summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDuncan P. N. Exon Smith <dexonsmith@apple.com>2014-04-19 22:46:00 +0000
committerDuncan P. N. Exon Smith <dexonsmith@apple.com>2014-04-19 22:46:00 +0000
commitf44eda4764476b9043a13df247a558998ea2ed10 (patch)
treec5250834c0fd832fbdb7363822269f603cee844f
parentc404a5334ef2e03e4c89fed6da7343e2e0709631 (diff)
downloadllvm-f44eda4764476b9043a13df247a558998ea2ed10.tar.gz
llvm-f44eda4764476b9043a13df247a558998ea2ed10.tar.bz2
llvm-f44eda4764476b9043a13df247a558998ea2ed10.tar.xz
Revert "blockfreq: Rewrite BlockFrequencyInfoImpl"
This reverts commit r206704, as expected. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206707 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/Analysis/BlockFrequencyInfoImpl.h1717
-rw-r--r--lib/Analysis/BlockFrequencyInfo.cpp8
-rw-r--r--lib/Analysis/BlockFrequencyInfoImpl.cpp932
-rw-r--r--lib/Analysis/CMakeLists.txt1
-rw-r--r--lib/CodeGen/MachineBlockFrequencyInfo.cpp12
-rw-r--r--test/Analysis/BlockFrequencyInfo/bad_input.ll50
-rw-r--r--test/Analysis/BlockFrequencyInfo/basic.ll55
-rw-r--r--test/Analysis/BlockFrequencyInfo/double_exit.ll165
-rw-r--r--test/Analysis/BlockFrequencyInfo/irreducible.ll197
-rw-r--r--test/Analysis/BlockFrequencyInfo/loop_with_branch.ll44
-rw-r--r--test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll59
-rw-r--r--test/CodeGen/XCore/llvm-intrinsics.ll6
12 files changed, 316 insertions, 2930 deletions
diff --git a/include/llvm/Analysis/BlockFrequencyInfoImpl.h b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
index 53a000d12f..f891afdf55 100644
--- a/include/llvm/Analysis/BlockFrequencyInfoImpl.h
+++ b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
-// Shared implementation of BlockFrequency for IR and Machine Instructions.
+// Shared implementation of BlockFrequencyInfo for IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//
@@ -16,6 +16,8 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
@@ -24,1527 +26,374 @@
#include <string>
#include <vector>
-//===----------------------------------------------------------------------===//
-//
-// PositiveFloat definition.
-//
-// TODO: Make this private to BlockFrequencyInfoImpl or delete.
-//
-//===----------------------------------------------------------------------===//
namespace llvm {
-class PositiveFloatBase {
-public:
- static const int32_t MaxExponent = 16383;
- static const int32_t MinExponent = -16382;
- static const int DefaultPrecision = 10;
-
- static void dump(uint64_t D, int16_t E, int Width);
- static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static std::string toString(uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
- static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
- static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
-
- static std::pair<uint64_t, bool> splitSigned(int64_t N) {
- if (N >= 0)
- return std::make_pair(N, false);
- uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
- return std::make_pair(Unsigned, true);
- }
- static int64_t joinSigned(uint64_t U, bool IsNeg) {
- if (U > uint64_t(INT64_MAX))
- return IsNeg ? INT64_MIN : INT64_MAX;
- return IsNeg ? -int64_t(U) : int64_t(U);
- }
-
- static int32_t extractLg(const std::pair<int32_t, int> &Lg) {
- return Lg.first;
- }
- static int32_t extractLgFloor(const std::pair<int32_t, int> &Lg) {
- return Lg.first - (Lg.second > 0);
- }
- static int32_t extractLgCeiling(const std::pair<int32_t, int> &Lg) {
- return Lg.first + (Lg.second < 0);
- }
-
- static std::pair<uint64_t, int16_t> divide64(uint64_t L, uint64_t R);
- static std::pair<uint64_t, int16_t> multiply64(uint64_t L, uint64_t R);
-
- static int compare(uint64_t L, uint64_t R, int Shift) {
- assert(Shift >= 0);
- assert(Shift < 64);
- uint64_t L_adjusted = L >> Shift;
- if (L_adjusted < R)
- return -1;
- if (L_adjusted > R)
- return 1;
+class BranchProbabilityInfo;
+class BlockFrequencyInfo;
+class MachineBranchProbabilityInfo;
+class MachineBlockFrequencyInfo;
- return L > L_adjusted << Shift ? 1 : 0;
- }
+namespace bfi_detail {
+template <class BlockT> struct TypeMap {};
+template <> struct TypeMap<BasicBlock> {
+ typedef BasicBlock BlockT;
+ typedef Function FunctionT;
+ typedef BranchProbabilityInfo BranchProbabilityInfoT;
};
-
-/// \brief Simple representation of a positive floating point.
-///
-/// PositiveFloat is a positive floating point number. It uses simple
-/// saturation arithmetic, and every operation is well-defined for every value.
-///
-/// The number is split into a signed exponent and unsigned digits. The number
-/// represented is \c getDigits()*2^getExponent(). In this way, the digits are
-/// much like the mantissa in the x87 long double, but there is no canonical
-/// form, so the same number can be represented by many bit representations
-/// (it's always in "denormal" mode).
-///
-/// PositiveFloat is templated on the underlying integer type for digits, which
-/// is expected to be one of uint64_t, uint32_t, uint16_t or uint8_t.
-///
-/// Unlike builtin floating point types, PositiveFloat is portable.
-///
-/// Unlike APFloat, PositiveFloat does not model architecture floating point
-/// behaviour (this should make it a little faster), and implements most
-/// operators (this makes it usable).
-///
-/// PositiveFloat is totally ordered. However, there is no canonical form, so
-/// there are multiple representations of most scalars. E.g.:
-///
-/// PositiveFloat(8u, 0) == PositiveFloat(4u, 1)
-/// PositiveFloat(4u, 1) == PositiveFloat(2u, 2)
-/// PositiveFloat(2u, 2) == PositiveFloat(1u, 3)
-///
-/// PositiveFloat implements most arithmetic operations. Precision is kept
-/// where possible. Uses simple saturation arithmetic, so that operations
-/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
-/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
-/// Any other division by 0.0 is defined to be getLargest().
-///
-/// As a convenience for modifying the exponent, left and right shifting are
-/// both implemented, and both interpret negative shifts as positive shifts in
-/// the opposite direction.
-///
-/// Future work might extract most of the implementation into a base class
-/// (e.g., \c Float) that has an \c IsSigned template parameter. The initial
-/// use case for this only needed positive semantics, but it wouldn't take much
-/// work to extend.
-///
-/// Exponents are limited to the range accepted by x87 long double. This makes
-/// it trivial to add functionality to convert to APFloat (this is already
-/// relied on for the implementation of printing).
