summaryrefslogtreecommitdiff
path: root/unittests/Support/ScaledNumberTest.cpp
blob: 6f7cc2a14b46d3651abf52ed219c2ee7f9a9e9bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//===- llvm/unittest/Support/ScaledNumberTest.cpp - ScaledPair tests -----==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/ScaledNumber.h"

#include "llvm/Support/DataTypes.h"
#include "gtest/gtest.h"

using namespace llvm;
using namespace llvm::ScaledNumbers;

namespace {

template <class UIntT> struct ScaledPair {
  UIntT D;
  int S;
  ScaledPair(const std::pair<UIntT, int16_t> &F) : D(F.first), S(F.second) {}
  ScaledPair(UIntT D, int S) : D(D), S(S) {}

  bool operator==(const ScaledPair<UIntT> &X) const {
    return D == X.D && S == X.S;
  }
};
template <class UIntT>
bool operator==(const std::pair<UIntT, int16_t> &L,
                const ScaledPair<UIntT> &R) {
  return ScaledPair<UIntT>(L) == R;
}
template <class UIntT>
void PrintTo(const ScaledPair<UIntT> &F, ::std::ostream *os) {
  *os << F.D << "*2^" << F.S;
}

typedef ScaledPair<uint32_t> SP32;
typedef ScaledPair<uint64_t> SP64;

TEST(ScaledNumberHelpersTest, getRounded) {
  EXPECT_EQ(getRounded32(0, 0, false), SP32(0, 0));
  EXPECT_EQ(getRounded32(0, 0, true), SP32(1, 0));
  EXPECT_EQ(getRounded32(20, 21, true), SP32(21, 21));
  EXPECT_EQ(getRounded32(UINT32_MAX, 0, false), SP32(UINT32_MAX, 0));
  EXPECT_EQ(getRounded32(UINT32_MAX, 0, true), SP32(1 << 31, 1));

  EXPECT_EQ(getRounded64(0, 0, false), SP64(0, 0));
  EXPECT_EQ(getRounded64(0, 0, true), SP64(1, 0));
  EXPECT_EQ(getRounded64(20, 21, true), SP64(21, 21));
  EXPECT_EQ(getRounded64(UINT32_MAX, 0, false), SP64(UINT32_MAX, 0));
  EXPECT_EQ(getRounded64(UINT32_MAX, 0, true), SP64(UINT64_C(1) << 32, 0));
  EXPECT_EQ(getRounded64(UINT64_MAX, 0, false), SP64(UINT64_MAX, 0));
  EXPECT_EQ(getRounded64(UINT64_MAX, 0, true), SP64(UINT64_C(1) << 63, 1));
}

TEST(FloatsTest, getAdjusted) {
  const uint64_t Max32In64 = UINT32_MAX;
  EXPECT_EQ(getAdjusted32(0), SP32(0, 0));
  EXPECT_EQ(getAdjusted32(0, 5), SP32(0, 5));
  EXPECT_EQ(getAdjusted32(UINT32_MAX), SP32(UINT32_MAX, 0));
  EXPECT_EQ(getAdjusted32(Max32In64 << 1), SP32(UINT32_MAX, 1));
  EXPECT_EQ(getAdjusted32(Max32In64 << 1, 1), SP32(UINT32_MAX, 2));
  EXPECT_EQ(getAdjusted32(Max32In64 << 31), SP32(UINT32_MAX, 31));
  EXPECT_EQ(getAdjusted32(Max32In64 << 32), SP32(UINT32_MAX, 32));
  EXPECT_EQ(getAdjusted32(Max32In64 + 1), SP32(1u << 31, 1));
  EXPECT_EQ(getAdjusted32(UINT64_MAX), SP32(1u << 31, 33));

  EXPECT_EQ(getAdjusted64(0), SP64(0, 0));
  EXPECT_EQ(getAdjusted64(0, 5), SP64(0, 5));
  EXPECT_EQ(getAdjusted64(UINT32_MAX), SP64(UINT32_MAX, 0));
  EXPECT_EQ(getAdjusted64(Max32In64 << 1), SP64(Max32In64 << 1, 0));
  EXPECT_EQ(getAdjusted64(Max32In64 << 1, 1), SP64(Max32In64 << 1, 1));
  EXPECT_EQ(getAdjusted64(Max32In64 << 31), SP64(Max32In64 << 31, 0));
  EXPECT_EQ(getAdjusted64(Max32In64 << 32), SP64(Max32In64 << 32, 0));
  EXPECT_EQ(getAdjusted64(Max32In64 + 1), SP64(Max32In64 + 1, 0));
  EXPECT_EQ(getAdjusted64(UINT64_MAX), SP64(UINT64_MAX, 0));
}

TEST(PositiveFloatTest, getProduct) {
  // Zero.
  EXPECT_EQ(SP32(0, 0), getProduct32(0, 0));
  EXPECT_EQ(SP32(0, 0), getProduct32(0, 1));
  EXPECT_EQ(SP32(0, 0), getProduct32(0, 33));

  // Basic.
  EXPECT_EQ(SP32(6, 0), getProduct32(2, 3));
  EXPECT_EQ(SP32(UINT16_MAX / 3 * UINT16_MAX / 5 * 2, 0),
            getProduct32(UINT16_MAX / 3, UINT16_MAX / 5 * 2));

  // Overflow, no loss of precision.
  // ==> 0xf00010 * 0x1001
  // ==> 0xf00f00000 + 0x10010
  // ==> 0xf00f10010
  // ==> 0xf00f1001 * 2^4
  EXPECT_EQ(SP32(0xf00f1001, 4), getProduct32(0xf00010, 0x1001));

