summaryrefslogtreecommitdiff
path: root/utils/TableGen/AsmMatcherEmitter.cpp
blob: 558398648d2cc1f6bb19221860cab1c548fb6891 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures.
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
//   'addl' (immediate ...) (register ...)
//   'add' (immediate ...) (memory ...)
//   'call' '*' %epc 
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
//  - It may be ambiguous; many architectures can legally encode particular
//    variants of an instruction in different ways (for example, using a smaller
//    encoding for small immediates). Such ambiguities should never be
//    arbitrarily resolved by the assembler, the assembler is always responsible
//    for choosing the "best" available instruction.
//
//  - It may depend on the subtarget or the assembler context. Instructions
//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
//    an SSE instruction in a file being assembled for i486) should be accepted
//    and rejected by the assembler front end. However, if the proper encoding
//    for an instruction is dependent on the assembler context then the matcher
//    is responsible for selecting the correct machine instruction for the
//    current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
//   1. Classification: Each operand is mapped to the unique set which (a)
//      contains it, and (b) is the largest such subset for which a single
//      instruction could match all members.
//
//      For register classes, we can generate these subgroups automatically. For
//      arbitrary operands, we expect the user to define the classes and their
//      relations to one another (for example, 8-bit signed immediates as a
//      subset of 32-bit immediates).
//
//      By partitioning the operands in this way, we guarantee that for any
//      tuple of classes, any single instruction must match either all or none
//      of the sets of operands which could classify to that tuple.
//
//      In addition, the subset relation amongst classes induces a partial order
//      on such tuples, which we use to resolve ambiguities.
//
//      FIXME: What do we do if a crazy case shows up where this is the wrong
//      resolution?
//
//   2. The input can now be treated as a tuple of classes (static tokens are
//      simple singleton sets). Each such tuple should generally map to a single
//      instruction (we currently ignore cases where this isn't true, whee!!!),
//      which we can emit a simple matcher for.
//
//===----------------------------------------------------------------------===//

#include "AsmMatcherEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <list>
#include <map>
#include <set>
using namespace llvm;

static cl::opt<std::string>
MatchPrefix("match-prefix", cl::init(""),
            cl::desc("Only match instructions with the given prefix"));

/// FlattenVariants - Flatten an .td file assembly string by selecting the
/// variant at index \arg N.
static std::string FlattenVariants(const std::string &AsmString,
                                   unsigned N) {
  StringRef Cur = AsmString;
  std::string Res = "";
  
  for (;;) {
    // Find the start of the next variant string.
    size_t VariantsStart = 0;
    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
      if (Cur[VariantsStart] == '{' && 
          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
                                  Cur[VariantsStart-1] != '\\')))
        break;

    // Add the prefix to the result.
    Res += Cur.slice(0, VariantsStart);
    if (VariantsStart == Cur.size())
      break;

    ++VariantsStart; // Skip the '{'.

    // Scan to the end of the variants string.
    size_t VariantsEnd = VariantsStart;
    unsigned NestedBraces = 1;
    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
        if (--NestedBraces == 0)
          break;
      } else if (Cur[VariantsEnd] == '{')
        ++NestedBraces;
    }

    // Select the Nth variant (or empty).
    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
    for (unsigned i = 0; i != N; ++i)
      Selection = Selection.split('|').second;
    Res += Selection.split('|').first;

    assert(VariantsEnd != Cur.size() && 
           "Unterminated variants in assembly string!");
    Cur = Cur.substr(VariantsEnd + 1);
  } 

  return Res;
}

/// TokenizeAsmString - Tokenize a simplified assembly string.
static void TokenizeAsmString(StringRef AsmString, 
                              SmallVectorImpl<StringRef> &Tokens) {
  unsigned Prev = 0;
  bool InTok = true;
  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
    switch (AsmString[i]) {
    case '[':
    case ']':
    case '*':
    case '!':
    case ' ':
    case '\t':
    case ',':
      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }
      if (!isspace(AsmString[i]) && AsmString[i] != ',')
        Tokens.push_back(AsmString.substr(i, 1));
      Prev = i + 1;
      break;
      
    case '\\':
      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }
      ++i;
      assert(i != AsmString.size() && "Invalid quoted character");
      Tokens.push_back(AsmString.substr(i, 1));
      Prev = i + 1;
      break;

    case '$': {
      // If this isn't "${", treat like a normal token.
      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
        if (InTok) {
          Tokens.push_back(AsmString.slice(Prev, i));
          InTok = false;
        }
        Prev = i;
        break;
      }

      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }

      StringRef::iterator End =
        std::find(AsmString.begin() + i, AsmString.end(), '}');
      assert(End != AsmString.end() && "Missing brace in operand reference!");
      size_t EndPos = End - AsmString.begin();
      Tokens.push_back(AsmString.slice(i, EndPos+1));
      Prev = EndPos + 1;
      i = EndPos;
      break;
    }

    case '.':
      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
      }
      Prev = i;
      InTok = true;
      break;

    default:
      InTok = true;
    }
  }
  if (InTok && Prev != AsmString.size())
    Tokens.push_back(AsmString.substr(Prev));
}

static bool IsAssemblerInstruction(StringRef Name,
                                   const CodeGenInstruction &CGI, 
                                   const SmallVectorImpl<StringRef> &Tokens) {
  // Ignore "codegen only" instructions.
  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
    return false;

  // Ignore pseudo ops.
  //
  // FIXME: This is a hack; can we convert these instructions to set the
  // "codegen only" bit instead?
  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
    if (Form->getValue()->getAsString() == "Pseudo")
      return false;

  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
  //
  // FIXME: This is a total hack.
  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
    return false;

  // Ignore instructions with no .s string.
  //
  // FIXME: What are these?
  if (CGI.AsmString.empty())
    return false;

  // FIXME: Hack; ignore any instructions with a newline in them.
  if (std::find(CGI.AsmString.begin(), 
                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
    return false;
  
  // Ignore instructions with attributes, these are always fake instructions for
  // simplifying codegen.
  //
  // FIXME: Is this true?
  //
  // Also, check for instructions which reference the operand multiple times;
  // this implies a constraint we would not honor.
  std::set<std::string> OperandNames;
  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
    if (Tokens[i][0] == '$' && 
        std::find(Tokens[i].begin(), 
                  Tokens[i].end(), ':') != Tokens[i].end()) {
      DEBUG({
          errs() << "warning: '" << Name << "': "
                 << "ignoring instruction; operand with attribute '" 
                 << Tokens[i] << "'\n";
        });
      return false;
    }

