summaryrefslogtreecommitdiff
path: root/utils/TableGen/InstrSelectorEmitter.cpp
blob: 3e30a52b6cb7dc7e2c2613ebebac552e5e8b7309 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
//
// This tablegen backend is responsible for emitting a description of the target
// instruction set for the code generator.
//
//===----------------------------------------------------------------------===//

#include "InstrSelectorEmitter.h"
#include "CodeGenWrappers.h"
#include "Record.h"
#include "Support/Debug.h"

NodeType::ArgResultTypes NodeType::Translate(Record *R) {
  const std::string &Name = R->getName();
  if (Name == "DNVT_void") return Void;
  if (Name == "DNVT_val" ) return Val;
  if (Name == "DNVT_arg0") return Arg0;
  if (Name == "DNVT_ptr" ) return Ptr;
  throw "Unknown DagNodeValType '" + Name + "'!";
}


//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//

// updateNodeType - Set the node type of N to VT if VT contains information.  If
// N already contains a conflicting type, then throw an exception
//
bool TreePatternNode::updateNodeType(MVT::ValueType VT,
                                     const std::string &RecName) {
  if (VT == MVT::Other || getType() == VT) return false;
  if (getType() == MVT::Other) {
    setType(VT);
    return true;
  }

  throw "Type inferfence contradiction found for pattern " + RecName;
}

/// InstantiateNonterminals - If this pattern refers to any nonterminals which
/// are not themselves completely resolved, clone the nonterminal and resolve it
/// with the using context we provide.
///
void TreePatternNode::InstantiateNonterminals(InstrSelectorEmitter &ISE) {
  if (!isLeaf()) {
    for (unsigned i = 0, e = Children.size(); i != e; ++i)
      Children[i]->InstantiateNonterminals(ISE);
    return;
  }
  
  // If this is a leaf, it might be a reference to a nonterminal!  Check now.
  if (DefInit *DI = dynamic_cast<DefInit*>(getValue()))
    if (DI->getDef()->isSubClassOf("Nonterminal")) {
      Pattern *NT = ISE.getPattern(DI->getDef());
      if (!NT->isResolved()) {
        // We found an unresolved nonterminal reference.  Ask the ISE to clone
        // it for us, then update our reference to the fresh, new, resolved,
        // nonterminal.
        
        Value = new DefInit(ISE.InstantiateNonterminal(NT, getType()));
      }
    }
}


/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
  TreePatternNode *New;
  if (isLeaf()) {
    New = new TreePatternNode(Value);
  } else {
    std::vector<TreePatternNode*> CChildren(Children.size());
    for (unsigned i = 0, e = Children.size(); i != e; ++i)
      CChildren[i] = Children[i]->clone();
    New = new TreePatternNode(Operator, CChildren);
  }
  New->setType(Type);
  return New;
}


std::ostream &operator<<(std::ostream &OS, const TreePatternNode &N) {
  if (N.isLeaf())
    return OS << N.getType() << ":" << *N.getValue();
  OS << "(" << N.getType() << ":";
  OS << N.getOperator()->getName();
  
  const std::vector<TreePatternNode*> &Children = N.getChildren();
  if (!Children.empty()) {
    OS << " " << *Children[0];
    for (unsigned i = 1, e = Children.size(); i != e; ++i)
      OS << ", " << *Children[i];
  }  
  return OS << ")";
}

void TreePatternNode::dump() const { std::cerr << *this; }

//===----------------------------------------------------------------------===//
// Pattern implementation
//

// Parse the specified DagInit into a TreePattern which we can use.
//
Pattern::Pattern(PatternType pty, DagInit *RawPat, Record *TheRec,
                 InstrSelectorEmitter &ise)
  : PTy(pty), TheRecord(TheRec), ISE(ise) {

  // First, parse the pattern...
  Tree = ParseTreePattern(RawPat);

  // Run the type-inference engine...
  InferAllTypes();

  if (PTy == Instruction || PTy == Expander) {
    // Check to make sure there is not any unset types in the tree pattern...
    if (!isResolved()) {
      std::cerr << "In pattern: " << *Tree << "\n";
      error("Could not infer all types!");
    }