-template <class DigitsT> class PositiveFloat : PositiveFloatBase {
-public:
- static_assert(!std::numeric_limits<DigitsT>::is_signed,
- "only unsigned floats supported");
-
- typedef DigitsT DigitsType;
-
-private:
- typedef std::numeric_limits<DigitsType> DigitsLimits;
-
- static const int Width = sizeof(DigitsType) * 8;
- static_assert(Width <= 64, "invalid integer width for digits");
-
-private:
- DigitsType Digits;
- int16_t Exponent;
-
-public:
- PositiveFloat() : Digits(0), Exponent(0) {}
-
- PositiveFloat(DigitsType Digits, int16_t Exponent)
- : Digits(Digits), Exponent(Exponent) {}
-
-private:
- PositiveFloat(const std::pair<uint64_t, int16_t> &X)
- : Digits(X.first), Exponent(X.second) {}
-
-public:
- static PositiveFloat getZero() { return PositiveFloat(0, 0); }
- static PositiveFloat getOne() { return PositiveFloat(1, 0); }
- static PositiveFloat getLargest() {
- return PositiveFloat(DigitsLimits::max(), MaxExponent);
- }
- static PositiveFloat getFloat(uint64_t N) { return adjustToWidth(N, 0); }
- static PositiveFloat getInverseFloat(uint64_t N) {
- return getFloat(N).invert();
- }
- static PositiveFloat getFraction(DigitsType N, DigitsType D) {
- return getQuotient(N, D);
- }
-
- int16_t getExponent() const { return Exponent; }
- DigitsType getDigits() const { return Digits; }
-
- /// \brief Convert to the given integer type.
- ///
- /// Convert to \c IntT using simple saturating arithmetic, truncating if
- /// necessary.
- template <class IntT> IntT toInt() const;
-
- bool isZero() const { return !Digits; }
- bool isLargest() const { return *this == getLargest(); }
- bool isOne() const {
- if (Exponent > 0 || Exponent <= -Width)
- return false;
- return Digits == DigitsType(1) << -Exponent;
- }
-
- /// \brief The log base 2, rounded.
- ///
- /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
- int32_t lg() const { return extractLg(lgImpl()); }
-
- /// \brief The log base 2, rounded towards INT32_MIN.
- ///
- /// Get the lg floor. lg 0 is defined to be INT32_MIN.
- int32_t lgFloor() const { return extractLgFloor(lgImpl()); }
-
- /// \brief The log base 2, rounded towards INT32_MAX.
- ///
- /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
- int32_t lgCeiling() const { return extractLgCeiling(lgImpl()); }
-
- bool operator==(const PositiveFloat &X) const { return compare(X) == 0; }
- bool operator<(const PositiveFloat &X) const { return compare(X) < 0; }
- bool operator!=(const PositiveFloat &X) const { return compare(X) != 0; }
- bool operator>(const PositiveFloat &X) const { return compare(X) > 0; }
- bool operator<=(const PositiveFloat &X) const { return compare(X) <= 0; }
- bool operator>=(const PositiveFloat &X) const { return compare(X) >= 0; }
-
- bool operator!() const { return isZero(); }
-
- /// \brief Convert to a decimal representation in a string.
- ///
- /// Convert to a string. Uses scientific notation for very large/small
- /// numbers. Scientific notation is used roughly for numbers outside of the
- /// range 2^-64 through 2^64.
- ///
- /// \c Precision indicates the number of decimal digits of precision to use;
- /// 0 requests the maximum available.
- ///
- /// As a special case to make debugging easier, if the number is small enough
- /// to convert without scientific notation and has more than \c Precision
- /// digits before the decimal place, it's printed accurately to the first
- /// digit past zero. E.g., assuming 10 digits of precision:
- ///
- /// 98765432198.7654... => 98765432198.8
- /// 8765432198.7654... => 8765432198.8
- /// 765432198.7654... => 765432198.8
- /// 65432198.7654... => 65432198.77
- /// 5432198.7654... => 5432198.765
- std::string toString(unsigned Precision = DefaultPrecision) {
- return PositiveFloatBase::toString(Digits, Exponent, Width, Precision);
- }
-
- /// \brief Print a decimal representation.
- ///
- /// Print a string. See toString for documentation.
- raw_ostream &print(raw_ostream &OS,
- unsigned Precision = DefaultPrecision) const {
- return PositiveFloatBase::print(OS, Digits, Exponent, Width, Precision);
- }
- void dump() const { return PositiveFloatBase::dump(Digits, Exponent, Width); }
-
- PositiveFloat &operator+=(const PositiveFloat &X);
- PositiveFloat &operator-=(const PositiveFloat &X);
- PositiveFloat &operator*=(const PositiveFloat &X);
- PositiveFloat &operator/=(const PositiveFloat &X);
- PositiveFloat &operator<<=(int16_t Shift) { shiftLeft(Shift); return *this; }
- PositiveFloat &operator>>=(int16_t Shift) { shiftRight(Shift); return *this; }
-
-private:
- void shiftLeft(int32_t Shift);
- void shiftRight(int32_t Shift);
-
- /// \brief Adjust two floats to have matching exponents.
- ///
- /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
- /// by value. Does nothing if \a isZero() for either.
- ///
- /// The value that compares smaller will lose precision, and possibly become
- /// \a isZero().
- PositiveFloat matchExponents(PositiveFloat X);
-
- /// \brief Increase exponent to match another float.
- ///
- /// Increases \c this to have an exponent matching \c X. May decrease the
- /// exponent of \c X in the process, and \c this may possibly become \a
- /// isZero().
- void increaseExponentToMatch(PositiveFloat &X, int32_t ExponentDiff);
-
-public:
- /// \brief Scale a large number accurately.
- ///
- /// Scale N (multiply it by this). Uses full precision multiplication, even
- /// if Width is smaller than 64, so information is not lost.
- uint64_t scale(uint64_t N) const;
- uint64_t scaleByInverse(uint64_t N) const {
- // TODO: implement directly, rather than relying on inverse. Inverse is
- // expensive.
- return inverse().scale(N);
- }
- int64_t scale(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scale(Unsigned.first), Unsigned.second);
- }
- int64_t scaleByInverse(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
- }
-
- int compare(const PositiveFloat &X) const;
- int compareTo(uint64_t N) const {
- PositiveFloat Float = getFloat(N);
- int Compare = compare(Float);
- if (Width == 64 || Compare != 0)
- return Compare;
-
- // Check for precision loss. We know *this == RoundTrip.