    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
      DEBUG({
          errs() << "warning: '" << Name << "': "
                 << "ignoring instruction with tied operand '"
                 << Tokens[i].str() << "'\n";
        });
      return false;
    }
  }

  return true;
}

namespace {

struct SubtargetFeatureInfo;

/// ClassInfo - Helper class for storing the information about a particular
/// class of operands which can be matched.
struct ClassInfo {
  enum ClassInfoKind {
    /// Invalid kind, for use as a sentinel value.
    Invalid = 0,

    /// The class for a particular token.
    Token,

    /// The (first) register class, subsequent register classes are
    /// RegisterClass0+1, and so on.
    RegisterClass0,

    /// The (first) user defined class, subsequent user defined classes are
    /// UserClass0+1, and so on.
    UserClass0 = 1<<16
  };

  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
  /// N) for the Nth user defined class.
  unsigned Kind;

  /// SuperClasses - The super classes of this class. Note that for simplicities
  /// sake user operands only record their immediate super class, while register
  /// operands include all superclasses.
  std::vector<ClassInfo*> SuperClasses;

  /// Name - The full class name, suitable for use in an enum.
  std::string Name;

  /// ClassName - The unadorned generic name for this class (e.g., Token).
  std::string ClassName;

  /// ValueName - The name of the value this class represents; for a token this
  /// is the literal token string, for an operand it is the TableGen class (or
  /// empty if this is a derived class).
  std::string ValueName;

  /// PredicateMethod - The name of the operand method to test whether the
  /// operand matches this class; this is not valid for Token or register kinds.
  std::string PredicateMethod;

  /// RenderMethod - The name of the operand method to add this operand to an
  /// MCInst; this is not valid for Token or register kinds.
  std::string RenderMethod;

  /// For register classes, the records for all the registers in this class.
  std::set<Record*> Registers;

public:
  /// isRegisterClass() - Check if this is a register class.
  bool isRegisterClass() const {
    return Kind >= RegisterClass0 && Kind < UserClass0;
  }

  /// isUserClass() - Check if this is a user defined class.
  bool isUserClass() const {
    return Kind >= UserClass0;
  }

  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
  /// are related if they are in the same class hierarchy.
  bool isRelatedTo(const ClassInfo &RHS) const {
    // Tokens are only related to tokens.
    if (Kind == Token || RHS.Kind == Token)
      return Kind == Token && RHS.Kind == Token;

    // Registers classes are only related to registers classes, and only if
    // their intersection is non-empty.
    if (isRegisterClass() || RHS.isRegisterClass()) {
      if (!isRegisterClass() || !RHS.isRegisterClass())
        return false;

      std::set<Record*> Tmp;
      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
      std::set_intersection(Registers.begin(), Registers.end(), 
                            RHS.Registers.begin(), RHS.Registers.end(),
                            II);

      return !Tmp.empty();
    }

    // Otherwise we have two users operands; they are related if they are in the
    // same class hierarchy.
    //
    // FIXME: This is an oversimplification, they should only be related if they
    // intersect, however we don't have that information.
    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    const ClassInfo *Root = this;
    while (!Root->SuperClasses.empty())
      Root = Root->SuperClasses.front();

    const ClassInfo *RHSRoot = &RHS;
    while (!RHSRoot->SuperClasses.empty())
      RHSRoot = RHSRoot->SuperClasses.front();
    
    return Root == RHSRoot;
  }

  /// isSubsetOf - Test whether this class is a subset of \arg RHS; 
  bool isSubsetOf(const ClassInfo &RHS) const {
    // This is a subset of RHS if it is the same class...
    if (this == &RHS)
      return true;

    // ... or if any of its super classes are a subset of RHS.
    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
           ie = SuperClasses.end(); it != ie; ++it)
      if ((*it)->isSubsetOf(RHS))
        return true;

    return false;
  }

  /// operator< - Compare two classes.
  bool operator<(const ClassInfo &RHS) const {
    if (this == &RHS)
      return false;

    // Unrelated classes can be ordered by kind.
    if (!isRelatedTo(RHS))
      return Kind < RHS.Kind;

    switch (Kind) {
    case Invalid:
      assert(0 && "Invalid kind!");
    case Token:
      // Tokens are comparable by value.
      //
      // FIXME: Compare by enum value.
      return ValueName < RHS.ValueName;

    default:
      // This class preceeds the RHS if it is a proper subset of the RHS.
      if (isSubsetOf(RHS))
        return true;
      if (RHS.isSubsetOf(*this))
        return false;

      // Otherwise, order by name to ensure we have a total ordering.
      return ValueName < RHS.ValueName;
    }
  }
};

/// InstructionInfo - Helper class for storing the necessary information for an
/// instruction which is capable of being matched.
struct InstructionInfo {
  struct Operand {
    /// The unique class instance this operand should match.
    ClassInfo *Class;

    /// The original operand this corresponds to, if any.
    const CodeGenInstruction::OperandInfo *OperandInfo;
  };

  /// InstrName - The target name for this instruction.
  std::string InstrName;

  /// Instr - The instruction this matches.
  const CodeGenInstruction *Instr;

  /// AsmString - The assembly string for this instruction (with variants
  /// removed).
  std::string AsmString;

  /// Tokens - The tokenized assembly pattern that this instruction matches.
  SmallVector<StringRef, 4> Tokens;

  /// Operands - The operands that this instruction matches.
  SmallVector<Operand, 4> Operands;

  /// Predicates - The required subtarget features to match this instruction.
  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;

  /// ConversionFnKind - The enum value which is passed to the generated
  /// ConvertToMCInst to convert parsed operands into an MCInst for this
  /// function.
  std::string ConversionFnKind;

  /// operator< - Compare two instructions.
  bool operator<(const InstructionInfo &RHS) const {
    if (Operands.size() != RHS.Operands.size())
      return Operands.size() < RHS.Operands.size();

    // Compare lexicographically by operand. The matcher validates that other
    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (*Operands[i].Class < *RHS.Operands[i].Class)
        return true;
      if (*RHS.Operands[i].Class < *Operands[i].Class)
        return false;
    }

    return false;
  }

  /// CouldMatchAmiguouslyWith - Check whether this instruction could
  /// ambiguously match the same set of operands as \arg RHS (without being a
  /// strictly superior match).
  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
    // The number of operands is unambiguous.
    if (Operands.size() != RHS.Operands.size())
      return false;

    // Otherwise, make sure the ordering of the two instructions is unambiguous
    // by checking that either (a) a token or operand kind discriminates them,
    // or (b) the ordering among equivalent kinds is consistent.