    // Check to see if we have a top-level (set) of a register.
    if (Tree->getOperator()->getName() == "set") {
      assert(Tree->getChildren().size() == 2 && "Set with != 2 arguments?");
      if (!Tree->getChild(0)->isLeaf())
        error("Arg #0 of set should be a register or register class!");
      DefInit *RegInit = dynamic_cast<DefInit*>(Tree->getChild(0)->getValue());
      if (RegInit == 0)
        error("LHS of 'set' expected to be a register or register class!");

      Result = RegInit->getDef();
      Tree = Tree->getChild(1);
    }
  }
}



void Pattern::error(const std::string &Msg) const {
  std::string M = "In ";
  switch (PTy) {
  case Nonterminal: M += "nonterminal "; break;
  case Instruction: M += "instruction "; break;
  case Expander   : M += "expander "; break;
  }
  throw M + TheRecord->getName() + ": " + Msg;  
}

/// getIntrinsicType - Check to see if the specified record has an intrinsic
/// type which should be applied to it.  This infer the type of register
/// references from the register file information, for example.
///
MVT::ValueType Pattern::getIntrinsicType(Record *R) const {
  // Check to see if this is a register or a register class...
  if (R->isSubClassOf("RegisterClass"))
    return getValueType(R->getValueAsDef("RegType"));
  else if (R->isSubClassOf("Nonterminal"))
    return ISE.ReadNonterminal(R)->getTree()->getType();
  else if (R->isSubClassOf("Register")) {
    std::cerr << "WARNING: Explicit registers not handled yet!\n";
    return MVT::Other;
  }

  throw "Error: Unknown value used: " + R->getName();
}

TreePatternNode *Pattern::ParseTreePattern(DagInit *DI) {
  Record *Operator = DI->getNodeType();
  const std::vector<Init*> &Args = DI->getArgs();

  if (Operator->isSubClassOf("ValueType")) {
    // If the operator is a ValueType, then this must be "type cast" of a leaf
    // node.
    if (Args.size() != 1)
      error("Type cast only valid for a leaf node!");
    
    Init *Arg = Args[0];
    TreePatternNode *New;
    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
      New = new TreePatternNode(DI);
      // If it's a regclass or something else known, set the type.
      New->setType(getIntrinsicType(DI->getDef()));
    } else {
      Arg->dump();
      error("Unknown leaf value for tree pattern!");
    }

    // Apply the type cast...
    New->updateNodeType(getValueType(Operator), TheRecord->getName());
    return New;
  }

  if (!ISE.getNodeTypes().count(Operator))
    error("Unrecognized node '" + Operator->getName() + "'!");

  std::vector<TreePatternNode*> Children;
  
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    Init *Arg = Args[i];
    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
      Children.push_back(ParseTreePattern(DI));
    } else if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
      Children.push_back(new TreePatternNode(DI));
      // If it's a regclass or something else known, set the type.
      Children.back()->setType(getIntrinsicType(DI->getDef()));
    } else {
      Arg->dump();
      error("Unknown leaf value for tree pattern!");
    }
  }

  return new TreePatternNode(Operator, Children);
}

void Pattern::InferAllTypes() {
  bool MadeChange, AnyUnset;
  do {
    MadeChange = false;
    AnyUnset = InferTypes(Tree, MadeChange);
  } while ((AnyUnset || MadeChange) && !(AnyUnset && !MadeChange));
  Resolved = !AnyUnset;
}


// InferTypes - Perform type inference on the tree, returning true if there
// are any remaining untyped nodes and setting MadeChange if any changes were
// made.
bool Pattern::InferTypes(TreePatternNode *N, bool &MadeChange) {
  if (N->isLeaf()) return N->getType() == MVT::Other;

  bool AnyUnset = false;
  Record *Operator = N->getOperator();
  assert(ISE.getNodeTypes().count(Operator) && "No node info for node!");
  const NodeType &NT = ISE.getNodeTypes()[Operator];

