summaryrefslogtreecommitdiff
path: root/utils/TableGen/AsmMatcherEmitter.cpp
blob: 1b5850c068e111431ec63de278ef9bae0ad64f49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures.
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
//   'addl' (immediate ...) (register ...)
//   'add' (immediate ...) (memory ...)
//   'call' '*' %epc 
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
//  - It may be ambiguous; many architectures can legally encode particular
//    variants of an instruction in different ways (for example, using a smaller
//    encoding for small immediates). Such ambiguities should never be
//    arbitrarily resolved by the assembler, the assembler is always responsible
//    for choosing the "best" available instruction.
//
//  - It may depend on the subtarget or the assembler context. Instructions
//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
//    an SSE instruction in a file being assembled for i486) should be accepted
//    and rejected by the assembler front end. However, if the proper encoding
//    for an instruction is dependent on the assembler context then the matcher
//    is responsible for selecting the correct machine instruction for the
//    current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
//   1. Classification: Each operand is mapped to the unique set which (a)
//      contains it, and (b) is the largest such subset for which a single
//      instruction could match all members.
//
//      For register classes, we can generate these subgroups automatically. For
//      arbitrary operands, we expect the user to define the classes and their
//      relations to one another (for example, 8-bit signed immediates as a
//      subset of 32-bit immediates).
//
//      By partitioning the operands in this way, we guarantee that for any
//      tuple of classes, any single instruction must match either all or none
//      of the sets of operands which could classify to that tuple.
//
//      In addition, the subset relation amongst classes induces a partial order
//      on such tuples, which we use to resolve ambiguities.
//
//      FIXME: What do we do if a crazy case shows up where this is the wrong
//      resolution?
//
//   2. The input can now be treated as a tuple of classes (static tokens are
//      simple singleton sets). Each such tuple should generally map to a single
//      instruction (we currently ignore cases where this isn't true, whee!!!),
//      which we can emit a simple matcher for.
//
//===----------------------------------------------------------------------===//

#include "AsmMatcherEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <list>
#include <map>
#include <set>
using namespace llvm;

namespace {
static cl::opt<std::string>
MatchOneInstr("match-one-instr", cl::desc("Match only the named instruction"),
              cl::init(""));
}

/// FlattenVariants - Flatten an .td file assembly string by selecting the
/// variant at index \arg N.
static std::string FlattenVariants(const std::string &AsmString,
                                   unsigned N) {
  StringRef Cur = AsmString;
  std::string Res = "";
  
  for (;;) {
    // Find the start of the next variant string.
    size_t VariantsStart = 0;
    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
      if (Cur[VariantsStart] == '{' && 
          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
                                  Cur[VariantsStart-1] != '\\')))
        break;

    // Add the prefix to the result.
    Res += Cur.slice(0, VariantsStart);
    if (VariantsStart == Cur.size())
      break;

    ++VariantsStart; // Skip the '{'.

    // Scan to the end of the variants string.
    size_t VariantsEnd = VariantsStart;
    unsigned NestedBraces = 1;
    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
        if (--NestedBraces == 0)
          break;
      } else if (Cur[VariantsEnd] == '{')
        ++NestedBraces;
    }

    // Select the Nth variant (or empty).
    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
    for (unsigned i = 0; i != N; ++i)
      Selection = Selection.split('|').second;
    Res += Selection.split('|').first;

    assert(VariantsEnd != Cur.size() && 
           "Unterminated variants in assembly string!");
    Cur = Cur.substr(VariantsEnd + 1);
  } 

  return Res;
}

/// TokenizeAsmString - Tokenize a simplified assembly string.
static void TokenizeAsmString(const StringRef &AsmString, 
                              SmallVectorImpl<StringRef> &Tokens) {
  unsigned Prev = 0;
  bool InTok = true;
  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
    switch (AsmString[i]) {
    case '[':
    case ']':
    case '*':
    case '!':
    case ' ':
    case '\t':
    case ',':
      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }
      if (!isspace(AsmString[i]) && AsmString[i] != ',')
        Tokens.push_back(AsmString.substr(i, 1));
      Prev = i + 1;
      break;
      
    case '\\':
      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }
      ++i;
      assert(i != AsmString.size() && "Invalid quoted character");
      Tokens.push_back(AsmString.substr(i, 1));
      Prev = i + 1;
      break;

    case '$': {
      // If this isn't "${", treat like a normal token.
      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
        if (InTok) {
          Tokens.push_back(AsmString.slice(Prev, i));
          InTok = false;
        }
        Prev = i;
        break;
      }