- uint64_t RoundTrip = Float.template toInt<uint64_t>();
- return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
- }
- int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
-
- PositiveFloat &invert() { return *this = PositiveFloat::getFloat(1) / *this; }
- PositiveFloat inverse() const { return PositiveFloat(*this).invert(); }
-
-private:
- static PositiveFloat getProduct(DigitsType L, DigitsType R);
- static PositiveFloat getQuotient(DigitsType Dividend, DigitsType Divisor);
-
- std::pair<int32_t, int> lgImpl() const;
- static int countLeadingZerosWidth(DigitsType Digits) {
- if (Width == 64)
- return countLeadingZeros64(Digits);
- if (Width == 32)
- return countLeadingZeros32(Digits);
- return countLeadingZeros32(Digits) + Width - 32;
- }
-
- static PositiveFloat adjustToWidth(uint64_t N, int32_t S) {
- assert(S >= MinExponent);
- assert(S <= MaxExponent);
- if (Width == 64 || N <= DigitsLimits::max())
- return PositiveFloat(N, S);
-
- // Shift right.
- int Shift = 64 - Width - countLeadingZeros64(N);
- DigitsType Shifted = N >> Shift;
-
- // Round.
- assert(S + Shift <= MaxExponent);
- return getRounded(PositiveFloat(Shifted, S + Shift),
- N & UINT64_C(1) << (Shift - 1));
- }
-
- static PositiveFloat getRounded(PositiveFloat P, bool Round) {
- if (!Round)
- return P;
- if (P.Digits == DigitsLimits::max())
- // Careful of overflow in the exponent.
- return PositiveFloat(1, P.Exponent) <<= Width;
- return PositiveFloat(P.Digits + 1, P.Exponent);
- }
+template <> struct TypeMap<MachineBasicBlock> {
+ typedef MachineBasicBlock BlockT;
+ typedef MachineFunction FunctionT;
+ typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
};
-
-#define POSITIVE_FLOAT_BOP(op, base) \
- template <class DigitsT> \
- PositiveFloat<DigitsT> operator op(const PositiveFloat<DigitsT> &L, \
- const PositiveFloat<DigitsT> &R) { \
- return PositiveFloat<DigitsT>(L) base R; \
- }
-POSITIVE_FLOAT_BOP(+, += )
-POSITIVE_FLOAT_BOP(-, -= )
-POSITIVE_FLOAT_BOP(*, *= )
-POSITIVE_FLOAT_BOP(/, /= )
-POSITIVE_FLOAT_BOP(<<, <<= )
-POSITIVE_FLOAT_BOP(>>, >>= )
-#undef POSITIVE_FLOAT_BOP
-
-template <class DigitsT>
-raw_ostream &operator<<(raw_ostream &OS, const PositiveFloat<DigitsT> &X) {
- return X.print(OS, 10);
-}
-
-#define POSITIVE_FLOAT_COMPARE_TO_TYPE(op, T1, T2) \
- template <class DigitsT> \
- bool operator op(const PositiveFloat<DigitsT> &L, T1 R) { \
- return L.compareTo(T2(R)) op 0; \
- } \
- template <class DigitsT> \
- bool operator op(T1 L, const PositiveFloat<DigitsT> &R) { \
- return 0 op R.compareTo(T2(L)); \
- }
-#define POSITIVE_FLOAT_COMPARE_TO(op) \
- POSITIVE_FLOAT_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
- POSITIVE_FLOAT_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
- POSITIVE_FLOAT_COMPARE_TO_TYPE(op, int64_t, int64_t) \
- POSITIVE_FLOAT_COMPARE_TO_TYPE(op, int32_t, int64_t)
-POSITIVE_FLOAT_COMPARE_TO(< )
-POSITIVE_FLOAT_COMPARE_TO(> )
-POSITIVE_FLOAT_COMPARE_TO(== )
-POSITIVE_FLOAT_COMPARE_TO(!= )
-POSITIVE_FLOAT_COMPARE_TO(<= )
-POSITIVE_FLOAT_COMPARE_TO(>= )
-#undef POSITIVE_FLOAT_COMPARE_TO
-#undef POSITIVE_FLOAT_COMPARE_TO_TYPE
-
-template <class DigitsT>
-uint64_t PositiveFloat<DigitsT>::scale(uint64_t N) const {
- if (Width == 64 || N <= DigitsLimits::max())
- return (getFloat(N) * *this).template toInt<uint64_t>();
-
- // Defer to the 64-bit version.
- return PositiveFloat<uint64_t>(Digits, Exponent).scale(N);
-}
-
-template <class DigitsT>
-PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getProduct(DigitsType L,
- DigitsType R) {
- // Check for zero.
- if (!L || !R)
- return getZero();
-
- // Check for numbers that we can compute with 64-bit math.
- if (Width <= 32 || (L <= UINT32_MAX && R <= UINT32_MAX))
- return adjustToWidth(uint64_t(L) * uint64_t(R), 0);
-
- // Do the full thing.
- return PositiveFloat(multiply64(L, R));
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getQuotient(DigitsType Dividend,
- DigitsType Divisor) {
- // Check for zero.
- if (!Dividend)
- return getZero();
- if (!Divisor)
- return getLargest();
-
- if (Width == 64)
- return PositiveFloat(divide64(Dividend, Divisor));
-
- // We can compute this with 64-bit math.
- int Shift = countLeadingZeros64(Dividend);
- uint64_t Shifted = uint64_t(Dividend) << Shift;
- uint64_t Quotient = Shifted / Divisor;
-
- // If Quotient needs to be shifted, then adjustToWidth will round.
- if (Quotient > DigitsLimits::max())
- return adjustToWidth(Quotient, -Shift);
-
- // Round based on the value of the next bit.
- return getRounded(PositiveFloat(Quotient, -Shift),
- Shifted % Divisor >= getHalf(Divisor));
-}
-
-template <class DigitsT>
-template <class IntT>
-IntT PositiveFloat<DigitsT>::toInt() const {
- typedef std::numeric_limits<IntT> Limits;
- if (*this < 1)
- return 0;
- if (*this >= Limits::max())
- return Limits::max();
-
- IntT N = Digits;
- if (Exponent > 0) {
- assert(size_t(Exponent) < sizeof(IntT) * 8);
- return N << Exponent;
- }
- if (Exponent < 0) {
- assert(size_t(-Exponent) < sizeof(IntT) * 8);
- return N >> -Exponent;
- }
- return N;
}
-template <class DigitsT>
-std::pair<int32_t, int> PositiveFloat<DigitsT>::lgImpl() const {
- if (isZero())
- return std::make_pair(INT32_MIN, 0);
+/// BlockFrequencyInfoImpl implements block frequency algorithm for IR and
+/// Machine Instructions. Algorithm starts with value ENTRY_FREQ
+/// for the entry block and then propagates frequencies using branch weights
+/// from (Machine)BranchProbabilityInfo. LoopInfo is not required because
+/// algorithm can find "backedges" by itself.