    // Tokens and operand kinds are unambiguous (assuming a correct target
    // specific parser).
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
          Operands[i].Class->Kind == ClassInfo::Token)
        if (*Operands[i].Class < *RHS.Operands[i].Class ||
            *RHS.Operands[i].Class < *Operands[i].Class)
          return false;
    
    // Otherwise, this operand could commute if all operands are equivalent, or
    // there is a pair of operands that compare less than and a pair that
    // compare greater than.
    bool HasLT = false, HasGT = false;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (*Operands[i].Class < *RHS.Operands[i].Class)
        HasLT = true;
      if (*RHS.Operands[i].Class < *Operands[i].Class)
        HasGT = true;
    }

    return !(HasLT ^ HasGT);
  }

public:
  void dump();
};

/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
/// feature which participates in instruction matching.
struct SubtargetFeatureInfo {
  /// \brief The predicate record for this feature.
  Record *TheDef;

  /// \brief An unique index assigned to represent this feature.
  unsigned Index;

  /// \brief The name of the enumerated constant identifying this feature.
  std::string EnumName;
};

class AsmMatcherInfo {
public:
  /// The tablegen AsmParser record.
  Record *AsmParser;

  /// The AsmParser "CommentDelimiter" value.
  std::string CommentDelimiter;

  /// The AsmParser "RegisterPrefix" value.
  std::string RegisterPrefix;

  /// The classes which are needed for matching.
  std::vector<ClassInfo*> Classes;
  
  /// The information on the instruction to match.
  std::vector<InstructionInfo*> Instructions;

  /// Map of Register records to their class information.
  std::map<Record*, ClassInfo*> RegisterClasses;

  /// Map of Predicate records to their subtarget information.
  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;

private:
  /// Map of token to class information which has already been constructed.
  std::map<std::string, ClassInfo*> TokenClasses;

  /// Map of RegisterClass records to their class information.
  std::map<Record*, ClassInfo*> RegisterClassClasses;

  /// Map of AsmOperandClass records to their class information.
  std::map<Record*, ClassInfo*> AsmOperandClasses;

private:
  /// getTokenClass - Lookup or create the class for the given token.
  ClassInfo *getTokenClass(StringRef Token);

  /// getOperandClass - Lookup or create the class for the given operand.
  ClassInfo *getOperandClass(StringRef Token,
                             const CodeGenInstruction::OperandInfo &OI);

  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
  /// given operand.
  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) {
    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");

    SubtargetFeatureInfo *&Entry = SubtargetFeatures[Def];
    if (!Entry) {
      Entry = new SubtargetFeatureInfo;
      Entry->TheDef = Def;
      Entry->Index = SubtargetFeatures.size() - 1;
      Entry->EnumName = "Feature_" + Def->getName();
      assert(Entry->Index < 32 && "Too many subtarget features!");
    }

    return Entry;
  }

  /// BuildRegisterClasses - Build the ClassInfo* instances for register
  /// classes.
  void BuildRegisterClasses(CodeGenTarget &Target, 
                            std::set<std::string> &SingletonRegisterNames);

  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
  /// operand classes.
  void BuildOperandClasses(CodeGenTarget &Target);

public:
  AsmMatcherInfo(Record *_AsmParser);

  /// BuildInfo - Construct the various tables used during matching.
  void BuildInfo(CodeGenTarget &Target);
};

}

void InstructionInfo::dump() {
  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
         << ", tokens:[";
  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
    errs() << Tokens[i];
    if (i + 1 != e)
      errs() << ", ";
  }
  errs() << "]\n";

  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    Operand &Op = Operands[i];
    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    if (Op.Class->Kind == ClassInfo::Token) {
      errs() << '\"' << Tokens[i] << "\"\n";
      continue;
    }

    if (!Op.OperandInfo) {
      errs() << "(singleton register)\n";
      continue;
    }

    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
    errs() << OI.Name << " " << OI.Rec->getName()
           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
  }
}

static std::string getEnumNameForToken(StringRef Str) {
  std::string Res;
  
  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    switch (*it) {
    case '*': Res += "_STAR_"; break;
    case '%': Res += "_PCT_"; break;
    case ':': Res += "_COLON_"; break;

    default:
      if (isalnum(*it))  {
        Res += *it;
      } else {
        Res += "_" + utostr((unsigned) *it) + "_";
      }
    }
  }

  return Res;
}

/// getRegisterRecord - Get the register record for \arg name, or 0.
static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
    const CodeGenRegister &Reg = Target.getRegisters()[i];
    if (Name == Reg.TheDef->getValueAsString("AsmName"))
      return Reg.TheDef;
  }

  return 0;
}

ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
  ClassInfo *&Entry = TokenClasses[Token];
  
  if (!Entry) {
    Entry = new ClassInfo();
    Entry->Kind = ClassInfo::Token;
    Entry->ClassName = "Token";
    Entry->Name = "MCK_" + getEnumNameForToken(Token);
    Entry->ValueName = Token;
    Entry->PredicateMethod = "<invalid>";
    Entry->RenderMethod = "<invalid>";
    Classes.push_back(Entry);
  }

  return Entry;
}

ClassInfo *
AsmMatcherInfo::getOperandClass(StringRef Token,
                                const CodeGenInstruction::OperandInfo &OI) {
  if (OI.Rec->isSubClassOf("RegisterClass")) {
    ClassInfo *CI = RegisterClassClasses[OI.Rec];

    if (!CI) {
      PrintError(OI.Rec->getLoc(), "register class has no class info!");
      throw std::string("ERROR: Missing register class!");
    }

    return CI;
  }

  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
  ClassInfo *CI = AsmOperandClasses[MatchClass];

  if (!CI) {
    PrintError(OI.Rec->getLoc(), "operand has no match class!");
    throw std::string("ERROR: Missing match class!");
  }

  return CI;
}

void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
                                          std::set<std::string>
                                            &SingletonRegisterNames) {
  std::vector<CodeGenRegisterClass> RegisterClasses;
  std::vector<CodeGenRegister> Registers;