      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }

      StringRef::iterator End =
        std::find(AsmString.begin() + i, AsmString.end(), '}');
      assert(End != AsmString.end() && "Missing brace in operand reference!");
      size_t EndPos = End - AsmString.begin();
      Tokens.push_back(AsmString.slice(i, EndPos+1));
      Prev = EndPos + 1;
      i = EndPos;
      break;
    }

    default:
      InTok = true;
    }
  }
  if (InTok && Prev != AsmString.size())
    Tokens.push_back(AsmString.substr(Prev));
}

static bool IsAssemblerInstruction(const StringRef &Name,
                                   const CodeGenInstruction &CGI, 
                                   const SmallVectorImpl<StringRef> &Tokens) {
  // Ignore psuedo ops.
  //
  // FIXME: This is a hack.
  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
    if (Form->getValue()->getAsString() == "Pseudo")
      return false;
  
  // Ignore "PHI" node.
  //
  // FIXME: This is also a hack.
  if (Name == "PHI")
    return false;

  // Ignore instructions with no .s string.
  //
  // FIXME: What are these?
  if (CGI.AsmString.empty())
    return false;

  // FIXME: Hack; ignore any instructions with a newline in them.
  if (std::find(CGI.AsmString.begin(), 
                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
    return false;
  
  // Ignore instructions with attributes, these are always fake instructions for
  // simplifying codegen.
  //
  // FIXME: Is this true?
  //
  // Also, we ignore instructions which reference the operand multiple times;
  // this implies a constraint we would not currently honor. These are
  // currently always fake instructions for simplifying codegen.
  //
  // FIXME: Encode this assumption in the .td, so we can error out here.
  std::set<std::string> OperandNames;
  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
    if (Tokens[i][0] == '$' && 
        std::find(Tokens[i].begin(), 
                  Tokens[i].end(), ':') != Tokens[i].end()) {
      DEBUG({
          errs() << "warning: '" << Name << "': "
                 << "ignoring instruction; operand with attribute '" 
                 << Tokens[i] << "', \n";
        });
      return false;
    }

    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
      DEBUG({
          errs() << "warning: '" << Name << "': "
                 << "ignoring instruction; tied operand '" 
                 << Tokens[i] << "', \n";
        });
      return false;
    }
  }

  return true;
}

namespace {

/// InstructionInfo - Helper class for storing the necessary information for an
/// instruction which is capable of being matched.
struct InstructionInfo {
  struct Operand {
    enum {
      Token,
      Class
    } Kind;

    struct ClassData {
      /// Operand - The tablegen operand this class corresponds to.
      const CodeGenInstruction::OperandInfo *Operand;

      /// ClassName - The name of this operand's class.
      std::string ClassName;

      /// PredicateMethod - The name of the operand method to test whether the
      /// operand matches this class.
      std::string PredicateMethod;

      /// RenderMethod - The name of the operand method to add this operand to
      /// an MCInst.
      std::string RenderMethod;
    } AsClass;
  };

  /// InstrName - The target name for this instruction.
  std::string InstrName;

  /// Instr - The instruction this matches.
  const CodeGenInstruction *Instr;

  /// AsmString - The assembly string for this instruction (with variants
  /// removed).
  std::string AsmString;

  /// Tokens - The tokenized assembly pattern that this instruction matches.
  SmallVector<StringRef, 4> Tokens;

  /// Operands - The operands that this instruction matches.
  SmallVector<Operand, 4> Operands;

  /// ConversionFnKind - The enum value which is passed to the generated
  /// ConvertToMCInst to convert parsed operands into an MCInst for this
  /// function.
  std::string ConversionFnKind;

public:
  void dump();
};

}

void InstructionInfo::dump() {
  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
         << ", tokens:[";
  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
    errs() << Tokens[i];
    if (i + 1 != e)
      errs() << ", ";
  }
  errs() << "]\n";

  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    Operand &Op = Operands[i];
    errs() << "  op[" << i << "] = ";
    if (Op.Kind == Operand::Token) {
      errs() << '\"' << Tokens[i] << "\"\n";
      continue;
    }

    assert(Op.Kind == Operand::Class && "Invalid kind!");
    const CodeGenInstruction::OperandInfo &OI = *Op.AsClass.Operand;
    errs() << OI.Name << " " << OI.Rec->getName()
           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
  }
}

static void BuildInstructionInfos(CodeGenTarget &Target,
                                  std::vector<InstructionInfo*> &Infos) {
  const std::map<std::string, CodeGenInstruction> &Instructions =
    Target.getInstructions();

  for (std::map<std::string, CodeGenInstruction>::const_iterator 
         it = Instructions.begin(), ie = Instructions.end(); it != ie; ++it) {
    const CodeGenInstruction &CGI = it->second;

    if (!MatchOneInstr.empty() && it->first != MatchOneInstr)
      continue;

    OwningPtr<InstructionInfo> II(new InstructionInfo);
    
    II->InstrName = it->first;
    II->Instr = &it->second;
    II->AsmString = FlattenVariants(CGI.AsmString, 0);