+template <class BT>
+class BlockFrequencyInfoImpl {
+ typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
+ typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
+ typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
+ BranchProbabilityInfoT;
- // Get the floor of the lg of Digits.
- int32_t LocalFloor = Width - countLeadingZerosWidth(Digits) - 1;
+ DenseMap<const BlockT *, BlockFrequency> Freqs;
- // Get the floor of the lg of this.
- int32_t Floor = Exponent + LocalFloor;
- if (Digits == UINT64_C(1) << LocalFloor)
- return std::make_pair(Floor, 0);
+ BranchProbabilityInfoT *BPI;
- // Round based on the next digit.
- assert(LocalFloor >= 1);
- bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
- return std::make_pair(Floor + Round, Round ? 1 : -1);
-}
+ FunctionT *Fn;
-template <class DigitsT>
-PositiveFloat<DigitsT> PositiveFloat<DigitsT>::matchExponents(PositiveFloat X) {
- if (isZero() || X.isZero() || Exponent == X.Exponent)
- return X;
-
- int32_t Diff = int32_t(X.Exponent) - int32_t(Exponent);
- if (Diff > 0)
- increaseExponentToMatch(X, Diff);
- else
- X.increaseExponentToMatch(*this, -Diff);
- return X;
-}
-template <class DigitsT>
-void PositiveFloat<DigitsT>::increaseExponentToMatch(PositiveFloat &X,
- int32_t ExponentDiff) {
- assert(ExponentDiff > 0);
- if (ExponentDiff >= 2 * Width) {
- *this = getZero();
- return;
- }
+ typedef GraphTraits< Inverse<BlockT *> > GT;
- // Use up any leading zeros on X, and then shift this.
- int32_t ShiftX = std::min(countLeadingZerosWidth(X.Digits), ExponentDiff);
- assert(ShiftX < Width);
+ static const uint64_t EntryFreq = 1 << 14;
- int32_t ShiftThis = ExponentDiff - ShiftX;
- if (ShiftThis >= Width) {
- *this = getZero();
- return;
+ std::string getBlockName(BasicBlock *BB) const {
+ return BB->getName().str();
}
- X.Digits <<= ShiftX;
- X.Exponent -= ShiftX;
- Digits >>= ShiftThis;
- Exponent += ShiftThis;
- return;
-}
+ std::string getBlockName(MachineBasicBlock *MBB) const {
+ std::string str;
+ raw_string_ostream ss(str);
+ ss << "BB#" << MBB->getNumber();
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator+=(const PositiveFloat &X) {
- if (isLargest() || X.isZero())
- return *this;
- if (isZero() || X.isLargest())
- return *this = X;
-
- // Normalize exponents.
- PositiveFloat Scaled = matchExponents(X);
-
- // Check for zero again.
- if (isZero())
- return *this = Scaled;
- if (Scaled.isZero())
- return *this;
-
- // Compute sum.
- DigitsType Sum = Digits + Scaled.Digits;
- bool DidOverflow = Sum < Digits;
- Digits = Sum;
- if (!DidOverflow)
- return *this;
-
- if (Exponent == MaxExponent)
- return *this = getLargest();
-
- ++Exponent;
- Digits = UINT64_C(1) << (Width - 1) | Digits >> 1;
-
- return *this;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator-=(const PositiveFloat &X) {
- if (X.isZero())
- return *this;
- if (*this <= X)
- return *this = getZero();
-
- // Normalize exponents.
- PositiveFloat Scaled = matchExponents(X);
- assert(Digits >= Scaled.Digits);
-
- // Compute difference.
- if (!Scaled.isZero()) {
- Digits -= Scaled.Digits;
- return *this;
- }
+ if (const BasicBlock *BB = MBB->getBasicBlock())
+ ss << " derived from LLVM BB " << BB->getName();
- // Check if X just barely lost its last bit. E.g., for 32-bit:
- //
- // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
- if (*this == PositiveFloat(1, X.lgFloor() + Width)) {
- Digits = DigitsType(0) - 1;
- --Exponent;
- }
- return *this;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator*=(const PositiveFloat &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = X;
-
- // Save the exponents.
- int32_t Exponents = int32_t(Exponent) + int32_t(X.Exponent);
-
- // Get the raw product.
- *this = getProduct(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Exponents;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator/=(const PositiveFloat &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = getLargest();
-
- // Save the exponents.
- int32_t Exponents = int32_t(Exponent) - int32_t(X.Exponent);
-
- // Get the raw quotient.
- *this = getQuotient(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Exponents;
-}
-template <class DigitsT>
-void PositiveFloat<DigitsT>::shiftLeft(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftRight(-Shift);
- return;
+ return ss.str();
}
- // Shift as much as we can in the exponent.
- int32_t ExponentShift = std::min(Shift, MaxExponent - Exponent);
- Exponent += ExponentShift;
- if (ExponentShift == Shift)
- return;
-
- // Check this late, since it's rare.
- if (isLargest())
- return;
-
- // Shift the digits themselves.
- Shift -= ExponentShift;
- if (Shift > countLeadingZerosWidth(Digits)) {
- // Saturate.
- *this = getLargest();
- return;
+ void setBlockFreq(BlockT *BB, BlockFrequency Freq) {
+ Freqs[BB] = Freq;
+ DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") = ";
+ printBlockFreq(dbgs(), Freq) << "\n");
}
- Digits <<= Shift;
- return;
-}
-
-template <class DigitsT>
-void PositiveFloat<DigitsT>::shiftRight(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftLeft(-Shift);
- return;
+ /// getEdgeFreq - Return edge frequency based on SRC frequency and Src -> Dst
+ /// edge probability.
+ BlockFrequency getEdgeFreq(BlockT *Src, BlockT *Dst) const {
+ BranchProbability Prob = BPI->getEdgeProbability(Src, Dst);
+ return getBlockFreq(Src) * Prob;
}
- // Shift as much as we can in the exponent.
- int32_t ExponentShift = std::min(Shift, Exponent - MinExponent);
- Exponent -= ExponentShift;
- if (ExponentShift == Shift)
- return;
-
- // Shift the digits themselves.
- Shift -= ExponentShift;
- if (Shift >= Width) {
- // Saturate.
- *this = getZero();
- return;
+ /// incBlockFreq - Increase BB block frequency by FREQ.
+ ///
+ void incBlockFreq(BlockT *BB, BlockFrequency Freq) {
+ Freqs[BB] += Freq;
+ DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") += ";
+ printBlockFreq(dbgs(), Freq) << " --> ";
+ printBlockFreq(dbgs(), Freqs[BB]) << "\n");
}
- Digits >>= Shift;
- return;
-}
+ // All blocks in postorder.