  RegisterClasses = Target.getRegisterClasses();
  Registers = Target.getRegisters();

  // The register sets used for matching.
  std::set< std::set<Record*> > RegisterSets;

  // Gather the defined sets.  
  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
         ie = RegisterClasses.end(); it != ie; ++it)
    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
                                          it->Elements.end()));

  // Add any required singleton sets.
  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
         ie = SingletonRegisterNames.end(); it != ie; ++it)
    if (Record *Rec = getRegisterRecord(Target, *it))
      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
         
  // Introduce derived sets where necessary (when a register does not determine
  // a unique register set class), and build the mapping of registers to the set
  // they should classify to.
  std::map<Record*, std::set<Record*> > RegisterMap;
  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
         ie = Registers.end(); it != ie; ++it) {
    CodeGenRegister &CGR = *it;
    // Compute the intersection of all sets containing this register.
    std::set<Record*> ContainingSet;
    
    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
           ie = RegisterSets.end(); it != ie; ++it) {
      if (!it->count(CGR.TheDef))
        continue;

      if (ContainingSet.empty()) {
        ContainingSet = *it;
      } else {
        std::set<Record*> Tmp;
        std::swap(Tmp, ContainingSet);
        std::insert_iterator< std::set<Record*> > II(ContainingSet,
                                                     ContainingSet.begin());
        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
                              II);
      }
    }

    if (!ContainingSet.empty()) {
      RegisterSets.insert(ContainingSet);
      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
    }
  }

  // Construct the register classes.
  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
  unsigned Index = 0;
  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
    ClassInfo *CI = new ClassInfo();
    CI->Kind = ClassInfo::RegisterClass0 + Index;
    CI->ClassName = "Reg" + utostr(Index);
    CI->Name = "MCK_Reg" + utostr(Index);
    CI->ValueName = "";
    CI->PredicateMethod = ""; // unused
    CI->RenderMethod = "addRegOperands";
    CI->Registers = *it;
    Classes.push_back(CI);
    RegisterSetClasses.insert(std::make_pair(*it, CI));
  }

  // Find the superclasses; we could compute only the subgroup lattice edges,
  // but there isn't really a point.
  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
         ie = RegisterSets.end(); it != ie; ++it) {
    ClassInfo *CI = RegisterSetClasses[*it];
    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
      if (*it != *it2 && 
          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
  }

  // Name the register classes which correspond to a user defined RegisterClass.
  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
         ie = RegisterClasses.end(); it != ie; ++it) {
    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
                                                         it->Elements.end())];
    if (CI->ValueName.empty()) {
      CI->ClassName = it->getName();
      CI->Name = "MCK_" + it->getName();
      CI->ValueName = it->getName();
    } else
      CI->ValueName = CI->ValueName + "," + it->getName();

    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
  }

  // Populate the map for individual registers.
  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
         ie = RegisterMap.end(); it != ie; ++it)
    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];

  // Name the register classes which correspond to singleton registers.
  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
         ie = SingletonRegisterNames.end(); it != ie; ++it) {
    if (Record *Rec = getRegisterRecord(Target, *it)) {
      ClassInfo *CI = this->RegisterClasses[Rec];
      assert(CI && "Missing singleton register class info!");

      if (CI->ValueName.empty()) {
        CI->ClassName = Rec->getName();
        CI->Name = "MCK_" + Rec->getName();
        CI->ValueName = Rec->getName();
      } else
        CI->ValueName = CI->ValueName + "," + Rec->getName();
    }
  }
}

void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
  std::vector<Record*> AsmOperands;
  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");

  // Pre-populate AsmOperandClasses map.
  for (std::vector<Record*>::iterator it = AsmOperands.begin(), 
         ie = AsmOperands.end(); it != ie; ++it)
    AsmOperandClasses[*it] = new ClassInfo();

  unsigned Index = 0;
  for (std::vector<Record*>::iterator it = AsmOperands.begin(), 
         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
    ClassInfo *CI = AsmOperandClasses[*it];
    CI->Kind = ClassInfo::UserClass0 + Index;

    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
      if (!DI) {
        PrintError((*it)->getLoc(), "Invalid super class reference!");
        continue;
      }

      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
      if (!SC)
        PrintError((*it)->getLoc(), "Invalid super class reference!");
      else
        CI->SuperClasses.push_back(SC);
    }
    CI->ClassName = (*it)->getValueAsString("Name");
    CI->Name = "MCK_" + CI->ClassName;
    CI->ValueName = (*it)->getName();

    // Get or construct the predicate method name.
    Init *PMName = (*it)->getValueInit("PredicateMethod");
    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
      CI->PredicateMethod = SI->getValue();
    } else {
      assert(dynamic_cast<UnsetInit*>(PMName) && 
             "Unexpected PredicateMethod field!");
      CI->PredicateMethod = "is" + CI->ClassName;
    }

    // Get or construct the render method name.
    Init *RMName = (*it)->getValueInit("RenderMethod");
    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
      CI->RenderMethod = SI->getValue();
    } else {
      assert(dynamic_cast<UnsetInit*>(RMName) &&
             "Unexpected RenderMethod field!");
      CI->RenderMethod = "add" + CI->ClassName + "Operands";
    }

    AsmOperandClasses[*it] = CI;
    Classes.push_back(CI);
  }
}

AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser) 
  : AsmParser(_AsmParser),
    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
{
}

void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
  // Parse the instructions; we need to do this first so that we can gather the
  // singleton register classes.
  std::set<std::string> SingletonRegisterNames;
  
  const std::vector<const CodeGenInstruction*> &InstrList =
    Target.getInstructionsByEnumValue();
  
  for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
    const CodeGenInstruction &CGI = *InstrList[i];

    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
      continue;

    OwningPtr<InstructionInfo> II(new InstructionInfo());
    
    II->InstrName = CGI.TheDef->getName();
    II->Instr = &CGI;
    II->AsmString = FlattenVariants(CGI.AsmString, 0);

    // Remove comments from the asm string.
    if (!CommentDelimiter.empty()) {
      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
      if (Idx != StringRef::npos)
        II->AsmString = II->AsmString.substr(0, Idx);
    }

    TokenizeAsmString(II->AsmString, II->Tokens);

    // Ignore instructions which shouldn't be matched.
    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
      continue;