    TokenizeAsmString(II->AsmString, II->Tokens);

    // Ignore instructions which shouldn't be matched.
    if (!IsAssemblerInstruction(it->first, CGI, II->Tokens))
      continue;

    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
      StringRef Token = II->Tokens[i];

      // Check for simple tokens.
      if (Token[0] != '$') {
        InstructionInfo::Operand Op;
        Op.Kind = InstructionInfo::Operand::Token;
        II->Operands.push_back(Op);
        continue;
      }

      // Otherwise this is an operand reference.
      InstructionInfo::Operand Op;
      Op.Kind = InstructionInfo::Operand::Class;

      StringRef OperandName;
      if (Token[1] == '{')
        OperandName = Token.substr(2, Token.size() - 3);
      else
        OperandName = Token.substr(1);

      // Map this token to an operand. FIXME: Move elsewhere.
      unsigned Idx;
      try {
        Idx = CGI.getOperandNamed(OperandName);
      } catch(...) {
        errs() << "error: unable to find operand: '" << OperandName << "'!\n";
        break;
      }

      const CodeGenInstruction::OperandInfo &OI = CGI.OperandList[Idx];      
      Op.AsClass.Operand = &OI;

      if (OI.Rec->isSubClassOf("RegisterClass")) {
        Op.AsClass.ClassName = "Reg";
        Op.AsClass.PredicateMethod = "isReg";
        Op.AsClass.RenderMethod = "addRegOperands";
      } else if (OI.Rec->isSubClassOf("Operand")) {
        // FIXME: This should not be hard coded.
        const RecordVal *RV = OI.Rec->getValue("Type");

        // FIXME: Yet another total hack.
        if (RV->getValue()->getAsString() == "iPTR" ||
            OI.Rec->getName() == "i8mem_NOREX" ||
            OI.Rec->getName() == "lea32mem" ||
            OI.Rec->getName() == "lea64mem" ||
            OI.Rec->getName() == "i128mem" ||
            OI.Rec->getName() == "sdmem" ||
            OI.Rec->getName() == "ssmem" ||
            OI.Rec->getName() == "lea64_32mem") {
          Op.AsClass.ClassName = "Mem";
          Op.AsClass.PredicateMethod = "isMem";
          Op.AsClass.RenderMethod = "addMemOperands";
        } else {
          Op.AsClass.ClassName = "Imm";
          Op.AsClass.PredicateMethod = "isImm";
          Op.AsClass.RenderMethod = "addImmOperands";
        }
      } else {
        OI.Rec->dump();
        assert(0 && "Unexpected instruction operand record!");
      }

      II->Operands.push_back(Op);
    }

    // If we broke out, ignore the instruction.
    if (II->Operands.size() != II->Tokens.size())
      continue;

    Infos.push_back(II.take());
  }
}

static void ConstructConversionFunctions(CodeGenTarget &Target,
                                         std::vector<InstructionInfo*> &Infos,
                                         raw_ostream &OS) {
  // Write the convert function to a separate stream, so we can drop it after
  // the enum.
  std::string ConvertFnBody;
  raw_string_ostream CvtOS(ConvertFnBody);

  // Function we have already generated.
  std::set<std::string> GeneratedFns;

  // Start the unified conversion function.

  CvtOS << "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
        << "unsigned Opcode,\n"
        << "                            SmallVectorImpl<"
        << Target.getName() << "Operand> &Operands) {\n";
  CvtOS << "  Inst.setOpcode(Opcode);\n";
  CvtOS << "  switch (Kind) {\n";
  CvtOS << "  default:\n";

  // Start the enum, which we will generate inline.

  OS << "// Unified function for converting operants to MCInst instances.\n\n";

  OS << "namespace {\n\n";
  
  OS << "enum ConversionKind {\n";
  
  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
         ie = Infos.end(); it != ie; ++it) {
    InstructionInfo &II = **it;

    // Order the (class) operands by the order to convert them into an MCInst.
    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[i];
      if (Op.Kind == InstructionInfo::Operand::Class)
        MIOperandList.push_back(std::make_pair(Op.AsClass.Operand->MIOperandNo,
                                               i));
    }
    std::sort(MIOperandList.begin(), MIOperandList.end());

    // Compute the total number of operands.
    unsigned NumMIOperands = 0;
    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
      NumMIOperands = std::max(NumMIOperands, 
                               OI.MIOperandNo + OI.MINumOperands);
    }

    // Build the conversion function signature.
    std::string Signature = "Convert";
    unsigned CurIndex = 0;
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
      assert(CurIndex <= Op.AsClass.Operand->MIOperandNo &&
             "Duplicate match for instruction operand!");
      
      Signature += "_";

