summaryrefslogtreecommitdiff
path: root/utils/TableGen/DFAPacketizerEmitter.cpp
blob: b9e34af90e7f486d0ce2b652f61c2fb7c1ac7875 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class parses the Schedule.td file and produces an API that can be used
// to reason about whether an instruction can be added to a packet on a VLIW
// architecture. The class internally generates a deterministic finite
// automaton (DFA) that models all possible mappings of machine instructions
// to functional units as instructions are added to a packet.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <list>
#include <map>
#include <string>
using namespace llvm;

//
// class DFAPacketizerEmitter: class that generates and prints out the DFA
// for resource tracking.
//
namespace {
class DFAPacketizerEmitter {
private:
  std::string TargetName;
  //
  // allInsnClasses is the set of all possible resources consumed by an
  // InstrStage.
  //
  DenseSet<unsigned> allInsnClasses;
  RecordKeeper &Records;

public:
  DFAPacketizerEmitter(RecordKeeper &R);

  //
  // collectAllInsnClasses: Populate allInsnClasses which is a set of units
  // used in each stage.
  //
  void collectAllInsnClasses(const std::string &Name,
                             Record *ItinData,
                             unsigned &NStages,
                             raw_ostream &OS);

  void run(raw_ostream &OS);
};
} // End anonymous namespace.

//
//
// State represents the usage of machine resources if the packet contains
// a set of instruction classes.
//
// Specifically, currentState is a set of bit-masks.
// The nth bit in a bit-mask indicates whether the nth resource is being used
// by this state. The set of bit-masks in a state represent the different
// possible outcomes of transitioning to this state.
// For example: consider a two resource architecture: resource L and resource M
// with three instruction classes: L, M, and L_or_M.
// From the initial state (currentState = 0x00), if we add instruction class
// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
// represents the possible resource states that can result from adding a L_or_M
// instruction
//
// Another way of thinking about this transition is we are mapping a NDFA with
// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
//
// A State instance also contains a collection of transitions from that state:
// a map from inputs to new states.
//
namespace {
class State {
 public:
  static int currentStateNum;
  int stateNum;
  bool isInitial;
  std::set<unsigned> stateInfo;
  typedef std::map<unsigned, State *> TransitionMap;
  TransitionMap Transitions;

  State();
  State(const State &S);

  bool operator<(const State &s) const {
    return stateNum < s.stateNum;
  }

  //
  // canAddInsnClass - Returns true if an instruction of type InsnClass is a
  // valid transition from this state, i.e., can an instruction of type InsnClass
  // be added to the packet represented by this state.
  //
  // PossibleStates is the set of valid resource states that ensue from valid
  // transitions.
  //
  bool canAddInsnClass(unsigned InsnClass) const;
  //
  // AddInsnClass - Return all combinations of resource reservation
  // which are possible from this state (PossibleStates).
  //
  void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
  // 
  // addTransition - Add a transition from this state given the input InsnClass
  //
  void addTransition(unsigned InsnClass, State *To);
  //
  // hasTransition - Returns true if there is a transition from this state
  // given the input InsnClass
  //
  bool hasTransition(unsigned InsnClass);
};
} // End anonymous namespace.

//
// class DFA: deterministic finite automaton for processor resource tracking.
//
namespace {
class DFA {
public:
  DFA();
  ~DFA();

  // Set of states. Need to keep this sorted to emit the transition table.
  typedef std::set<State *, less_ptr<State> > StateSet;
  StateSet states;

  State *currentState;

  //
  // Modify the DFA.
  //
  void addState(State *);

  //
  // writeTable: Print out a table representing the DFA.
  //
  void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
};
} // End anonymous namespace.


//
// Constructors and destructors for State and DFA
//
State::State() :
  stateNum(currentStateNum++), isInitial(false) {}


State::State(const State &S) :
  stateNum(currentStateNum++), isInitial(S.isInitial),
  stateInfo(S.stateInfo) {}

DFA::DFA(): currentState(nullptr) {}

DFA::~DFA() {
  DeleteContainerPointers(states);
}

// 
// addTransition - Add a transition from this state given the input InsnClass
//
void State::addTransition(unsigned InsnClass, State *To) {
  assert(!Transitions.count(InsnClass) &&
      "Cannot have multiple transitions for the same input");
  Transitions[InsnClass] = To;
}

//
// hasTransition - Returns true if there is a transition from this state
// given the input InsnClass
//
bool State::hasTransition(unsigned InsnClass) {
  return Transitions.count(InsnClass) > 0;
}

