summaryrefslogtreecommitdiff
path: root/utils/TableGen/DAGISelMatcherOpt.cpp
blob: 045d5011e7030ba65a06c28b895ac15f1c5c9eb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the DAG Matcher optimizer.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "isel-opt"
#include "DAGISelMatcher.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;

/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
/// into single compound nodes like RecordChild.
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr) {
  // If we reached the end of the chain, we're done.
  Matcher *N = MatcherPtr.get();
  if (N == 0) return;
  
  // If we have a scope node, walk down all of the children.
  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
      OwningPtr<Matcher> Child(Scope->takeChild(i));
      ContractNodes(Child);
      Scope->resetChild(i, Child.take());
    }
    return;
  }
  
  // If we found a movechild node with a node that comes in a 'foochild' form,
  // transform it.
  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
    Matcher *New = 0;
    if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
      New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor());
    
    if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
      New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
    
    if (New) {
      // Insert the new node.
      New->setNext(MatcherPtr.take());
      MatcherPtr.reset(New);
      // Remove the old one.
      MC->setNext(MC->getNext()->takeNext());
      return ContractNodes(MatcherPtr);
    }
  }
  
  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
    if (MoveParentMatcher *MP = 
          dyn_cast<MoveParentMatcher>(MC->getNext())) {
      MatcherPtr.reset(MP->takeNext());
      return ContractNodes(MatcherPtr);
    }
  
  ContractNodes(N->getNextPtr());
}

/// SinkPatternPredicates - Pattern predicates can be checked at any level of
/// the matching tree.  The generator dumps them at the top level of the pattern
/// though, which prevents factoring from being able to see past them.  This
/// optimization sinks them as far down into the pattern as possible.
///
/// Conceptually, we'd like to sink these predicates all the way to the last
/// matcher predicate in the series.  However, it turns out that some
/// ComplexPatterns have side effects on the graph, so we really don't want to
/// run a the complex pattern if the pattern predicate will fail.  For this
/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
///
static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
  // Recursively scan for a PatternPredicate.
  // If we reached the end of the chain, we're done.
  Matcher *N = MatcherPtr.get();
  if (N == 0) return;
  
  // Walk down all members of a scope node.
  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
      OwningPtr<Matcher> Child(Scope->takeChild(i));
      SinkPatternPredicates(Child);
      Scope->resetChild(i, Child.take());
    }
    return;
  }
  
  // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
  // we find one.
  CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
  if (CPPM == 0)
    return SinkPatternPredicates(N->getNextPtr());
  
  // Ok, we found one, lets try to sink it. Check if we can sink it past the
  // next node in the chain.  If not, we won't be able to change anything and
  // might as well bail.
  if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
    return;
  
  // Okay, we know we can sink it past at least one node.  Unlink it from the
  // chain and scan for the new insertion point.
  MatcherPtr.take();  // Don't delete CPPM.
  MatcherPtr.reset(CPPM->takeNext());
  
  N = MatcherPtr.get();
  while (N->getNext()->isSafeToReorderWithPatternPredicate())
    N = N->getNext();
  
  // At this point, we want to insert CPPM after N.
  CPPM->setNext(N->takeNext());
  N->setNext(CPPM);
}

/// FactorNodes - Turn matches like this:
///   Scope
///     OPC_CheckType i32
///       ABC
///     OPC_CheckType i32
///       XYZ
/// into:
///   OPC_CheckType i32
///     Scope
///       ABC
///       XYZ
///
static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
  // If we reached the end of the chain, we're done.
  Matcher *N = MatcherPtr.get();
  if (N == 0) return;
  
  // If this is not a push node, just scan for one.
  ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
  if (Scope == 0)
    return FactorNodes(N->getNextPtr());
  