    // Collect singleton registers, if used.
    if (!RegisterPrefix.empty()) {
      for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
        if (II->Tokens[i].startswith(RegisterPrefix)) {
          StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
          Record *Rec = getRegisterRecord(Target, RegName);
          
          if (!Rec) {
            std::string Err = "unable to find register for '" + RegName.str() + 
              "' (which matches register prefix)";
            throw TGError(CGI.TheDef->getLoc(), Err);
          }

          SingletonRegisterNames.insert(RegName);
        }
      }
    }

    // Compute the require features.
    ListInit *Predicates = CGI.TheDef->getValueAsListInit("Predicates");
    for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
      if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
        // Ignore OptForSize and OptForSpeed, they aren't really requirements,
        // rather they are hints to isel.
        //
        // FIXME: Find better way to model this.
        if (Pred->getDef()->getName() == "OptForSize" ||
            Pred->getDef()->getName() == "OptForSpeed")
          continue;

        // FIXME: Total hack; for now, we just limit ourselves to In32BitMode
        // and In64BitMode, because we aren't going to have the right feature
        // masks for SSE and friends. We need to decide what we are going to do
        // about CPU subtypes to implement this the right way.
        if (Pred->getDef()->getName() != "In32BitMode" &&
            Pred->getDef()->getName() != "In64BitMode")
          continue;

        II->RequiredFeatures.push_back(getSubtargetFeature(Pred->getDef()));
      }
    }

    Instructions.push_back(II.take());
  }

  // Build info for the register classes.
  BuildRegisterClasses(Target, SingletonRegisterNames);

  // Build info for the user defined assembly operand classes.
  BuildOperandClasses(Target);

  // Build the instruction information.
  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
         ie = Instructions.end(); it != ie; ++it) {
    InstructionInfo *II = *it;

    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
      StringRef Token = II->Tokens[i];

      // Check for singleton registers.
      if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
        InstructionInfo::Operand Op;
        Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
        Op.OperandInfo = 0;
        assert(Op.Class && Op.Class->Registers.size() == 1 &&
               "Unexpected class for singleton register");
        II->Operands.push_back(Op);
        continue;
      }

      // Check for simple tokens.
      if (Token[0] != '$') {
        InstructionInfo::Operand Op;
        Op.Class = getTokenClass(Token);
        Op.OperandInfo = 0;
        II->Operands.push_back(Op);
        continue;
      }

      // Otherwise this is an operand reference.
      StringRef OperandName;
      if (Token[1] == '{')
        OperandName = Token.substr(2, Token.size() - 3);
      else
        OperandName = Token.substr(1);

      // Map this token to an operand. FIXME: Move elsewhere.
      unsigned Idx;
      try {
        Idx = II->Instr->getOperandNamed(OperandName);
      } catch(...) {
        throw std::string("error: unable to find operand: '" + 
                          OperandName.str() + "'");
      }

      // FIXME: This is annoying, the named operand may be tied (e.g.,
      // XCHG8rm). What we want is the untied operand, which we now have to
      // grovel for. Only worry about this for single entry operands, we have to
      // clean this up anyway.
      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
      if (OI->Constraints[0].isTied()) {
        unsigned TiedOp = OI->Constraints[0].getTiedOperand();

        // The tied operand index is an MIOperand index, find the operand that
        // contains it.
        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
            OI = &II->Instr->OperandList[i];
            break;
          }
        }

        assert(OI && "Unable to find tied operand target!");
      }

      InstructionInfo::Operand Op;
      Op.Class = getOperandClass(Token, *OI);
      Op.OperandInfo = OI;
      II->Operands.push_back(Op);
    }
  }

  // Reorder classes so that classes preceed super classes.
  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
}

static std::pair<unsigned, unsigned> *
GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
                      unsigned Index) {
  for (unsigned i = 0, e = List.size(); i != e; ++i)
    if (Index == List[i].first)
      return &List[i];

  return 0;
}

static void EmitConvertToMCInst(CodeGenTarget &Target,
                                std::vector<InstructionInfo*> &Infos,
                                raw_ostream &OS) {
  // Write the convert function to a separate stream, so we can drop it after
  // the enum.
  std::string ConvertFnBody;
  raw_string_ostream CvtOS(ConvertFnBody);

  // Function we have already generated.
  std::set<std::string> GeneratedFns;

  // Start the unified conversion function.

  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
        << "unsigned Opcode,\n"
        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
        << "> &Operands) {\n";
  CvtOS << "  Inst.setOpcode(Opcode);\n";
  CvtOS << "  switch (Kind) {\n";
  CvtOS << "  default:\n";

  // Start the enum, which we will generate inline.

  OS << "// Unified function for converting operants to MCInst instances.\n\n";
  OS << "enum ConversionKind {\n";
  
  // TargetOperandClass - This is the target's operand class, like X86Operand.
  std::string TargetOperandClass = Target.getName() + "Operand";
  
  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
         ie = Infos.end(); it != ie; ++it) {
    InstructionInfo &II = **it;

    // Order the (class) operands by the order to convert them into an MCInst.
    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[i];
      if (Op.OperandInfo)
        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
    }

    // Find any tied operands.
    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
        if (CI.isTied())
          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
                                                CI.getTiedOperand()));
      }
    }

    std::sort(MIOperandList.begin(), MIOperandList.end());

    // Compute the total number of operands.
    unsigned NumMIOperands = 0;
    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
      NumMIOperands = std::max(NumMIOperands, 
                               OI.MIOperandNo + OI.MINumOperands);
    }

    // Build the conversion function signature.
    std::string Signature = "Convert";
    unsigned CurIndex = 0;
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
             "Duplicate match for instruction operand!");
      
      // Skip operands which weren't matched by anything, this occurs when the
      // .td file encodes "implicit" operands as explicit ones.
      //
      // FIXME: This should be removed from the MCInst structure.
      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
                                                                   CurIndex);
        if (!Tie)
          Signature += "__Imp";
        else
          Signature += "__Tie" + utostr(Tie->second);
      }

      Signature += "__";

      // Registers are always converted the same, don't duplicate the conversion
      // function based on them.
      //
      // FIXME: We could generalize this based on the render method, if it
      // mattered.
      if (Op.Class->isRegisterClass())
        Signature += "Reg";
      else
        Signature += Op.Class->ClassName;
      Signature += utostr(Op.OperandInfo->MINumOperands);
      Signature += "_" + utostr(MIOperandList[i].second);

      CurIndex += Op.OperandInfo->MINumOperands;
    }

    // Add any trailing implicit operands.
    for (; CurIndex != NumMIOperands; ++CurIndex) {
      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
                                                                 CurIndex);
      if (!Tie)
        Signature += "__Imp";
      else
        Signature += "__Tie" + utostr(Tie->second);
    }

    II.ConversionFnKind = Signature;

    // Check if we have already generated this signature.
    if (!GeneratedFns.insert(Signature).second)
      continue;

    // If not, emit it now.

