summaryrefslogtreecommitdiff
path: root/test/CodeGen/X86/avx-blend.ll
blob: d2a22d7094741eb1742a83beaeb42d2d89ac7e7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
; RUN: llc < %s -mtriple=x86_64-apple-darwin -mcpu=corei7-avx  -mattr=+avx | FileCheck %s

; AVX128 tests:

;CHECK-LABEL: vsel_float:
; select mask is <i1 true, i1 false, i1 true, i1 false>.
; Big endian representation is 0101 = 5.
; '1' means takes the first argument, '0' means takes the second argument.
; This is the opposite of the intel syntax, thus we expect
; the inverted mask: 1010 = 10.
; According to the ABI:
; v1 is in xmm0 => first argument is xmm0.
; v2 is in xmm1 => second argument is xmm1.
; result is in xmm0 => destination argument.
;CHECK: vblendps    $10, %xmm1, %xmm0, %xmm0
;CHECK: ret
define <4 x float> @vsel_float(<4 x float> %v1, <4 x float> %v2) {
  %vsel = select <4 x i1> <i1 true, i1 false, i1 true, i1 false>, <4 x float> %v1, <4 x float> %v2
  ret <4 x float> %vsel
}


;CHECK-LABEL: vsel_i32:
;CHECK: vblendps   $10, %xmm1, %xmm0, %xmm0
;CHECK: ret
define <4 x i32> @vsel_i32(<4 x i32> %v1, <4 x i32> %v2) {
  %vsel = select <4 x i1> <i1 true, i1 false, i1 true, i1 false>, <4 x i32> %v1, <4 x i32> %v2
  ret <4 x i32> %vsel
}


;CHECK-LABEL: vsel_double:
;CHECK: vmovsd
;CHECK: ret
define <2 x double> @vsel_double(<2 x double> %v1, <2 x double> %v2) {
  %vsel = select <2 x i1> <i1 true, i1 false>, <2 x double> %v1, <2 x double> %v2
  ret <2 x double> %vsel
}


;CHECK-LABEL: vsel_i64:
;CHECK: vmovsd
;CHECK: ret
define <2 x i64> @vsel_i64(<2 x i64> %v1, <2 x i64> %v2) {
  %vsel = select <2 x i1> <i1 true, i1 false>, <2 x i64> %v1, <2 x i64> %v2
  ret <2 x i64> %vsel
}


;CHECK-LABEL: vsel_i8:
;CHECK: vpblendvb
;CHECK: ret
define <16 x i8> @vsel_i8(<16 x i8> %v1, <16 x i8> %v2) {
  %vsel = select <16 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <16 x i8> %v1, <16 x i8> %v2
  ret <16 x i8> %vsel
}


; AVX256 tests:


;CHECK-LABEL: vsel_float8:
;CHECK-NOT: vinsertf128
; <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>
; which translates into the boolean mask (big endian representation):
; 00010001 = 17.
; '1' means takes the first argument, '0' means takes the second argument.
; This is the opposite of the intel syntax, thus we expect
; the inverted mask: 11101110 = 238.
;CHECK: vblendps    $238, %ymm1, %ymm0, %ymm0
;CHECK: ret
define <8 x float> @vsel_float8(<8 x float> %v1, <8 x float> %v2) {
  %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x float> %v1, <8 x float> %v2
  ret <8 x float> %vsel
}

;CHECK-LABEL: vsel_i328:
;CHECK-NOT: vinsertf128
;CHECK: vblendps    $238, %ymm1, %ymm0, %ymm0
;CHECK-NEXT: ret
define <8 x i32> @vsel_i328(<8 x i32> %v1, <8 x i32> %v2) {
  %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x i32> %v1, <8 x i32> %v2
  ret <8 x i32> %vsel
}

;CHECK-LABEL: vsel_double8:
; select mask is 2x: 0001 => intel mask: ~0001 = 14
; ABI:
; v1 is in ymm0 and ymm1.
; v2 is in ymm2 and ymm3.
; result is in ymm0 and ymm1.
; Compute the low part: res.low = blend v1.low, v2.low, blendmask
;CHECK: vblendpd    $14, %ymm2, %ymm0, %ymm0
; Compute the high part.
;CHECK: vblendpd    $14, %ymm3, %ymm1, %ymm1
;CHECK: ret
define <8 x double> @vsel_double8(<8 x double> %v1, <8 x double> %v2) {
  %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x double> %v1, <8 x double> %v2
  ret <8 x double> %vsel
}

