summaryrefslogtreecommitdiff
path: root/test/Analysis/BlockFrequencyInfo/irreducible.ll
blob: 46a2958700ef922574bdb03a3785e6455d0e24bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
; RUN: opt < %s -analyze -block-freq | FileCheck %s

; A loop with multiple exits should be handled correctly.
;
; CHECK-LABEL: Printing analysis {{.*}} for function 'multiexit':
; CHECK-NEXT: block-frequency-info: multiexit
define void @multiexit(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
  br label %loop.1

; CHECK-NEXT: loop.1: float = 1.333{{3*}},
loop.1:
  %i = phi i32 [ 0, %entry ], [ %inc.2, %loop.2 ]
  call void @f(i32 %i)
  %inc.1 = add i32 %i, 1
  %cmp.1 = icmp ugt i32 %inc.1, %a
  br i1 %cmp.1, label %exit.1, label %loop.2, !prof !0

; CHECK-NEXT: loop.2: float = 0.666{{6*7}},
loop.2:
  call void @g(i32 %inc.1)
  %inc.2 = add i32 %inc.1, 1
  %cmp.2 = icmp ugt i32 %inc.2, %a
  br i1 %cmp.2, label %exit.2, label %loop.1, !prof !1

; CHECK-NEXT: exit.1: float = 0.666{{6*7}},
exit.1:
  call void @h(i32 %inc.1)
  br label %return

; CHECK-NEXT: exit.2: float = 0.333{{3*}},
exit.2:
  call void @i(i32 %inc.2)
  br label %return

; CHECK-NEXT: return: float = 1.0, int = [[ENTRY]]
return:
  ret void
}

declare void @f(i32 %x)
declare void @g(i32 %x)
declare void @h(i32 %x)
declare void @i(i32 %x)

!0 = metadata !{metadata !"branch_weights", i32 3, i32 3}
!1 = metadata !{metadata !"branch_weights", i32 5, i32 5}

; The current BlockFrequencyInfo algorithm doesn't handle multiple entrances
; into a loop very well.  The frequencies assigned to blocks in the loop are
; predictable (and not absurd), but also not correct and therefore not worth
; testing.
;
; There are two testcases below.
;
; For each testcase, I use a CHECK-NEXT/NOT combo like an XFAIL with the
; granularity of a single check.  If/when this behaviour is fixed, we'll know
; about it, and the test should be updated.
;
; Testcase #1
; ===========
;
; In this case c1 and c2 should have frequencies of 15/7 and 13/7,
; respectively.  To calculate this, consider assigning 1.0 to entry, and
; distributing frequency iteratively (to infinity).  At the first iteration,
; entry gives 3/4 to c1 and 1/4 to c2.  At every step after, c1 and c2 give 3/4
; of what they have to each other.  Somehow, all of it comes out to exit.
;
;       c1 = 3/4 + 1/4*3/4 + 3/4*3^2/4^2 + 1/4*3^3/4^3 + 3/4*3^3/4^3 + ...
;       c2 = 1/4 + 3/4*3/4 + 1/4*3^2/4^2 + 3/4*3^3/4^3 + 1/4*3^3/4^3 + ...
;
; Simplify by splitting up the odd and even terms of the series and taking out
; factors so that the infite series matches:
;
;       c1 =  3/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;          +  3/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;       c2 =  1/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;          +  9/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;
;       c1 = 15/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;       c2 = 13/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;
; Since this geometric series sums to 16/7:
;
;       c1 = 15/7
;       c2 = 13/7
;
; If we treat c1 and c2 as members of the same loop, the exit frequency of the
; loop as a whole is 1/4, so the loop scale should be 4.  Summing c1 and c2
; gives 28/7, or 4.0, which is nice confirmation of the math above.
;
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
; returns 3/4 and 13/16, respectively.  LoopInfo ignores edges between loops
; (and doesn't see any loops here at all), and -block-freq ignores the
; irreducible edge from c2 to c1.
;
; CHECK-LABEL: Printing analysis {{.*}} for function 'multientry':
; CHECK-NEXT: block-frequency-info: multientry
define void @multientry(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
  %choose = call i32 @choose(i32 %a)
  %compare = icmp ugt i32 %choose, %a
  br i1 %compare, label %c1, label %c2, !prof !2

; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c1:
; CHECK-NOT: float = 2.142857{{[0-9]*}},
c1:
  %i1 = phi i32 [ %a, %entry ], [ %i2.inc, %c2 ]
  %i1.inc = add i32 %i1, 1
  %choose1 = call i32 @choose(i32 %i1)
  %compare1 = icmp ugt i32 %choose1, %a
  br i1 %compare1, label %c2, label %exit, !prof !2

; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c2:
; CHECK-NOT: float = 1.857142{{[0-9]*}},
c2:
  %i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ]
  %i2.inc = add i32 %i2, 1
  %choose2 = call i32 @choose(i32 %i2)
  %compare2 = icmp ugt i32 %choose2, %a
  br i1 %compare2, label %c1, label %exit, !prof !2

; We still shouldn't lose any frequency.
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
  ret void
}

; Testcase #2
; ===========
;
; In this case c1 and c2 should be treated as equals in a single loop.  The
; exit frequency is 1/3, so the scaling factor for the loop should be 3.0.  The
; loop is entered 2/3 of the time, and c1 and c2 split the total loop frequency
; evenly (1/2), so they should each have frequencies of 1.0 (3.0*2/3*1/2).
; Another way of computing this result is by assigning 1.0 to entry and showing
; that c1 and c2 should accumulate frequencies of:
;
;       1/3   +   2/9   +   4/27  +   8/81  + ...
;     2^0/3^1 + 2^1/3^2 + 2^2/3^3 + 2^3/3^4 + ...
;
; At the first step, c1 and c2 each get 1/3 of the entry.  At each subsequent
; step, c1 and c2 each get 1/3 of what's left in c1 and c2 combined.  This
; infinite series sums to 1.
;
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
; returns 1/2 and 3/4, respectively.  LoopInfo ignores edges between loops (and
; treats c1 and c2 as self-loops only), and -block-freq ignores the irreducible
; edge from c2 to c1.
;
; Below I use a CHECK-NEXT/NOT combo like an XFAIL with the granularity of a
; single check.  If/when this behaviour is fixed, we'll know about it, and the
; test should be updated.
;
; CHECK-LABEL: Printing analysis {{.*}} for function 'crossloops':
; CHECK-NEXT: block-frequency-info: crossloops
define void @crossloops(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
  %choose = call i32 @choose(i32 %a)
  switch i32 %choose, label %exit [ i32 1, label %c1
                                    i32 2, label %c2 ], !prof !3

; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c1:
; CHECK-NOT: float = 1.0,
c1:
  %i1 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
  %i1.inc = add i32 %i1, 1
  %choose1 = call i32 @choose(i32 %i1)
  switch i32 %choose1, label %exit [ i32 1, label %c1
                                     i32 2, label %c2 ], !prof !3

; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c2:
; CHECK-NOT: float = 1.0,
c2:
  %i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
  %i2.inc = add i32 %i2, 1
  %choose2 = call i32 @choose(i32 %i2)
  switch i32 %choose2, label %exit [ i32 1, label %c1
                                     i32 2, label %c2 ], !prof !3

; We still shouldn't lose any frequency.
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
  ret void
}

declare i32 @choose(i32)

!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
!3 = metadata !{metadata !"branch_weights", i32 2, i32 2, i32 2}