    // Add to the enum list.
    OS << "  " << Signature << ",\n";

    // And to the convert function.
    CvtOS << "  case " << Signature << ":\n";
    CurIndex = 0;
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];

      // Add the implicit operands.
      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
        // See if this is a tied operand.
        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
                                                                   CurIndex);

        if (!Tie) {
          // If not, this is some implicit operand. Just assume it is a register
          // for now.
          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
        } else {
          // Copy the tied operand.
          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
          CvtOS << "    Inst.addOperand(Inst.getOperand("
                << Tie->second << "));\n";
        }
      }

      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
         << MIOperandList[i].second 
         << "])->" << Op.Class->RenderMethod 
         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
      CurIndex += Op.OperandInfo->MINumOperands;
    }
    
    // And add trailing implicit operands.
    for (; CurIndex != NumMIOperands; ++CurIndex) {
      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
                                                                 CurIndex);

      if (!Tie) {
        // If not, this is some implicit operand. Just assume it is a register
        // for now.
        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
      } else {
        // Copy the tied operand.
        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
        CvtOS << "    Inst.addOperand(Inst.getOperand("
              << Tie->second << "));\n";
      }
    }

    CvtOS << "    return;\n";
  }

  // Finish the convert function.

  CvtOS << "  }\n";
  CvtOS << "}\n\n";

  // Finish the enum, and drop the convert function after it.

  OS << "  NumConversionVariants\n";
  OS << "};\n\n";
  
  OS << CvtOS.str();
}

/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
                                      std::vector<ClassInfo*> &Infos,
                                      raw_ostream &OS) {
  OS << "namespace {\n\n";

  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
     << "/// instruction matching.\n";
  OS << "enum MatchClassKind {\n";
  OS << "  InvalidMatchClass = 0,\n";
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
         ie = Infos.end(); it != ie; ++it) {
    ClassInfo &CI = **it;
    OS << "  " << CI.Name << ", // ";
    if (CI.Kind == ClassInfo::Token) {
      OS << "'" << CI.ValueName << "'\n";
    } else if (CI.isRegisterClass()) {
      if (!CI.ValueName.empty())
        OS << "register class '" << CI.ValueName << "'\n";
      else
        OS << "derived register class\n";
    } else {
      OS << "user defined class '" << CI.ValueName << "'\n";
    }
  }
  OS << "  NumMatchClassKinds\n";
  OS << "};\n\n";

  OS << "}\n\n";
}

/// EmitClassifyOperand - Emit the function to classify an operand.
static void EmitClassifyOperand(CodeGenTarget &Target,
                                AsmMatcherInfo &Info,
                                raw_ostream &OS) {
  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
     << "  " << Target.getName() << "Operand &Operand = *("
     << Target.getName() << "Operand*)GOp;\n";

  // Classify tokens.
  OS << "  if (Operand.isToken())\n";
  OS << "    return MatchTokenString(Operand.getToken());\n\n";

  // Classify registers.
  //
  // FIXME: Don't hardcode isReg, getReg.
  OS << "  if (Operand.isReg()) {\n";
  OS << "    switch (Operand.getReg()) {\n";
  OS << "    default: return InvalidMatchClass;\n";
  for (std::map<Record*, ClassInfo*>::iterator 
         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
       it != ie; ++it)
    OS << "    case " << Target.getName() << "::" 
       << it->first->getName() << ": return " << it->second->Name << ";\n";
  OS << "    }\n";
  OS << "  }\n\n";

  // Classify user defined operands.
  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(), 
         ie = Info.Classes.end(); it != ie; ++it) {
    ClassInfo &CI = **it;

    if (!CI.isUserClass())
      continue;

    OS << "  // '" << CI.ClassName << "' class";
    if (!CI.SuperClasses.empty()) {
      OS << ", subclass of ";
      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
        if (i) OS << ", ";
        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
      }
    }
    OS << "\n";

    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
      
    // Validate subclass relationships.
    if (!CI.SuperClasses.empty()) {
      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
           << "() && \"Invalid class relationship!\");\n";
    }

    OS << "    return " << CI.Name << ";\n";
    OS << "  }\n\n";
  }
  OS << "  return InvalidMatchClass;\n";
  OS << "}\n\n";
}

/// EmitIsSubclass - Emit the subclass predicate function.
static void EmitIsSubclass(CodeGenTarget &Target,
                           std::vector<ClassInfo*> &Infos,
                           raw_ostream &OS) {
  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
  OS << "  if (A == B)\n";
  OS << "    return true;\n\n";

  OS << "  switch (A) {\n";
  OS << "  default:\n";
  OS << "    return false;\n";
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
         ie = Infos.end(); it != ie; ++it) {
    ClassInfo &A = **it;

    if (A.Kind != ClassInfo::Token) {
      std::vector<StringRef> SuperClasses;
      for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
             ie = Infos.end(); it != ie; ++it) {
        ClassInfo &B = **it;

        if (&A != &B && A.isSubsetOf(B))
          SuperClasses.push_back(B.Name);
      }

      if (SuperClasses.empty())
        continue;

      OS << "\n  case " << A.Name << ":\n";

      if (SuperClasses.size() == 1) {
        OS << "    return B == " << SuperClasses.back() << ";\n";
        continue;
      }

      OS << "    switch (B) {\n";
      OS << "    default: return false;\n";
      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
        OS << "    case " << SuperClasses[i] << ": return true;\n";
      OS << "    }\n";
    }
  }
  OS << "  }\n";
  OS << "}\n\n";
}

typedef std::pair<std::string, std::string> StringPair;