  // Okay, pull together the children of the scope node into a vector so we can
  // inspect it more easily.  While we're at it, bucket them up by the hash
  // code of their first predicate.
  SmallVector<Matcher*, 32> OptionsToMatch;
  
  for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
    // Factor the subexpression.
    OwningPtr<Matcher> Child(Scope->takeChild(i));
    FactorNodes(Child);
    
    if (Matcher *N = Child.take())
      OptionsToMatch.push_back(N);
  }
  
  SmallVector<Matcher*, 32> NewOptionsToMatch;

  // Loop over options to match, merging neighboring patterns with identical
  // starting nodes into a shared matcher.
  for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
    // Find the set of matchers that start with this node.
    Matcher *Optn = OptionsToMatch[OptionIdx++];

    if (OptionIdx == e) {
      NewOptionsToMatch.push_back(Optn);
      continue;
    }
    
    // See if the next option starts with the same matcher.  If the two
    // neighbors *do* start with the same matcher, we can factor the matcher out
    // of at least these two patterns.  See what the maximal set we can merge
    // together is.
    SmallVector<Matcher*, 8> EqualMatchers;
    EqualMatchers.push_back(Optn);
    
    // Factor all of the known-equal matchers after this one into the same
    // group.
    while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
      EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);

    // If we found a non-equal matcher, see if it is contradictory with the
    // current node.  If so, we know that the ordering relation between the
    // current sets of nodes and this node don't matter.  Look past it to see if
    // we can merge anything else into this matching group.
    unsigned Scan = OptionIdx;
    while (1) {
      while (Scan != e && Optn->isContradictory(OptionsToMatch[Scan]))
        ++Scan;
      
      // Ok, we found something that isn't known to be contradictory.  If it is
      // equal, we can merge it into the set of nodes to factor, if not, we have
      // to cease factoring.
      if (Scan == e || !Optn->isEqual(OptionsToMatch[Scan])) break;

      // If is equal after all, add the option to EqualMatchers and remove it
      // from OptionsToMatch.
      EqualMatchers.push_back(OptionsToMatch[Scan]);
      OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
      --e;
    }
      
    if (Scan != e) {
      DEBUG(errs() << "Couldn't merge this:\n  ";
            Optn->printOne(errs());
            errs() << "into this:\n  ";
            OptionsToMatch[OptionIdx]->printOne(errs());
            if (OptionIdx+1 != e)
              OptionsToMatch[OptionIdx+1]->printOne(errs());
            if (OptionIdx+2 < e)
              OptionsToMatch[OptionIdx+2]->printOne(errs());
            errs() << "\n");
    }
    
    // If we only found one option starting with this matcher, no factoring is
    // possible.
    if (EqualMatchers.size() == 1) {
      NewOptionsToMatch.push_back(EqualMatchers[0]);
      continue;
    }
    
    // Factor these checks by pulling the first node off each entry and
    // discarding it.  Take the first one off the first entry to reuse.
    Matcher *Shared = Optn;
    Optn = Optn->takeNext();
    EqualMatchers[0] = Optn;

    // Remove and delete the first node from the other matchers we're factoring.
    for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
      Matcher *Tmp = EqualMatchers[i]->takeNext();
      delete EqualMatchers[i];
      EqualMatchers[i] = Tmp;
    }
    
    Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));

    // Recursively factor the newly created node.
    FactorNodes(Shared->getNextPtr());
    
    NewOptionsToMatch.push_back(Shared);
  }

  // Reassemble a new Scope node.
  assert(!NewOptionsToMatch.empty() && "where'd all our children go?");
  if (NewOptionsToMatch.size() == 1)
    MatcherPtr.reset(NewOptionsToMatch[0]);
  else {
    Scope->setNumChildren(NewOptionsToMatch.size());
    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
      Scope->resetChild(i, NewOptionsToMatch[i]);
  }
}

Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher) {
  OwningPtr<Matcher> MatcherPtr(TheMatcher);
  ContractNodes(MatcherPtr);
  SinkPatternPredicates(MatcherPtr);
  FactorNodes(MatcherPtr);
  return MatcherPtr.take();
}