summaryrefslogtreecommitdiff
path: root/utils/TableGen/DAGISelEmitter.cpp
blob: 8816c9c0e749b67f6bcf5306a9a550a652c60ade (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//

#include "DAGISelEmitter.h"
#include "DAGISelMatcher.h"
#include "Record.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
// DAGISelEmitter Helper methods
//

/// getPatternSize - Return the 'size' of this pattern.  We want to match large
/// patterns before small ones.  This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
  assert((EEVT::isExtIntegerInVTs(P->getExtTypes()) ||
          EEVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
          P->getExtTypeNum(0) == MVT::isVoid ||
          P->getExtTypeNum(0) == MVT::Flag ||
          P->getExtTypeNum(0) == MVT::iPTR ||
          P->getExtTypeNum(0) == MVT::iPTRAny) && 
         "Not a valid pattern node to size!");
  unsigned Size = 3;  // The node itself.
  // If the root node is a ConstantSDNode, increases its size.
  // e.g. (set R32:$dst, 0).
  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
    Size += 2;

  // FIXME: This is a hack to statically increase the priority of patterns
  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
  // Later we can allow complexity / cost for each pattern to be (optionally)
  // specified. To get best possible pattern match we'll need to dynamically
  // calculate the complexity of all patterns a dag can potentially map to.
  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
  if (AM)
    Size += AM->getNumOperands() * 3;

  // If this node has some predicate function that must match, it adds to the
  // complexity of this node.
  if (!P->getPredicateFns().empty())
    ++Size;
  
  // Count children in the count if they are also nodes.
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = P->getChild(i);
    if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
      Size += getPatternSize(Child, CGP);
    else if (Child->isLeaf()) {
      if (dynamic_cast<IntInit*>(Child->getLeafValue())) 
        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
      else if (Child->getComplexPatternInfo(CGP))
        Size += getPatternSize(Child, CGP);
      else if (!Child->getPredicateFns().empty())
        ++Size;
    }
  }
  
  return Size;
}

/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack.  We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P,
                                     CodeGenDAGPatterns &CGP) {
  if (P->isLeaf()) return 0;
  
  unsigned Cost = 0;
  Record *Op = P->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    Cost++;
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
    if (II.usesCustomInserter)
      Cost += 10;
  }
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
    Cost += getResultPatternCost(P->getChild(i), CGP);
  return Cost;
}

/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
static unsigned getResultPatternSize(TreePatternNode *P, 
                                     CodeGenDAGPatterns &CGP) {
  if (P->isLeaf()) return 0;

  unsigned Cost = 0;
  Record *Op = P->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    Cost += Op->getValueAsInt("CodeSize");
  }
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
    Cost += getResultPatternSize(P->getChild(i), CGP);
  return Cost;
}

//===----------------------------------------------------------------------===//
// Predicate emitter implementation.
//

void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) {
  OS << "\n// Predicate functions.\n";

  // Walk the pattern fragments, adding them to a map, which sorts them by
  // name.
  typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
  PFsByNameTy PFsByName;

  for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
       I != E; ++I)
    PFsByName.insert(std::make_pair(I->first->getName(), *I));

  
  for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
       I != E; ++I) {
    Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
    TreePattern *P = I->second.second;
    
    // If there is a code init for this fragment, emit the predicate code.
    std::string Code = PatFragRecord->getValueAsCode("Predicate");
    if (Code.empty()) continue;
    
    if (P->getOnlyTree()->isLeaf())
      OS << "inline bool Predicate_" << PatFragRecord->getName()
      << "(SDNode *N) const {\n";
    else {
      std::string ClassName =
        CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
      const char *C2 = ClassName == "SDNode" ? "N" : "inN";
      
      OS << "inline bool Predicate_" << PatFragRecord->getName()
         << "(SDNode *" << C2 << ") const {\n";
      if (ClassName != "SDNode")
        OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
    }
    OS << Code << "\n}\n";
  }
  
  OS << "\n\n";
}

namespace {
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
  PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
  CodeGenDAGPatterns &CGP;
  
  bool operator()(const PatternToMatch *LHS,
                  const PatternToMatch *RHS) {
    unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
    unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
    LHSSize += LHS->getAddedComplexity();
    RHSSize += RHS->getAddedComplexity();
    if (LHSSize > RHSSize) return true;   // LHS -> bigger -> less cost
    if (LHSSize < RHSSize) return false;
    
    // If the patterns have equal complexity, compare generated instruction cost
    unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
    unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
    if (LHSCost < RHSCost) return true;
    if (LHSCost > RHSCost) return false;
    
    return getResultPatternSize(LHS->getDstPattern(), CGP) <
           getResultPatternSize(RHS->getDstPattern(), CGP);
  }
};
}


void DAGISelEmitter::run(raw_ostream &OS) {
  EmitSourceFileHeader("DAG Instruction Selector for the " +
                       CGP.getTargetInfo().getName() + " target", OS);
  
  OS << "// *** NOTE: This file is #included into the middle of the target\n"
     << "// *** instruction selector class.  These functions are really "
     << "methods.\n\n";

  OS << "// Include standard, target-independent definitions and methods used\n"
     << "// by the instruction selector.\n";
  OS << "#include \"llvm/CodeGen/DAGISelHeader.h\"\n\n";
  
  DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n";
        for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
             E = CGP.ptm_end(); I != E; ++I) {
          errs() << "PATTERN: ";   I->getSrcPattern()->dump();
          errs() << "\nRESULT:  "; I->getDstPattern()->dump();
          errs() << "\n";
        });

  // FIXME: These are being used by hand written code, gross.
  EmitPredicateFunctions(OS);

  // Add all the patterns to a temporary list so we can sort them.
  std::vector<const PatternToMatch*> Patterns;
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
       I != E; ++I)
    Patterns.push_back(&*I);

  // We want to process the matches in order of minimal cost.  Sort the patterns
  // so the least cost one is at the start.
  std::stable_sort(Patterns.begin(), Patterns.end(),
                   PatternSortingPredicate(CGP));
  
  
  // Convert each variant of each pattern into a Matcher.
  std::vector<Matcher*> PatternMatchers;
  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
    for (unsigned Variant = 0; ; ++Variant) {
      if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP))
        PatternMatchers.push_back(M);
      else
        break;
    }
  }
          
  
  Matcher *TheMatcher = new ScopeMatcher(&PatternMatchers[0],
                                         PatternMatchers.size());

  TheMatcher = OptimizeMatcher(TheMatcher, CGP);
  //Matcher->dump();
  EmitMatcherTable(TheMatcher, CGP, OS);
  delete TheMatcher;
}