;CHECK-LABEL: vsel_i648:
;CHECK: vblendpd    $14, %ymm2, %ymm0, %ymm0
;CHECK: vblendpd    $14, %ymm3, %ymm1, %ymm1
;CHECK: ret
define <8 x i64> @vsel_i648(<8 x i64> %v1, <8 x i64> %v2) {
  %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x i64> %v1, <8 x i64> %v2
  ret <8 x i64> %vsel
}

;CHECK-LABEL: vsel_double4:
;CHECK-NOT: vinsertf128
;CHECK: vblendpd $10
;CHECK-NEXT: ret
define <4 x double> @vsel_double4(<4 x double> %v1, <4 x double> %v2) {
  %vsel = select <4 x i1> <i1 true, i1 false, i1 true, i1 false>, <4 x double> %v1, <4 x double> %v2
  ret <4 x double> %vsel
}

;; TEST blend + compares
; CHECK: testa
define <2 x double> @testa(<2 x double> %x, <2 x double> %y) {
  ; CHECK: vcmplepd
  ; CHECK: vblendvpd
  %max_is_x = fcmp oge <2 x double> %x, %y
  %max = select <2 x i1> %max_is_x, <2 x double> %x, <2 x double> %y
  ret <2 x double> %max
}

; CHECK: testb
define <2 x double> @testb(<2 x double> %x, <2 x double> %y) {
  ; CHECK: vcmpnlepd
  ; CHECK: vblendvpd
  %min_is_x = fcmp ult <2 x double> %x, %y
  %min = select <2 x i1> %min_is_x, <2 x double> %x, <2 x double> %y
  ret <2 x double> %min
}

; If we can figure out a blend has a constant mask, we should emit the
; blend instruction with an immediate mask
define <4 x double> @constant_blendvpd_avx(<4 x double> %xy, <4 x double> %ab) {
; CHECK-LABEL: constant_blendvpd_avx:
; CHECK-NOT: mov
; CHECK: vblendpd
; CHECK: ret
  %1 = select <4 x i1> <i1 false, i1 false, i1 true, i1 false>, <4 x double> %xy, <4 x double> %ab
  ret <4 x double> %1
}

define <8 x float> @constant_blendvps_avx(<8 x float> %xyzw, <8 x float> %abcd) {
; CHECK-LABEL: constant_blendvps_avx:
; CHECK-NOT: mov
; CHECK: vblendps
; CHECK: ret
  %1 = select <8 x i1> <i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false, i1 true>, <8 x float> %xyzw, <8 x float> %abcd
  ret <8 x float> %1
}

declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>, <8 x float>)
declare <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double>, <4 x double>, <4 x double>)

;; 4 tests for shufflevectors that optimize to blend + immediate
; CHECK-LABEL: @blend_shufflevector_4xfloat
define <4 x float> @blend_shufflevector_4xfloat(<4 x float> %a, <4 x float> %b) {
; Equivalent select mask is <i1 true, i1 false, i1 true, i1 false>.
; Big endian representation is 0101 = 5.
; '1' means takes the first argument, '0' means takes the second argument.
; This is the opposite of the intel syntax, thus we expect
; Inverted mask: 1010 = 10.
; According to the ABI:
; a is in xmm0 => first argument is xmm0.
; b is in xmm1 => second argument is xmm1.
; Result is in xmm0 => destination argument.
; CHECK: vblendps $10, %xmm1, %xmm0, %xmm0
; CHECK: ret
  %1 = shufflevector <4 x float> %a, <4 x float> %b, <4 x i32> <i32 0, i32 5, i32 2, i32 7>
  ret <4 x float> %1
}

; CHECK-LABEL: @blend_shufflevector_8xfloat
define <8 x float> @blend_shufflevector_8xfloat(<8 x float> %a, <8 x float> %b) {
; CHECK: vblendps $190, %ymm1, %ymm0, %ymm0
; CHECK: ret
  %1 = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 0, i32 9, i32 10, i32 11, i32 12, i32 13, i32 6, i32 15>
  ret <8 x float> %1
}

; CHECK-LABEL: @blend_shufflevector_4xdouble
define <4 x double> @blend_shufflevector_4xdouble(<4 x double> %a, <4 x double> %b) {
; CHECK: vblendpd $2, %ymm1, %ymm0, %ymm0
; CHECK: ret
  %1 = shufflevector <4 x double> %a, <4 x double> %b, <4 x i32> <i32 0, i32 5, i32 2, i32 3>
  ret <4 x double> %1
}

; CHECK-LABEL: @blend_shufflevector_4xi64
define <4 x i64> @blend_shufflevector_4xi64(<4 x i64> %a, <4 x i64> %b) {
; CHECK: vblendpd $13, %ymm1, %ymm0, %ymm0
; CHECK: ret
  %1 = shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32> <i32 4, i32 1, i32 6, i32 7>
  ret <4 x i64> %1
}