  // Overflow, loss of precision, rounds down.
  // ==> 0xf000070 * 0x1001
  // ==> 0xf00f000000 + 0x70070
  // ==> 0xf00f070070
  // ==> 0xf00f0700 * 2^8
  EXPECT_EQ(SP32(0xf00f0700, 8), getProduct32(0xf000070, 0x1001));

  // Overflow, loss of precision, rounds up.
  // ==> 0xf000080 * 0x1001
  // ==> 0xf00f000000 + 0x80080
  // ==> 0xf00f080080
  // ==> 0xf00f0801 * 2^8
  EXPECT_EQ(SP32(0xf00f0801, 8), getProduct32(0xf000080, 0x1001));

  // Reverse operand order.
  EXPECT_EQ(SP32(0, 0), getProduct32(1, 0));
  EXPECT_EQ(SP32(0, 0), getProduct32(33, 0));
  EXPECT_EQ(SP32(6, 0), getProduct32(3, 2));
  EXPECT_EQ(SP32(UINT16_MAX / 3 * UINT16_MAX / 5 * 2, 0),
            getProduct32(UINT16_MAX / 5 * 2, UINT16_MAX / 3));
  EXPECT_EQ(SP32(0xf00f1001, 4), getProduct32(0x1001, 0xf00010));
  EXPECT_EQ(SP32(0xf00f0700, 8), getProduct32(0x1001, 0xf000070));
  EXPECT_EQ(SP32(0xf00f0801, 8), getProduct32(0x1001, 0xf000080));

  // Round to overflow.
  EXPECT_EQ(SP64(UINT64_C(1) << 63, 64),
            getProduct64(UINT64_C(10376293541461622786),
                         UINT64_C(16397105843297379211)));

  // Big number with rounding.
  EXPECT_EQ(SP64(UINT64_C(9223372036854775810), 64),
            getProduct64(UINT64_C(18446744073709551556),
                         UINT64_C(9223372036854775840)));
}

TEST(PositiveFloatTest, Divide) {
  // Zero.
  EXPECT_EQ(SP32(0, 0), getQuotient32(0, 0));
  EXPECT_EQ(SP32(0, 0), getQuotient32(0, 1));
  EXPECT_EQ(SP32(0, 0), getQuotient32(0, 73));
  EXPECT_EQ(SP32(UINT32_MAX, INT16_MAX), getQuotient32(1, 0));
  EXPECT_EQ(SP32(UINT32_MAX, INT16_MAX), getQuotient32(6, 0));

  // Powers of two.
  EXPECT_EQ(SP32(1u << 31, -31), getQuotient32(1, 1));
  EXPECT_EQ(SP32(1u << 31, -30), getQuotient32(2, 1));
  EXPECT_EQ(SP32(1u << 31, -33), getQuotient32(4, 16));
  EXPECT_EQ(SP32(7u << 29, -29), getQuotient32(7, 1));
  EXPECT_EQ(SP32(7u << 29, -30), getQuotient32(7, 2));
  EXPECT_EQ(SP32(7u << 29, -33), getQuotient32(7, 16));

  // Divide evenly.
  EXPECT_EQ(SP32(3u << 30, -30), getQuotient32(9, 3));
  EXPECT_EQ(SP32(9u << 28, -28), getQuotient32(63, 7));

  // Divide unevenly.
  EXPECT_EQ(SP32(0xaaaaaaab, -33), getQuotient32(1, 3));
  EXPECT_EQ(SP32(0xd5555555, -31), getQuotient32(5, 3));

  // 64-bit division is hard to test, since divide64 doesn't canonicalized its
  // output.  However, this is the algorithm the implementation uses:
  //
  // - Shift divisor right.
  // - If we have 1 (power of 2), return early -- not canonicalized.
  // - Shift dividend left.
  // - 64-bit integer divide.
  // - If there's a remainder, continue with long division.
  //
  // TODO: require less knowledge about the implementation in the test.

  // Zero.
  EXPECT_EQ(SP64(0, 0), getQuotient64(0, 0));
  EXPECT_EQ(SP64(0, 0), getQuotient64(0, 1));
  EXPECT_EQ(SP64(0, 0), getQuotient64(0, 73));
  EXPECT_EQ(SP64(UINT64_MAX, INT16_MAX), getQuotient64(1, 0));
  EXPECT_EQ(SP64(UINT64_MAX, INT16_MAX), getQuotient64(6, 0));

  // Powers of two.
  EXPECT_EQ(SP64(1, 0), getQuotient64(1, 1));
  EXPECT_EQ(SP64(2, 0), getQuotient64(2, 1));
  EXPECT_EQ(SP64(4, -4), getQuotient64(4, 16));
  EXPECT_EQ(SP64(7, 0), getQuotient64(7, 1));
  EXPECT_EQ(SP64(7, -1), getQuotient64(7, 2));
  EXPECT_EQ(SP64(7, -4), getQuotient64(7, 16));

  // Divide evenly.
  EXPECT_EQ(SP64(UINT64_C(3) << 60, -60), getQuotient64(9, 3));
  EXPECT_EQ(SP64(UINT64_C(9) << 58, -58), getQuotient64(63, 7));

  // Divide unevenly.
  EXPECT_EQ(SP64(0xaaaaaaaaaaaaaaab, -65), getQuotient64(1, 3));
  EXPECT_EQ(SP64(0xd555555555555555, -63), getQuotient64(5, 3));
}

} // end namespace