocate a new slab and add it to the list */
  PS = (PoolSlab*)malloc(sizeof(PoolSlab)+NodeSize*NODES_PER_SLAB-1);

  assert (PS && "Could not allocate memory!");

  /* Initialize the slab to indicate that the first element is allocated */
  PS->FirstUnused = Size;
  PS->LastUsed = Size - 1;

  SET_START_BIT(PS, 0);
  for (i = 0; i < Size; ++i) {
    MARK_NODE_ALLOCATED(PS, i);
  }

  /* Add the slab to the list... */
  PS->Next = (PoolSlab*)Pool->Data;
  Pool->Data = PS;
  return &PS->Data[0];
}