//
// AddInsnClass - Return all combinations of resource reservation
// which are possible from this state (PossibleStates).
//
void State::AddInsnClass(unsigned InsnClass,
                            std::set<unsigned> &PossibleStates) {
  //
  // Iterate over all resource states in currentState.
  //

  for (std::set<unsigned>::iterator SI = stateInfo.begin();
       SI != stateInfo.end(); ++SI) {
    unsigned thisState = *SI;

    //
    // Iterate over all possible resources used in InsnClass.
    // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
    //

    DenseSet<unsigned> VisitedResourceStates;
    for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
      if ((0x1 << j) & InsnClass) {
        //
        // For each possible resource used in InsnClass, generate the
        // resource state if that resource was used.
        //
        unsigned ResultingResourceState = thisState | (0x1 << j);
        //
        // Check if the resulting resource state can be accommodated in this
        // packet.
        // We compute ResultingResourceState OR thisState.
        // If the result of the OR is different than thisState, it implies
        // that there is at least one resource that can be used to schedule
        // InsnClass in the current packet.
        // Insert ResultingResourceState into PossibleStates only if we haven't
        // processed ResultingResourceState before.
        //
        if ((ResultingResourceState != thisState) &&
            (VisitedResourceStates.count(ResultingResourceState) == 0)) {
          VisitedResourceStates.insert(ResultingResourceState);
          PossibleStates.insert(ResultingResourceState);
        }
      }
    }
  }

}


//
// canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
// valid transition from this state i.e., can an instruction of type InsnClass
// be added to the packet represented by this state.
//
bool State::canAddInsnClass(unsigned InsnClass) const {
  for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
       SI != stateInfo.end(); ++SI) {
    if (~*SI & InsnClass)
      return true;
  }
  return false;
}


void DFA::addState(State *S) {
  assert(!states.count(S) && "State already exists");
  states.insert(S);
}


int State::currentStateNum = 0;

DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
  TargetName(CodeGenTarget(R).getName()),
  allInsnClasses(), Records(R) {}


//
// writeTableAndAPI - Print out a table representing the DFA and the
// associated API to create a DFA packetizer.
//
// Format:
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
//                           transitions.
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
//                         the ith state.
//
//
void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
  static const std::string SentinelEntry = "{-1, -1}";
  DFA::StateSet::iterator SI = states.begin();
  // This table provides a map to the beginning of the transitions for State s
  // in DFAStateInputTable.
  std::vector<int> StateEntry(states.size());

  OS << "namespace llvm {\n\n";
  OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";

  // Tracks the total valid transitions encountered so far. It is used
  // to construct the StateEntry table.
  int ValidTransitions = 0;
  for (unsigned i = 0; i < states.size(); ++i, ++SI) {
    assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
    StateEntry[i] = ValidTransitions;
    for (State::TransitionMap::iterator
        II = (*SI)->Transitions.begin(), IE = (*SI)->Transitions.end();
        II != IE; ++II) {
      OS << "{" << II->first << ", "
         << II->second->stateNum
         << "},    ";
    }
    ValidTransitions += (*SI)->Transitions.size();

    // If there are no valid transitions from this stage, we need a sentinel
    // transition.
    if (ValidTransitions == StateEntry[i]) {
      OS << SentinelEntry << ",";
      ++ValidTransitions;
    }

    OS << "\n";
  }

  // Print out a sentinel entry at the end of the StateInputTable. This is
  // needed to iterate over StateInputTable in DFAPacketizer::ReadTable()
  OS << SentinelEntry << "\n";
  
  OS << "};\n\n";
  OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";

  // Multiply i by 2 since each entry in DFAStateInputTable is a set of
  // two numbers.
  for (unsigned i = 0; i < states.size(); ++i)
    OS << StateEntry[i] << ", ";

  // Print out the index to the sentinel entry in StateInputTable
  OS << ValidTransitions << ", ";

  OS << "\n};\n";
  OS << "} // namespace\n";


  //
  // Emit DFA Packetizer tables if the target is a VLIW machine.
  //
  std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
  OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
  OS << "namespace llvm {\n";
  OS << "DFAPacketizer *" << SubTargetClassName << "::"
     << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
     << "   return new DFAPacketizer(IID, " << TargetName
     << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
  OS << "} // End llvm namespace \n";
}


//
// collectAllInsnClasses - Populate allInsnClasses which is a set of units
// used in each stage.
//
void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
                                  Record *ItinData,
                                  unsigned &NStages,
                                  raw_ostream &OS) {
  // Collect processor itineraries.
  std::vector<Record*> ProcItinList =
    Records.getAllDerivedDefinitions("ProcessorItineraries");

