summaryrefslogtreecommitdiff
path: root/tools/llvm-mc/MC-X86Specific.cpp
blob: 6e28b028c3fd942e3ef509d6c6ed0c51afb19078 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//===- MC-X86Specific.cpp - X86-Specific code for MC ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements X86-specific parsing, encoding and decoding stuff for
// MC.
//
//===----------------------------------------------------------------------===//

#include "AsmParser.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/SourceMgr.h"
using namespace llvm;

/// X86Operand - Instances of this class represent one X86 machine instruction.
struct AsmParser::X86Operand {
  enum {
    Register,
    Immediate,
    Memory
  } Kind;
  
  union {
    struct {
      unsigned RegNo;
    } Reg;

    struct {
      MCValue Val;
    } Imm;
    
    struct {
      unsigned SegReg;
      MCValue Disp;
      unsigned BaseReg;
      unsigned IndexReg;
      unsigned Scale;
    } Mem;
  };
  
  unsigned getReg() const {
    assert(Kind == Register && "Invalid access!");
    return Reg.RegNo;
  }

  static X86Operand CreateReg(unsigned RegNo) {
    X86Operand Res;
    Res.Kind = Register;
    Res.Reg.RegNo = RegNo;
    return Res;
  }
  static X86Operand CreateImm(MCValue Val) {
    X86Operand Res;
    Res.Kind = Immediate;
    Res.Imm.Val = Val;
    return Res;
  }
  static X86Operand CreateMem(unsigned SegReg, MCValue Disp, unsigned BaseReg,
                              unsigned IndexReg, unsigned Scale) {
    // If there is no index register, we should never have a scale, and we
    // should always have a scale (in {1,2,4,8}) if we do.
    assert(((Scale == 0 && !IndexReg) ||
            (IndexReg && (Scale == 1 || Scale == 2 || 
                          Scale == 4 || Scale == 8))) &&
           "Invalid scale!");
    X86Operand Res;
    Res.Kind = Memory;
    Res.Mem.SegReg   = SegReg;
    Res.Mem.Disp     = Disp;
    Res.Mem.BaseReg  = BaseReg;
    Res.Mem.IndexReg = IndexReg;
    Res.Mem.Scale    = Scale;
    return Res;
  }
};

bool AsmParser::ParseX86Register(X86Operand &Op) {
  assert(Lexer.getKind() == asmtok::Register && "Invalid token kind!");

  // FIXME: Decode register number.
  Op = X86Operand::CreateReg(123);
  Lexer.Lex(); // Eat register token.

  return false;
}

bool AsmParser::ParseX86Operand(X86Operand &Op) {
  switch (Lexer.getKind()) {
  default:
    return ParseX86MemOperand(Op);
  case asmtok::Register:
    // FIXME: if a segment register, this could either be just the seg reg, or
    // the start of a memory operand.
    return ParseX86Register(Op);
  case asmtok::Dollar: {
    // $42 -> immediate.
    Lexer.Lex();
    MCValue Val;
    if (ParseRelocatableExpression(Val))
      return true;
    Op = X86Operand::CreateImm(Val);
    return false;
  }
  case asmtok::Star: {
    Lexer.Lex(); // Eat the star.
    
    if (Lexer.is(asmtok::Register)) {
      if (ParseX86Register(Op))
        return true;
    } else if (ParseX86MemOperand(Op))
      return true;

    // FIXME: Note the '*' in the operand for use by the matcher.
    return false;
  }
  }
}

/// ParseX86MemOperand: segment: disp(basereg, indexreg, scale)
bool AsmParser::ParseX86MemOperand(X86Operand &Op) {
  // FIXME: If SegReg ':'  (e.g. %gs:), eat and remember.
  unsigned SegReg = 0;
  
  // We have to disambiguate a parenthesized expression "(4+5)" from the start
  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
  // only way to do this without lookahead is to eat the ( and see what is after
  // it.
  MCValue Disp = MCValue::get(0, 0, 0);
  if (Lexer.isNot(asmtok::LParen)) {
    if (ParseRelocatableExpression(Disp)) return true;
    