+ std::vector<BlockT *> POT;
-template <class DigitsT>
-int PositiveFloat<DigitsT>::compare(const PositiveFloat &X) const {
- // Check for zero.
- if (isZero())
- return X.isZero() ? 0 : -1;
- if (X.isZero())
- return 1;
-
- // Check for the scale. Use lgFloor to be sure that the exponent difference
- // is always lower than 64.
- int32_t lgL = lgFloor(), lgR = X.lgFloor();
- if (lgL != lgR)
- return lgL < lgR ? -1 : 1;
-
- // Compare digits.
- if (Exponent < X.Exponent)
- return PositiveFloatBase::compare(Digits, X.Digits, X.Exponent - Exponent);
-
- return -PositiveFloatBase::compare(X.Digits, Digits, Exponent - X.Exponent);
-}
+ // Map Block -> Position in reverse-postorder list.
+ DenseMap<BlockT *, unsigned> RPO;
-template <class T> struct isPodLike<PositiveFloat<T>> {
- static const bool value = true;
-};
-}
+ // For each loop header, record the per-iteration probability of exiting the
+ // loop. This is the reciprocal of the expected number of loop iterations.
+ typedef DenseMap<BlockT*, BranchProbability> LoopExitProbMap;
+ LoopExitProbMap LoopExitProb;
-//===----------------------------------------------------------------------===//
-//
-// BlockMass definition.
-//
-// TODO: Make this private to BlockFrequencyInfoImpl or delete.
-//
-//===----------------------------------------------------------------------===//
-namespace llvm {
-
-/// \brief Mass of a block.
-///
-/// This class implements a sort of fixed-point fraction always between 0.0 and
-/// 1.0. getMass() == UINT64_MAX indicates a value of 1.0.
-///
-/// Masses can be added and subtracted. Simple saturation arithmetic is used,
-/// so arithmetic operations never overflow or underflow.
-///
-/// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
-/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
-/// quite, maximum precision).
-///
-/// Masses can be scaled by \a BranchProbability at maximum precision.
-class BlockMass {
- uint64_t Mass;
-
-public:
- BlockMass() : Mass(0) {}
- explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
-
- static BlockMass getEmpty() { return BlockMass(); }
- static BlockMass getFull() { return BlockMass(UINT64_MAX); }
+ // (reverse-)postorder traversal iterators.
+ typedef typename std::vector<BlockT *>::iterator pot_iterator;
+ typedef typename std::vector<BlockT *>::reverse_iterator rpot_iterator;
- uint64_t getMass() const { return Mass; }
+ pot_iterator pot_begin() { return POT.begin(); }
+ pot_iterator pot_end() { return POT.end(); }
- bool isFull() const { return Mass == UINT64_MAX; }
- bool isEmpty() const { return !Mass; }
+ rpot_iterator rpot_begin() { return POT.rbegin(); }
+ rpot_iterator rpot_end() { return POT.rend(); }
- bool operator!() const { return isEmpty(); }
+ rpot_iterator rpot_at(BlockT *BB) {
+ rpot_iterator I = rpot_begin();
+ unsigned idx = RPO.lookup(BB);
+ assert(idx);
+ std::advance(I, idx - 1);
- /// \brief Add another mass.
- ///
- /// Adds another mass, saturating at \a isFull() rather than overflowing.
- BlockMass &operator+=(const BlockMass &X) {
- uint64_t Sum = Mass + X.Mass;
- Mass = Sum < Mass ? UINT64_MAX : Sum;
- return *this;
+ assert(*I == BB);
+ return I;
}
- /// \brief Subtract another mass.
+ /// isBackedge - Return if edge Src -> Dst is a reachable backedge.
///
- /// Subtracts another mass, saturating at \a isEmpty() rather than
- /// undeflowing.
- BlockMass &operator-=(const BlockMass &X) {
- uint64_t Diff = Mass - X.Mass;
- Mass = Diff > Mass ? 0 : Diff;
- return *this;
- }
-
- /// \brief Scale by another mass.
- ///
- /// The current implementation is a little imprecise, but it's relatively
- /// fast, never overflows, and maintains the property that 1.0*1.0==1.0
- /// (where isFull represents the number 1.0). It's an approximation of
- /// 128-bit multiply that gets right-shifted by 64-bits.
- ///
- /// For a given digit size, multiplying two-digit numbers looks like:
- ///
- /// U1 . L1
- /// * U2 . L2
- /// ============
- /// 0 . . L1*L2
- /// + 0 . U1*L2 . 0 // (shift left once by a digit-size)
- /// + 0 . U2*L1 . 0 // (shift left once by a digit-size)
- /// + U1*L2 . 0 . 0 // (shift left twice by a digit-size)
- ///
- /// BlockMass has 64-bit numbers. Split each into two 32-bit digits, stored
- /// 64-bit. Add 1 to the lower digits, to model isFull as 1.0; this won't
- /// overflow, since we have 64-bit storage for each digit.
- ///
- /// To do this accurately, (a) multiply into two 64-bit digits, incrementing
- /// the upper digit on overflows of the lower digit (carry), (b) subtract 1
- /// from the lower digit, decrementing the upper digit on underflow (carry),
- /// and (c) truncate the lower digit. For the 1.0*1.0 case, the upper digit
- /// will be 0 at the end of step (a), and then will underflow back to isFull
- /// (1.0) in step (b).
- ///
- /// Instead, the implementation does something a little faster with a small
- /// loss of accuracy: ignore the lower 64-bit digit entirely. The loss of
- /// accuracy is small, since the sum of the unmodelled carries is 0 or 1
- /// (i.e., step (a) will overflow at most once, and step (b) will underflow
- /// only if step (a) overflows).
- ///
- /// This is the formula we're calculating:
- ///
- /// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>32 + (U2 * (L1+1))>>32
- ///
- /// As a demonstration of 1.0*1.0, consider two 4-bit numbers that are both
- /// full (1111).
- ///
- /// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>2 + (U2 * (L1+1))>>2
- /// 11.11 * 11.11 == 11 * 11 + (11 * (11+1))/4 + (11 * (11+1))/4
- /// == 1001 + (11 * 100)/4 + (11 * 100)/4
- /// == 1001 + 1100/4 + 1100/4
- /// == 1001 + 0011 + 0011
- /// == 1111
- BlockMass &operator*=(const BlockMass &X) {
- uint64_t U1 = Mass >> 32, L1 = Mass & UINT32_MAX, U2 = X.Mass >> 32,
- L2 = X.Mass & UINT32_MAX;
- Mass = U1 * U2 + (U1 * (L2 + 1) >> 32) + ((L1 + 1) * U2 >> 32);
- return *this;
+ bool isBackedge(BlockT *Src, BlockT *Dst) const {
+ unsigned a = RPO.lookup(Src);
+ if (!a)
+ return false;
+ unsigned b = RPO.lookup(Dst);
+ assert(b && "Destination block should be reachable");
+ return a >= b;
}
- /// \brief Multiply by a branch probability.