/// FindFirstNonCommonLetter - Find the first character in the keys of the
/// string pairs that is not shared across the whole set of strings.  All
/// strings are assumed to have the same length.
static unsigned 
FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
  assert(!Matches.empty());
  for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
    // Check to see if letter i is the same across the set.
    char Letter = Matches[0]->first[i];
    
    for (unsigned str = 0, e = Matches.size(); str != e; ++str)
      if (Matches[str]->first[i] != Letter)
        return i;
  }
  
  return Matches[0]->first.size();
}

/// EmitStringMatcherForChar - Given a set of strings that are known to be the
/// same length and whose characters leading up to CharNo are the same, emit
/// code to verify that CharNo and later are the same.
///
/// \return - True if control can leave the emitted code fragment.
static bool EmitStringMatcherForChar(const std::string &StrVariableName,
                                  const std::vector<const StringPair*> &Matches,
                                     unsigned CharNo, unsigned IndentCount,
                                     raw_ostream &OS) {
  assert(!Matches.empty() && "Must have at least one string to match!");
  std::string Indent(IndentCount*2+4, ' ');

  // If we have verified that the entire string matches, we're done: output the
  // matching code.
  if (CharNo == Matches[0]->first.size()) {
    assert(Matches.size() == 1 && "Had duplicate keys to match on");
    
    // FIXME: If Matches[0].first has embeded \n, this will be bad.
    OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
       << "\"\n";
    return false;
  }
  
  // Bucket the matches by the character we are comparing.
  std::map<char, std::vector<const StringPair*> > MatchesByLetter;
  
  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
    MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
  

  // If we have exactly one bucket to match, see how many characters are common
  // across the whole set and match all of them at once.
  if (MatchesByLetter.size() == 1) {
    unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
    unsigned NumChars = FirstNonCommonLetter-CharNo;
    
    // Emit code to break out if the prefix doesn't match.
    if (NumChars == 1) {
      // Do the comparison with if (Str[1] != 'f')
      // FIXME: Need to escape general characters.
      OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
         << Matches[0]->first[CharNo] << "')\n";
      OS << Indent << "  break;\n";
    } else {
      // Do the comparison with if (Str.substr(1,3) != "foo").    
      // FIXME: Need to escape general strings.
      OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
         << NumChars << ") != \"";
      OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
      OS << Indent << "  break;\n";
    }
    
    return EmitStringMatcherForChar(StrVariableName, Matches, 
                                    FirstNonCommonLetter, IndentCount, OS);
  }
  
  // Otherwise, we have multiple possible things, emit a switch on the
  // character.
  OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
  OS << Indent << "default: break;\n";
  
  for (std::map<char, std::vector<const StringPair*> >::iterator LI = 
       MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
    // TODO: escape hard stuff (like \n) if we ever care about it.
    OS << Indent << "case '" << LI->first << "':\t // "
       << LI->second.size() << " strings to match.\n";
    if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
                                 IndentCount+1, OS))
      OS << Indent << "  break;\n";
  }
  
  OS << Indent << "}\n";
  return true;
}


/// EmitStringMatcher - Given a list of strings and code to execute when they
/// match, output a simple switch tree to classify the input string.
/// 
/// If a match is found, the code in Vals[i].second is executed; control must
/// not exit this code fragment.  If nothing matches, execution falls through.
///
/// \param StrVariableName - The name of the variable to test.
static void EmitStringMatcher(const std::string &StrVariableName,
                              const std::vector<StringPair> &Matches,
                              raw_ostream &OS) {
  // First level categorization: group strings by length.
  std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
  
  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
    MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
  
  // Output a switch statement on length and categorize the elements within each
  // bin.
  OS << "  switch (" << StrVariableName << ".size()) {\n";
  OS << "  default: break;\n";
  
  for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
       MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
    OS << "  case " << LI->first << ":\t // " << LI->second.size()
       << " strings to match.\n";
    if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
      OS << "    break;\n";
  }
  
  OS << "  }\n";
}


/// EmitMatchTokenString - Emit the function to match a token string to the
/// appropriate match class value.
static void EmitMatchTokenString(CodeGenTarget &Target,
                                 std::vector<ClassInfo*> &Infos,
                                 raw_ostream &OS) {
  // Construct the match list.
  std::vector<StringPair> Matches;
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
         ie = Infos.end(); it != ie; ++it) {
    ClassInfo &CI = **it;

    if (CI.Kind == ClassInfo::Token)
      Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
  }

  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";

  EmitStringMatcher("Name", Matches, OS);

  OS << "  return InvalidMatchClass;\n";
  OS << "}\n\n";
}

/// EmitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
                                  raw_ostream &OS) {
  // Construct the match list.
  std::vector<StringPair> Matches;
  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
    const CodeGenRegister &Reg = Target.getRegisters()[i];
    if (Reg.TheDef->getValueAsString("AsmName").empty())
      continue;

    Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
                                 "return " + utostr(i + 1) + ";"));
  }
  
  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";

  EmitStringMatcher("Name", Matches, OS);
  
  OS << "  return 0;\n";
  OS << "}\n\n";
}

/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
/// definitions.
static void EmitSubtargetFeatureFlagEnumeration(CodeGenTarget &Target,
                                                AsmMatcherInfo &Info,
                                                raw_ostream &OS) {
  OS << "// Flags for subtarget features that participate in "
     << "instruction matching.\n";
  OS << "enum SubtargetFeatureFlag {\n";
  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
         it = Info.SubtargetFeatures.begin(),
         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
    SubtargetFeatureInfo &SFI = *it->second;
    OS << "  " << SFI.EnumName << " = (1 << " << SFI.Index << "),\n";
  }
  OS << "  Feature_None = 0\n";
  OS << "};\n\n";
}

/// EmitComputeAvailableFeatures - Emit the function to compute the list of
/// available features given a subtarget.
static void EmitComputeAvailableFeatures(CodeGenTarget &Target,
                                         AsmMatcherInfo &Info,
                                         raw_ostream &OS) {
  std::string ClassName =
    Info.AsmParser->getValueAsString("AsmParserClassName");

  OS << "unsigned " << Target.getName() << ClassName << "::\n"
     << "ComputeAvailableFeatures(const " << Target.getName()
     << "Subtarget *Subtarget) const {\n";
  OS << "  unsigned Features = 0;\n";
  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
         it = Info.SubtargetFeatures.begin(),
         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
    SubtargetFeatureInfo &SFI = *it->second;
    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
       << ")\n";
    OS << "    Features |= " << SFI.EnumName << ";\n";
  }
  OS << "  return Features;\n";
  OS << "}\n\n";
}

void AsmMatcherEmitter::run(raw_ostream &OS) {
  CodeGenTarget Target;
  Record *AsmParser = Target.getAsmParser();
  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");