      // Skip operands which weren't matched by anything, this occurs when the
      // .td file encodes "implicit" operands as explicit ones.
      //
      // FIXME: This should be removed from the MCInst structure.
      for (; CurIndex != Op.AsClass.Operand->MIOperandNo; ++CurIndex)
        Signature += "Imp";

      Signature += Op.AsClass.ClassName;
      Signature += utostr(Op.AsClass.Operand->MINumOperands);
      Signature += "_" + utostr(MIOperandList[i].second);

      CurIndex += Op.AsClass.Operand->MINumOperands;
    }

    // Add any trailing implicit operands.
    for (; CurIndex != NumMIOperands; ++CurIndex)
      Signature += "Imp";

    II.ConversionFnKind = Signature;

    // Check if we have already generated this signature.
    if (!GeneratedFns.insert(Signature).second)
      continue;

    // If not, emit it now.

    // Add to the enum list.
    OS << "  " << Signature << ",\n";

    // And to the convert function.
    CvtOS << "  case " << Signature << ":\n";
    CurIndex = 0;
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];

      // Add the implicit operands.
      for (; CurIndex != Op.AsClass.Operand->MIOperandNo; ++CurIndex)
        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";

      CvtOS << "    Operands[" << MIOperandList[i].second 
         << "]." << Op.AsClass.RenderMethod 
         << "(Inst, " << Op.AsClass.Operand->MINumOperands << ");\n";
      CurIndex += Op.AsClass.Operand->MINumOperands;
    }
    
    // And add trailing implicit operands.
    for (; CurIndex != NumMIOperands; ++CurIndex)
      CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
    CvtOS << "    break;\n";
  }

  // Finish the convert function.

  CvtOS << "  }\n";
  CvtOS << "  return false;\n";
  CvtOS << "}\n\n";

  // Finish the enum, and drop the convert function after it.

  OS << "  NumConversionVariants\n";
  OS << "};\n\n";
  
  OS << "}\n\n";

  OS << CvtOS.str();
}

/// EmitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
                                  raw_ostream &OS) {
  const std::vector<CodeGenRegister> &Registers = Target.getRegisters();

  OS << "bool " << Target.getName() 
     << AsmParser->getValueAsString("AsmParserClassName")
     << "::MatchRegisterName(const StringRef &Name, unsigned &RegNo) {\n";

  // FIXME: TableGen should have a fast string matcher generator.
  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
    const CodeGenRegister &Reg = Registers[i];
    if (Reg.TheDef->getValueAsString("AsmName").empty())
      continue;

    OS << "  if (Name == \"" 
       << Reg.TheDef->getValueAsString("AsmName") << "\")\n"
       << "    return RegNo=" << i + 1 << ", false;\n";
  }
  OS << "  return true;\n";
  OS << "}\n\n";
}

void AsmMatcherEmitter::run(raw_ostream &OS) {
  CodeGenTarget Target;
  Record *AsmParser = Target.getAsmParser();
  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");

  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);

  // Emit the function to match a register name to number.
  EmitMatchRegisterName(Target, AsmParser, OS);

  // Compute the information on the list of instructions to match.
  std::vector<InstructionInfo*> Infos;
  BuildInstructionInfos(Target, Infos);

  DEBUG_WITH_TYPE("instruction_info", {
      for (std::vector<InstructionInfo*>::iterator it = Infos.begin(),
             ie = Infos.end(); it != ie; ++it)
        (*it)->dump();
    });

  // FIXME: At this point we should be able to totally order Infos, if not then
  // we have an ambiguity which the .td file should be forced to resolve.

  // Generate the terminal actions to convert operands into an MCInst.
  ConstructConversionFunctions(Target, Infos, OS);

  // Build a very stupid version of the match function which just checks each
  // instruction in order.

  OS << "bool " << Target.getName() << ClassName
     << "::MatchInstruction(" 
     << "SmallVectorImpl<" << Target.getName() << "Operand> &Operands, "
     << "MCInst &Inst) {\n";

  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
         ie = Infos.end(); it != ie; ++it) {
    InstructionInfo &II = **it;

    // The parser is expected to arrange things so that each "token" matches
    // exactly one target specific operand.
    OS << "  if (Operands.size() == " << II.Operands.size();
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[i];
      
      OS << " &&\n";
      OS << "      ";

      if (Op.Kind == InstructionInfo::Operand::Token)
        OS << "Operands[" << i << "].isToken(\"" << II.Tokens[i] << "\")";
      else
        OS << "Operands[" << i << "]." 
           << Op.AsClass.PredicateMethod << "()";
    }
    OS << ")\n";
    OS << "    return ConvertToMCInst(" << II.ConversionFnKind << ", Inst, "
       << Target.getName() << "::" << II.InstrName
       << ", Operands);\n\n";
  }

  OS << "  return true;\n";
  OS << "}\n\n";
}