- ///
- /// Multiply by P. Guarantees full precision.
- ///
- /// This could be naively implemented by multiplying by the numerator and
- /// dividing by the denominator, but in what order? Multiplying first can
- /// overflow, while dividing first will lose precision (potentially, changing
- /// a non-zero mass to zero).
- ///
- /// The implementation mixes the two methods. Since \a BranchProbability
- /// uses 32-bits and \a BlockMass 64-bits, shift the mass as far to the left
- /// as there is room, then divide by the denominator to get a quotient.
- /// Multiplying by the numerator and right shifting gives a first
- /// approximation.
- ///
- /// Calculate the error in this first approximation by calculating the
- /// opposite mass (multiply by the opposite numerator and shift) and
- /// subtracting both from teh original mass.
- ///
- /// Add to the first approximation the correct fraction of this error value.
- /// This time, multiply first and then divide, since there is no danger of
- /// overflow.
- ///
- /// \pre P represents a fraction between 0.0 and 1.0.
- BlockMass &operator*=(const BranchProbability &P);
-
- bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
- bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
- bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
- bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
- bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
- bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
+ /// getSingleBlockPred - return single BB block predecessor or NULL if
+ /// BB has none or more predecessors.
+ BlockT *getSingleBlockPred(BlockT *BB) {
+ typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
- /// \brief Convert to floating point.
- ///
- /// Convert to a float. \a isFull() gives 1.0, while \a isEmpty() gives
- /// slightly above 0.0.
- PositiveFloat<uint64_t> toFloat() const;
+ if (PI == PE)
+ return nullptr;
- void dump() const;
- raw_ostream &print(raw_ostream &OS) const;
-};
+ BlockT *Pred = *PI;
-inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) += R;
-}
-inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) -= R;
-}
-inline BlockMass operator*(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) *= R;
-}
-inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
- return BlockMass(L) *= R;
-}
-inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
- return BlockMass(R) *= L;
-}
+ ++PI;
+ if (PI != PE)
+ return nullptr;
-inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
- return X.print(OS);
-}
-
-template <> struct isPodLike<BlockMass> {
- static const bool value = true;
-};
-}
+ return Pred;
+ }
-//===----------------------------------------------------------------------===//
-//
-// BlockFrequencyInfoImpl definition.
-//
-//===----------------------------------------------------------------------===//
-namespace llvm {
+ void doBlock(BlockT *BB, BlockT *LoopHead,
+ SmallPtrSet<BlockT *, 8> &BlocksInLoop) {
-class BasicBlock;
-class BranchProbabilityInfo;
-class Function;
-class Loop;
-class LoopInfo;
-class MachineBasicBlock;
-class MachineBranchProbabilityInfo;
-class MachineFunction;
-class MachineLoop;
-class MachineLoopInfo;
-
-/// \brief Base class for BlockFrequencyInfoImpl
-///
-/// BlockFrequencyInfoImplBase has supporting data structures and some
-/// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
-/// the block type (or that call such algorithms) are skipped here.
-///
-/// Nevertheless, the majority of the overall algorithm documention lives with
-/// BlockFrequencyInfoImpl. See there for details.
-class BlockFrequencyInfoImplBase {
-public:
- typedef PositiveFloat<uint64_t> Float;
+ DEBUG(dbgs() << "doBlock(" << getBlockName(BB) << ")\n");
+ setBlockFreq(BB, 0);
- /// \brief Representative of a block.
- ///
- /// This is a simple wrapper around an index into the reverse-post-order
- /// traversal of the blocks.
- ///
- /// Unlike a block pointer, its order has meaning (location in the
- /// topological sort) and it's class is the same regardless of block type.
- struct BlockNode {
- typedef uint32_t IndexType;
- IndexType Index;
-
- bool operator==(const BlockNode &X) const { return Index == X.Index; }
- bool operator!=(const BlockNode &X) const { return Index != X.Index; }
- bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
- bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
- bool operator<(const BlockNode &X) const { return Index < X.Index; }
- bool operator>(const BlockNode &X) const { return Index > X.Index; }
-
- BlockNode() : Index(UINT32_MAX) {}
- BlockNode(IndexType Index) : Index(Index) {}
-
- bool isValid() const { return Index <= getMaxIndex(); }
- static size_t getMaxIndex() { return UINT32_MAX - 1; }
- };
-
- /// \brief Stats about a block itself.
- struct FrequencyData {
- Float Floating;
- uint64_t Integer;
- };
-
- /// \brief Index of loop information.
- struct WorkingData {
- BlockNode ContainingLoop; ///< The block whose loop this block is inside.
- uint32_t LoopIndex; ///< Index into PackagedLoops.
- bool IsPackaged; ///< Has ContainingLoop been packaged up?
- bool IsAPackage; ///< Has this block's loop been packaged up?
- BlockMass Mass; ///< Mass distribution from the entry block.
-
- WorkingData()
- : LoopIndex(UINT32_MAX), IsPackaged(false), IsAPackage(false) {}
-
- bool hasLoopHeader() const { return ContainingLoop.isValid(); }
- bool isLoopHeader() const { return LoopIndex != UINT32_MAX; }
- };
-
- /// \brief Unscaled probability weight.
- ///
- /// Probability weight for an edge in the graph (including the
- /// successor/target node).
- ///
- /// All edges in the original function are 32-bit. However, exit edges from
- /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
- /// space in general.
- ///
- /// In addition to the raw weight amount, Weight stores the type of the edge
- /// in the current context (i.e., the context of the loop being processed).
- /// Is this a local edge within the loop, an exit from the loop, or a
- /// backedge to the loop header?
- struct Weight {
- enum DistType { Local, Exit, Backedge };
- DistType Type;
- BlockNode TargetNode;
- uint64_t Amount;
- Weight() : Type(Local), Amount(0) {}
- };
-
- /// \brief Distribution of unscaled probability weight.
- ///
- /// Distribution of unscaled probability weight to a set of successors.
- ///
- /// This class collates the successor edge weights for later processing.
- ///
- /// \a DidOverflow indicates whether \a Total did overflow while adding to
- /// the distribution. It should never overflow twice. There's no flag for
- /// whether \a ForwardTotal overflows, since when \a Total exceeds 32-bits
- /// they both get re-computed during \a normalize().
- struct Distribution {
- typedef SmallVector<Weight, 4> WeightList;
- WeightList Weights; ///< Individual successor weights.
- uint64_t Total; ///< Sum of all weights.
- bool DidOverflow; ///< Whether \a Total did overflow.