  // Compute the information on the instructions to match.
  AsmMatcherInfo Info(AsmParser);
  Info.BuildInfo(Target);

  // Sort the instruction table using the partial order on classes. We use
  // stable_sort to ensure that ambiguous instructions are still
  // deterministically ordered.
  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
                   less_ptr<InstructionInfo>());
  
  DEBUG_WITH_TYPE("instruction_info", {
      for (std::vector<InstructionInfo*>::iterator 
             it = Info.Instructions.begin(), ie = Info.Instructions.end(); 
           it != ie; ++it)
        (*it)->dump();
    });

  // Check for ambiguous instructions.
  unsigned NumAmbiguous = 0;
  for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
    for (unsigned j = i + 1; j != e; ++j) {
      InstructionInfo &A = *Info.Instructions[i];
      InstructionInfo &B = *Info.Instructions[j];
    
      if (A.CouldMatchAmiguouslyWith(B)) {
        DEBUG_WITH_TYPE("ambiguous_instrs", {
            errs() << "warning: ambiguous instruction match:\n";
            A.dump();
            errs() << "\nis incomparable with:\n";
            B.dump();
            errs() << "\n\n";
          });
        ++NumAmbiguous;
      }
    }
  }
  if (NumAmbiguous)
    DEBUG_WITH_TYPE("ambiguous_instrs", {
        errs() << "warning: " << NumAmbiguous 
               << " ambiguous instructions!\n";
      });

  // Write the output.

  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);

  // Emit the subtarget feature enumeration.
  EmitSubtargetFeatureFlagEnumeration(Target, Info, OS);

  // Emit the function to match a register name to number.
  EmitMatchRegisterName(Target, AsmParser, OS);
  
  OS << "#ifndef REGISTERS_ONLY\n\n";

  // Generate the unified function to convert operands into an MCInst.
  EmitConvertToMCInst(Target, Info.Instructions, OS);

  // Emit the enumeration for classes which participate in matching.
  EmitMatchClassEnumeration(Target, Info.Classes, OS);

  // Emit the routine to match token strings to their match class.
  EmitMatchTokenString(Target, Info.Classes, OS);

  // Emit the routine to classify an operand.
  EmitClassifyOperand(Target, Info, OS);

  // Emit the subclass predicate routine.
  EmitIsSubclass(Target, Info.Classes, OS);

  // Emit the available features compute function.
  EmitComputeAvailableFeatures(Target, Info, OS);

  // Finally, build the match function.

  size_t MaxNumOperands = 0;
  for (std::vector<InstructionInfo*>::const_iterator it =
         Info.Instructions.begin(), ie = Info.Instructions.end();
       it != ie; ++it)
    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());

  OS << "bool " << Target.getName() << ClassName << "::\n"
     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
     << " &Operands,\n";
  OS << "                     MCInst &Inst) {\n";

  // Emit the static match table; unused classes get initalized to 0 which is
  // guaranteed to be InvalidMatchClass.
  //
  // FIXME: We can reduce the size of this table very easily. First, we change
  // it so that store the kinds in separate bit-fields for each index, which
  // only needs to be the max width used for classes at that index (we also need
  // to reject based on this during classification). If we then make sure to
  // order the match kinds appropriately (putting mnemonics last), then we
  // should only end up using a few bits for each class, especially the ones
  // following the mnemonic.
  OS << "  static const struct MatchEntry {\n";
  OS << "    unsigned Opcode;\n";
  OS << "    ConversionKind ConvertFn;\n";
  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
  OS << "    unsigned RequiredFeatures;\n";
  OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";

  for (std::vector<InstructionInfo*>::const_iterator it =
         Info.Instructions.begin(), ie = Info.Instructions.end();
       it != ie; ++it) {
    InstructionInfo &II = **it;

    OS << "    { " << Target.getName() << "::" << II.InstrName
       << ", " << II.ConversionFnKind << ", { ";
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[i];
      
      if (i) OS << ", ";
      OS << Op.Class->Name;
    }
    OS << " }, ";

    // Write the required features mask.
    if (!II.RequiredFeatures.empty()) {
      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
        if (i) OS << "|";
        OS << II.RequiredFeatures[i]->EnumName;
      }
    } else
      OS << "0";

    OS << "},\n";
  }

  OS << "  };\n\n";


  // Emit code to get the available features.
  OS << "  // Get the current feature set.\n";
  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";

  // Emit code to compute the class list for this operand vector.
  OS << "  // Eliminate obvious mismatches.\n";
  OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
  OS << "    return true;\n\n";

  OS << "  // Compute the class list for this operand vector.\n";
  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
  OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
  OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";

  OS << "    // Check for invalid operands before matching.\n";
  OS << "    if (Classes[i] == InvalidMatchClass)\n";
  OS << "      return true;\n";
  OS << "  }\n\n";

  OS << "  // Mark unused classes.\n";
  OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
     << "i != e; ++i)\n";
  OS << "    Classes[i] = InvalidMatchClass;\n\n";

  // Emit code to search the table.
  OS << "  // Search the table.\n";
  OS << "  for (const MatchEntry *it = MatchTable, "
     << "*ie = MatchTable + " << Info.Instructions.size()
     << "; it != ie; ++it) {\n";

  // Emit check that the required features are available.
    OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
       << "!= it->RequiredFeatures)\n";
    OS << "      continue;\n";

  // Emit check that the subclasses match.
  for (unsigned i = 0; i != MaxNumOperands; ++i) {
    OS << "    if (!IsSubclass(Classes[" 
       << i << "], it->Classes[" << i << "]))\n";
    OS << "      continue;\n";
  }
  OS << "\n";
  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";

  // Call the post-processing function, if used.
  std::string InsnCleanupFn =
    AsmParser->getValueAsString("AsmParserInstCleanup");
  if (!InsnCleanupFn.empty())
    OS << "    " << InsnCleanupFn << "(Inst);\n";

  OS << "    return false;\n";
  OS << "  }\n\n";

  OS << "  return true;\n";
  OS << "}\n\n";
  
  OS << "#endif // REGISTERS_ONLY\n";
}