  // Check to see if we can infer anything about the argument types from the
  // return types...
  const std::vector<TreePatternNode*> &Children = N->getChildren();
  if (Children.size() != NT.ArgTypes.size())
    error("Incorrect number of children for " + Operator->getName() + " node!");

  for (unsigned i = 0, e = Children.size(); i != e; ++i) {
    TreePatternNode *Child = Children[i];
    AnyUnset |= InferTypes(Child, MadeChange);

    switch (NT.ArgTypes[i]) {
    case NodeType::Arg0:
      MadeChange |= Child->updateNodeType(Children[0]->getType(),
                                          TheRecord->getName());
      break;
    case NodeType::Val:
      if (Child->getType() == MVT::isVoid)
        error("Inferred a void node in an illegal place!");
      break;
    case NodeType::Ptr:
      MadeChange |= Child->updateNodeType(ISE.getTarget().getPointerType(),
                                          TheRecord->getName());
      break;
    default: assert(0 && "Invalid argument ArgType!");
    }
  }

  // See if we can infer anything about the return type now...
  switch (NT.ResultType) {
  case NodeType::Void:
    MadeChange |= N->updateNodeType(MVT::isVoid, TheRecord->getName());
    break;
  case NodeType::Arg0:
    MadeChange |= N->updateNodeType(Children[0]->getType(),
                                    TheRecord->getName());
    break;

  case NodeType::Ptr:
    MadeChange |= N->updateNodeType(ISE.getTarget().getPointerType(),
                                    TheRecord->getName());
    break;
  case NodeType::Val:
    if (N->getType() == MVT::isVoid)
      error("Inferred a void node in an illegal place!");
    break;
  default:
    assert(0 && "Unhandled type constraint!");
    break;
  }

  return AnyUnset | N->getType() == MVT::Other;
}

/// clone - This method is used to make an exact copy of the current pattern,
/// then change the "TheRecord" instance variable to the specified record.
///
Pattern *Pattern::clone(Record *R) const {
  assert(PTy == Nonterminal && "Can only clone nonterminals");
  return new Pattern(Tree->clone(), R, Resolved, ISE);
}



std::ostream &operator<<(std::ostream &OS, const Pattern &P) {
  switch (P.getPatternType()) {
  case Pattern::Nonterminal: OS << "Nonterminal pattern "; break;
  case Pattern::Instruction: OS << "Instruction pattern "; break;
  case Pattern::Expander:    OS << "Expander pattern    "; break;
  }

  OS << P.getRecord()->getName() << ":\t";

  if (Record *Result = P.getResult())
    OS << Result->getName() << " = ";
  OS << *P.getTree();

  if (!P.isResolved())
    OS << " [not completely resolved]";
  return OS;
}


//===----------------------------------------------------------------------===//
// InstrSelectorEmitter implementation
//

/// ReadNodeTypes - Read in all of the node types in the current RecordKeeper,
/// turning them into the more accessible NodeTypes data structure.
///
void InstrSelectorEmitter::ReadNodeTypes() {
  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("DagNode");
  DEBUG(std::cerr << "Getting node types: ");
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
    Record *Node = Nodes[i];
    
    // Translate the return type...
    NodeType::ArgResultTypes RetTy =
      NodeType::Translate(Node->getValueAsDef("RetType"));

    // Translate the arguments...
    ListInit *Args = Node->getValueAsListInit("ArgTypes");
    std::vector<NodeType::ArgResultTypes> ArgTypes;

    for (unsigned a = 0, e = Args->getSize(); a != e; ++a) {
      if (DefInit *DI = dynamic_cast<DefInit*>(Args->getElement(a)))
        ArgTypes.push_back(NodeType::Translate(DI->getDef()));
      else
        throw "In node " + Node->getName() + ", argument is not a Def!";

      if (a == 0 && ArgTypes.back() == NodeType::Arg0)
        throw "In node " + Node->getName() + ", arg 0 cannot have type 'arg0'!";
      if (ArgTypes.back() == NodeType::Void)
        throw "In node " + Node->getName() + ", args cannot be void type!";
    }
    if (RetTy == NodeType::Arg0 && Args->getSize() == 0)
      throw "In node " + Node->getName() +
            ", invalid return type for nullary node!";

    // Add the node type mapping now...
    NodeTypes[Node] = NodeType(RetTy, ArgTypes);
    DEBUG(std::cerr << Node->getName() << ", ");
  }
  DEBUG(std::cerr << "DONE!\n");
}

Pattern *InstrSelectorEmitter::ReadNonterminal(Record *R) {
  Pattern *&P = Patterns[R];
  if (P) return P;  // Don't reread it!