  // If just no itinerary then don't bother.
  if (ProcItinList.size() < 2)
    return;
  std::map<std::string, unsigned> NameToBitsMap;

  // Parse functional units for all the itineraries.
  for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
    Record *Proc = ProcItinList[i];
    std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");

    // Convert macros to bits for each stage.
    for (unsigned i = 0, N = FUs.size(); i < N; ++i)
      NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
  }

  const std::vector<Record*> &StageList =
    ItinData->getValueAsListOfDefs("Stages");

  // The number of stages.
  NStages = StageList.size();

  // For each unit.
  unsigned UnitBitValue = 0;

  // Compute the bitwise or of each unit used in this stage.
  for (unsigned i = 0; i < NStages; ++i) {
    const Record *Stage = StageList[i];

    // Get unit list.
    const std::vector<Record*> &UnitList =
      Stage->getValueAsListOfDefs("Units");

    for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
      // Conduct bitwise or.
      std::string UnitName = UnitList[j]->getName();
      assert(NameToBitsMap.count(UnitName));
      UnitBitValue |= NameToBitsMap[UnitName];
    }

    if (UnitBitValue != 0)
      allInsnClasses.insert(UnitBitValue);
  }
}


//
// Run the worklist algorithm to generate the DFA.
//
void DFAPacketizerEmitter::run(raw_ostream &OS) {

  // Collect processor iteraries.
  std::vector<Record*> ProcItinList =
    Records.getAllDerivedDefinitions("ProcessorItineraries");

  //
  // Collect the instruction classes.
  //
  for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
    Record *Proc = ProcItinList[i];

    // Get processor itinerary name.
    const std::string &Name = Proc->getName();

    // Skip default.
    if (Name == "NoItineraries")
      continue;

    // Sanity check for at least one instruction itinerary class.
    unsigned NItinClasses =
      Records.getAllDerivedDefinitions("InstrItinClass").size();
    if (NItinClasses == 0)
      return;

    // Get itinerary data list.
    std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");

    // Collect instruction classes for all itinerary data.
    for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
      Record *ItinData = ItinDataList[j];
      unsigned NStages;
      collectAllInsnClasses(Name, ItinData, NStages, OS);
    }
  }


  //
  // Run a worklist algorithm to generate the DFA.
  //
  DFA D;
  State *Initial = new State;
  Initial->isInitial = true;
  Initial->stateInfo.insert(0x0);
  D.addState(Initial);
  SmallVector<State*, 32> WorkList;
  std::map<std::set<unsigned>, State*> Visited;

  WorkList.push_back(Initial);

  //
  // Worklist algorithm to create a DFA for processor resource tracking.
  // C = {set of InsnClasses}
  // Begin with initial node in worklist. Initial node does not have
  // any consumed resources,
  //     ResourceState = 0x0
  // Visited = {}
  // While worklist != empty
  //    S = first element of worklist
  //    For every instruction class C
  //      if we can accommodate C in S:
  //          S' = state with resource states = {S Union C}
  //          Add a new transition: S x C -> S'
  //          If S' is not in Visited:
  //             Add S' to worklist
  //             Add S' to Visited
  //
  while (!WorkList.empty()) {
    State *current = WorkList.pop_back_val();
    for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
           CE = allInsnClasses.end(); CI != CE; ++CI) {
      unsigned InsnClass = *CI;

      std::set<unsigned> NewStateResources;
      //
      // If we haven't already created a transition for this input
      // and the state can accommodate this InsnClass, create a transition.
      //
      if (!current->hasTransition(InsnClass) &&
          current->canAddInsnClass(InsnClass)) {
        State *NewState = nullptr;
        current->AddInsnClass(InsnClass, NewStateResources);
        assert(NewStateResources.size() && "New states must be generated");

        //
        // If we have seen this state before, then do not create a new state.
        //
        //
        std::map<std::set<unsigned>, State*>::iterator VI;
        if ((VI = Visited.find(NewStateResources)) != Visited.end())
          NewState = VI->second;
        else {
          NewState = new State;
          NewState->stateInfo = NewStateResources;
          D.addState(NewState);
          Visited[NewStateResources] = NewState;
          WorkList.push_back(NewState);
        }
        
        current->addTransition(InsnClass, NewState);
      }
    }
  }

  // Print out the table.
  D.writeTableAndAPI(OS, TargetName);
}

namespace llvm {

void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
  emitSourceFileHeader("Target DFA Packetizer Tables", OS);
  DFAPacketizerEmitter(RK).run(OS);
}

} // End llvm namespace