- uint32_t ForwardTotal; ///< Total excluding backedges.
-
- Distribution() : Total(0), DidOverflow(false), ForwardTotal(0) {}
- void addLocal(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Local);
+ if (BB == LoopHead) {
+ setBlockFreq(BB, EntryFreq);
+ return;
}
- void addExit(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Exit);
+
+ if (BlockT *Pred = getSingleBlockPred(BB)) {
+ if (BlocksInLoop.count(Pred))
+ setBlockFreq(BB, getEdgeFreq(Pred, BB));
+ // TODO: else? irreducible, ignore it for now.
+ return;
}
- void addBackedge(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Backedge);
+
+ bool isInLoop = false;
+ bool isLoopHead = false;
+
+ for (typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
+ PI != PE; ++PI) {
+ BlockT *Pred = *PI;
+
+ if (isBackedge(Pred, BB)) {
+ isLoopHead = true;
+ } else if (BlocksInLoop.count(Pred)) {
+ incBlockFreq(BB, getEdgeFreq(Pred, BB));
+ isInLoop = true;
+ }
+ // TODO: else? irreducible.
}
- /// \brief Normalize the distribution.
- ///
- /// Combines multiple edges to the same \a Weight::TargetNode and scales
- /// down so that \a Total fits into 32-bits.
- ///
- /// This is linear in the size of \a Weights. For the vast majority of
- /// cases, adjacent edge weights are combined by sorting WeightList and
- /// combining adjacent weights. However, for very large edge lists an
- /// auxiliary hash table is used.
- void normalize();
-
- private:
- void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
- };
-
- /// \brief Data for a packaged loop.
- ///
- /// Contains the data necessary to represent represent a loop as a node once
- /// it's packaged.
- ///
- /// PackagedLoopData inherits from BlockData to give the node the necessary
- /// stats. Further, it has a list of successors, list of members, and stores
- /// the backedge mass assigned to this loop.
- struct PackagedLoopData {
- typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
- typedef SmallVector<BlockNode, 4> MemberList;
- BlockNode Header; ///< Header.
- ExitMap Exits; ///< Successor edges (and weights).
- MemberList Members; ///< Members of the loop.
- BlockMass BackedgeMass; ///< Mass returned to loop header.
- BlockMass Mass;
- Float Scale;
-
- PackagedLoopData(const BlockNode &Header) : Header(Header) {}
- };
-
- /// \brief Data about each block. This is used downstream.
- std::vector<FrequencyData> Freqs;
-
- /// \brief Loop data: see initializeLoops().
- std::vector<WorkingData> Working;
-
- /// \brief Indexed information about packaged loops.
- std::vector<PackagedLoopData> PackagedLoops;
-
- /// \brief Create the initial loop packages.
- ///
- /// Initializes PackagedLoops using the data in Working about backedges
- /// and containing loops. Called by initializeLoops().
- ///
- /// \post WorkingData::LoopIndex has been initialized for every loop header
- /// and PackagedLoopData::Members has been initialized.
+ if (!isInLoop)
+ return;
- /// \brief Add all edges out of a packaged loop to the distribution.
- ///
- /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
- /// successor edge.
- void addLoopSuccessorsToDist(const BlockNode &LoopHead,
- const BlockNode &LocalLoopHead,
- Distribution &Dist);
+ if (!isLoopHead)
+ return;
- /// \brief Add an edge to the distribution.
- ///
- /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
- /// edge is forward/exit/backedge is in the context of LoopHead. Otherwise,
- /// every edge should be a forward edge (since all the loops are packaged
- /// up).
- void addToDist(Distribution &Dist, const BlockNode &LoopHead,
- const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
-
- PackagedLoopData &getLoopPackage(const BlockNode &Head) {
- assert(Head.Index < Working.size());
- size_t Index = Working[Head.Index].LoopIndex;
- assert(Index < PackagedLoops.size());
- return PackagedLoops[Index];
+ // This block is a loop header, so boost its frequency by the expected
+ // number of loop iterations. The loop blocks will be revisited so they all
+ // get this boost.
+ typename LoopExitProbMap::const_iterator I = LoopExitProb.find(BB);
+ assert(I != LoopExitProb.end() && "Loop header missing from table");
+ Freqs[BB] /= I->second;
+ DEBUG(dbgs() << "Loop header scaled to ";
+ printBlockFreq(dbgs(), Freqs[BB]) << ".\n");
}
- /// \brief Distribute mass according to a distribution.
- ///
- /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
- /// backedges and exits are stored in its entry in PackagedLoops.
- ///
- /// Mass is distributed in parallel from two copies of the source mass.
- ///
- /// The first mass (forward) represents the distribution of mass through the
- /// local DAG. This distribution should lose mass at loop exits and ignore
- /// backedges.
- ///
- /// The second mass (general) represents the behavior of the loop in the
- /// global context. In a given distribution from the head, how much mass
- /// exits, and to where? How much mass returns to the loop head?
- ///
- /// The forward mass should be split up between local successors and exits,
- /// but only actually distributed to the local successors. The general mass
- /// should be split up between all three types of successors, but distributed
- /// only to exits and backedges.
- void distributeMass(const BlockNode &Source, const BlockNode &LoopHead,
- Distribution &Dist);
+ /// doLoop - Propagate block frequency down through the loop.
+ void doLoop(BlockT *Head, BlockT *Tail) {
+ DEBUG(dbgs() << "doLoop(" << getBlockName(Head) << ", "
+ << getBlockName(Tail) << ")\n");
- /// \brief Compute the loop scale for a loop.
- void computeLoopScale(const BlockNode &LoopHead);
+ SmallPtrSet<BlockT *, 8> BlocksInLoop;
- /// \brief Package up a loop.
- void packageLoop(const BlockNode &LoopHead);
+ for (rpot_iterator I = rpot_at(Head), E = rpot_at(Tail); ; ++I) {
+ BlockT *BB = *I;
+ doBlock(BB, Head, BlocksInLoop);
- /// \brief Finalize frequency metrics.
- ///
- /// Unwraps loop packages, calculates final frequencies, and cleans up
- /// no-longer-needed data structures.
- void finalizeMetrics();
-
- /// \brief Clear all memory.
- void clear();
-
- virtual std::string getBlockName(const BlockNode &Node) const;
-
- virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
- void dump() const { print(dbgs()); }
-
- Float getFloatingBlockFreq(const BlockNode &Node) const;
-
- BlockFrequency getBlockFreq(const BlockNode &Node) const;
+ BlocksInLoop.insert(BB);
+ if (I == E)
+ break;
+ }
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
- raw_ostream &printBlockFreq(raw_ostream &OS,
- const BlockFrequency &Freq) const;
+ // Compute loop's cyclic probability using backedges probabilities.