  DagInit *DI = R->getValueAsDag("Pattern");
  P = new Pattern(Pattern::Nonterminal, DI, R, *this);
  DEBUG(std::cerr << "Parsed " << *P << "\n");
  return P;
}


// ReadNonTerminals - Read in all nonterminals and incorporate them into our
// pattern database.
void InstrSelectorEmitter::ReadNonterminals() {
  std::vector<Record*> NTs = Records.getAllDerivedDefinitions("Nonterminal");
  for (unsigned i = 0, e = NTs.size(); i != e; ++i)
    ReadNonterminal(NTs[i]);
}


/// ReadInstructionPatterns - Read in all subclasses of Instruction, and process
/// those with a useful Pattern field.
///
void InstrSelectorEmitter::ReadInstructionPatterns() {
  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    Record *Inst = Insts[i];
    if (DagInit *DI = dynamic_cast<DagInit*>(Inst->getValueInit("Pattern"))) {
      Patterns[Inst] = new Pattern(Pattern::Instruction, DI, Inst, *this);
      DEBUG(std::cerr << "Parsed " << *Patterns[Inst] << "\n");
    }
  }
}

/// ReadExpanderPatterns - Read in all expander patterns...
///
void InstrSelectorEmitter::ReadExpanderPatterns() {
  std::vector<Record*> Expanders = Records.getAllDerivedDefinitions("Expander");
  for (unsigned i = 0, e = Expanders.size(); i != e; ++i) {
    Record *Expander = Expanders[i];
    DagInit *DI = Expander->getValueAsDag("Pattern");
    Patterns[Expander] = new Pattern(Pattern::Expander, DI, Expander, *this);
    DEBUG(std::cerr << "Parsed " << *Patterns[Expander] << "\n");
  }
}


// InstantiateNonterminals - Instantiate any unresolved nonterminals with
// information from the context that they are used in.
//
void InstrSelectorEmitter::InstantiateNonterminals() {
  DEBUG(std::cerr << "Instantiating nonterminals:\n");
  for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
         E = Patterns.end(); I != E; ++I)
    if (I->second->isResolved())
      I->second->InstantiateNonterminals();
}

/// InstantiateNonterminal - This method takes the nonterminal specified by
/// NT, which should not be completely resolved, clones it, applies ResultTy
/// to its root, then runs the type inference stuff on it.  This should
/// produce a newly resolved nonterminal, which we make a record for and
/// return.  To be extra fancy and efficient, this only makes one clone for
/// each type it is instantiated with.
Record *InstrSelectorEmitter::InstantiateNonterminal(Pattern *NT,
                                                     MVT::ValueType ResultTy) {
  assert(!NT->isResolved() && "Nonterminal is already resolved!");

  // Check to see if we have already instantiated this pair...
  Record* &Slot = InstantiatedNTs[std::make_pair(NT, ResultTy)];
  if (Slot) return Slot;
  
  DEBUG(std::cerr << "  Nonterminal '" << NT->getRecord()->getName()
                  << "' for type '" << getName(ResultTy) << "'\n");

  Record *New = new Record(NT->getRecord()->getName()+"_"+getName(ResultTy));

  // Copy the pattern...
  Pattern *NewPat = NT->clone(New);

  // Apply the type to the root...
  NewPat->getTree()->updateNodeType(ResultTy, New->getName());

  // Infer types...
  NewPat->InferAllTypes();

  // Make sure everything is good to go now...
  if (!NewPat->isResolved())
    NewPat->error("Instantiating nonterminal did not resolve all types!");

  // Add the pattern to the patterns map, add the record to the RecordKeeper,
  // return the new record.
  Patterns[New] = NewPat;
  Records.addDef(New);
  return Slot = New;
}


void InstrSelectorEmitter::run(std::ostream &OS) {
  // Type-check all of the node types to ensure we "understand" them.
  ReadNodeTypes();
  
  // Read in all of the nonterminals, instructions, and expanders...
  ReadNonterminals();
  ReadInstructionPatterns();
  ReadExpanderPatterns();

  // Instantiate any unresolved nonterminals with information from the context
  // that they are used in.
  InstantiateNonterminals();


  std::cerr << "Patterns aquired:\n";
  for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
         E = Patterns.end(); I != E; ++I)
    if (I->second->isResolved())
      std::cerr << "  " << *I->second << "\n";
}