    // After parsing the base expression we could either have a parenthesized
    // memory address or not.  If not, return now.  If so, eat the (.
    if (Lexer.isNot(asmtok::LParen)) {
      Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0);
      return false;
    }
    
    // Eat the '('.
    Lexer.Lex();
  } else {
    // Okay, we have a '('.  We don't know if this is an expression or not, but
    // so we have to eat the ( to see beyond it.
    Lexer.Lex(); // Eat the '('.
    
    if (Lexer.is(asmtok::Register) || Lexer.is(asmtok::Comma)) {
      // Nothing to do here, fall into the code below with the '(' part of the
      // memory operand consumed.
    } else {
      // It must be an parenthesized expression, parse it now.
      if (ParseParenRelocatableExpression(Disp))
        return true;
      
      // After parsing the base expression we could either have a parenthesized
      // memory address or not.  If not, return now.  If so, eat the (.
      if (Lexer.isNot(asmtok::LParen)) {
        Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0);
        return false;
      }
      
      // Eat the '('.
      Lexer.Lex();
    }
  }
  
  // If we reached here, then we just ate the ( of the memory operand.  Process
  // the rest of the memory operand.
  unsigned BaseReg = 0, IndexReg = 0, Scale = 0;
  
  if (Lexer.is(asmtok::Register)) {
    if (ParseX86Register(Op))
      return true;
    BaseReg = Op.getReg();
  }
  
  if (Lexer.is(asmtok::Comma)) {
    Lexer.Lex(); // Eat the comma.

    // Following the comma we should have either an index register, or a scale
    // value. We don't support the later form, but we want to parse it
    // correctly.
    //
    // Not that even though it would be completely consistent to support syntax
    // like "1(%eax,,1)", the assembler doesn't.
    if (Lexer.is(asmtok::Register)) {
      if (ParseX86Register(Op))
        return true;
      IndexReg = Op.getReg();
      Scale = 1;      // If not specified, the scale defaults to 1.
    
      if (Lexer.isNot(asmtok::RParen)) {
        // Parse the scale amount:
        //  ::= ',' [scale-expression]
        if (Lexer.isNot(asmtok::Comma))
          return true;
        Lexer.Lex(); // Eat the comma.

        if (Lexer.isNot(asmtok::RParen)) {
          int64_t ScaleVal;
          if (ParseAbsoluteExpression(ScaleVal))
            return true;
          
          // Validate the scale amount.
          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8)
            return TokError("scale factor in address must be 1, 2, 4 or 8");
          Scale = (unsigned)ScaleVal;
        }
      }
    } else if (Lexer.isNot(asmtok::RParen)) {
      // Otherwise we have the unsupported form of a scale amount without an
      // index.
      SMLoc Loc = Lexer.getLoc();

      int64_t Value;
      if (ParseAbsoluteExpression(Value))
        return true;
      
      return Error(Loc, "cannot have scale factor without index register");
    }
  }
  
  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
  if (Lexer.isNot(asmtok::RParen))
    return TokError("unexpected token in memory operand");
  Lexer.Lex(); // Eat the ')'.
  
  Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale);
  return false;
}

/// MatchX86Inst - Convert a parsed instruction name and operand list into a
/// concrete instruction.
static bool MatchX86Inst(const StringRef &Name, 
                         llvm::SmallVector<AsmParser::X86Operand, 3> &Operands,
                         MCInst &Inst) {
  return false;
}

/// ParseX86InstOperands - Parse the operands of an X86 instruction and return
/// them as the operands of an MCInst.
bool AsmParser::ParseX86InstOperands(const StringRef &InstName, MCInst &Inst) {
  llvm::SmallVector<X86Operand, 3> Operands;

  if (Lexer.isNot(asmtok::EndOfStatement)) {
    // Read the first operand.
    Operands.push_back(X86Operand());
    if (ParseX86Operand(Operands.back()))
      return true;
    
    while (Lexer.is(asmtok::Comma)) {
      Lexer.Lex();  // Eat the comma.
      
      // Parse and remember the operand.
      Operands.push_back(X86Operand());
      if (ParseX86Operand(Operands.back()))
        return true;
    }
  }

  return MatchX86Inst(InstName, Operands, Inst);
}