+ BlockFrequency BackFreq;
+ for (typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(Head),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(Head);
+ PI != PE; ++PI) {
+ BlockT *Pred = *PI;
+ assert(Pred);
+ if (isBackedge(Pred, Head))
+ BackFreq += getEdgeFreq(Pred, Head);
+ }
- uint64_t getEntryFreq() const {
- assert(!Freqs.empty());
- return Freqs[0].Integer;
+ // The cyclic probability is freq(BackEdges) / freq(Head), where freq(Head)
+ // only counts edges entering the loop, not the loop backedges.
+ // The probability of leaving the loop on each iteration is:
+ //
+ // ExitProb = 1 - CyclicProb
+ //
+ // The Expected number of loop iterations is:
+ //
+ // Iterations = 1 / ExitProb
+ //
+ uint64_t D = std::max(getBlockFreq(Head).getFrequency(), UINT64_C(1));
+ uint64_t N = std::max(BackFreq.getFrequency(), UINT64_C(1));
+ if (N < D)
+ N = D - N;
+ else
+ // We'd expect N < D, but rounding and saturation means that can't be
+ // guaranteed.
+ N = 1;
+
+ // Now ExitProb = N / D, make sure it fits in an i32/i32 fraction.
+ assert(N <= D);
+ if (D > UINT32_MAX) {
+ unsigned Shift = 32 - countLeadingZeros(D);
+ D >>= Shift;
+ N >>= Shift;
+ if (N == 0)
+ N = 1;
+ }
+ BranchProbability LEP = BranchProbability(N, D);
+ LoopExitProb.insert(std::make_pair(Head, LEP));
+ DEBUG(dbgs() << "LoopExitProb[" << getBlockName(Head) << "] = " << LEP
+ << " from 1 - ";
+ printBlockFreq(dbgs(), BackFreq) << " / ";
+ printBlockFreq(dbgs(), getBlockFreq(Head)) << ".\n");
}
- /// \brief Virtual destructor.
- ///
- /// Need a virtual destructor to mask the compiler warning about
- /// getBlockName().
- virtual ~BlockFrequencyInfoImplBase() {}
-};
-
-namespace bfi_detail {
-template <class BlockT> struct TypeMap {};
-template <> struct TypeMap<BasicBlock> {
- typedef BasicBlock BlockT;
- typedef Function FunctionT;
- typedef BranchProbabilityInfo BranchProbabilityInfoT;
- typedef Loop LoopT;
- typedef LoopInfo LoopInfoT;
-};
-template <> struct TypeMap<MachineBasicBlock> {
- typedef MachineBasicBlock BlockT;
- typedef MachineFunction FunctionT;
- typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
- typedef MachineLoop LoopT;
- typedef MachineLoopInfo LoopInfoT;
-};
-/// \brief Get the name of a MachineBasicBlock.
-///
-/// Get the name of a MachineBasicBlock. It's templated so that including from
-/// CodeGen is unnecessary (that would be a layering issue).
-///
-/// This is used mainly for debug output. The name is similar to
-/// MachineBasicBlock::getFullName(), but skips the name of the function.
-template <class BlockT> std::string getBlockName(const BlockT *BB) {
- assert(BB && "Unexpected nullptr");
- auto MachineName = "BB" + Twine(BB->getNumber());
- if (BB->getBasicBlock())
- return (MachineName + "[" + BB->getName() + "]").str();
- return MachineName.str();
-}
-/// \brief Get the name of a BasicBlock.
-template <> inline std::string getBlockName(const BasicBlock *BB) {
- assert(BB && "Unexpected nullptr");
- return BB->getName().str();
-}
-}
+ friend class BlockFrequencyInfo;
+ friend class MachineBlockFrequencyInfo;
-/// \brief Shared implementation for block frequency analysis.
-///
-/// This is a shared implementation of BlockFrequencyInfo and
-/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
-/// blocks.
-///
-/// This algorithm leverages BlockMass and PositiveFloat to maintain precision,
-/// separates mass distribution from loop scaling, and dithers to eliminate
-/// probability mass loss.
-///
-/// The implementation is split between BlockFrequencyInfoImpl, which knows the
-/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
-/// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
-/// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
-/// reverse-post order. This gives two advantages: it's easy to compare the
-/// relative ordering of two nodes, and maps keyed on BlockT can be represented
-/// by vectors.
-///
-/// This algorithm is O(V+E), unless there is irreducible control flow, in
-/// which case it's O(V*E) in the worst case.
-///
-/// These are the main stages:
-///
-/// 0. Reverse post-order traversal (\a initializeRPOT()).
-///
-/// Run a single post-order traversal and save it (in reverse) in RPOT.
-/// All other stages make use of this ordering. Save a lookup from BlockT
-/// to BlockNode (the index into RPOT) in Nodes.
-///
-/// 1. Loop indexing (\a initializeLoops()).
-///
-/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
-/// the algorithm. In particular, store the immediate members of each loop
-/// in reverse post-order.
-///
-/// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
-///
-/// For each loop (bottom-up), distribute mass through the DAG resulting
-/// from ignoring backedges and treating sub-loops as a single pseudo-node.
-/// Track the backedge mass distributed to the loop header, and use it to
-/// calculate the loop scale (number of loop iterations).
-///
-/// Visiting loops bottom-up is a post-order traversal of loop headers.
-/// For each loop, immediate members that represent sub-loops will already
-/// have been visited and packaged into a pseudo-node.
-///
-/// Distributing mass in a loop is a reverse-post-order traversal through
-/// the loop. Start by assigning full mass to the Loop header. For each
-/// node in the loop:
-///
-/// - Fetch and categorize the weight distribution for its successors.
-/// If this is a packaged-subloop, the weight distribution is stored
-/// in \a PackagedLoopData::Exits. Otherwise, fetch it from
-/// BranchProbabilityInfo.
-///
-/// - Each successor is categorized as \a Weight::Local, a normal
-/// forward edge within the current loop, \a Weight::Backedge, a
-/// backedge to the loop header, or \a Weight::Exit, any successor
-/// outside the loop. The weight, the successor, and its category
-/// are stored in \a Distribution. There can be multiple edges to
-/// each successor.
-///
-/// - Normalize the distribution: scale weights down so that their sum
-/// is 32-bits, and coalesce multiple edges to the same node.
-///
-/// - Distribute the mass accordingly, dithering to minimize mass loss,
-/// as described in \a distributeMass(). Mass is distributed in
-/// parallel in two ways: forward, and general. Local successors
-/// take their mass from the forward mass, while exit and backedge
-/// successors take their mass from the general mass. Additionally,
-/// exit edges use up (ignored) mass from the forward mass, and local
-/// edges use up (ignored) mass from the general distribution.
-///
-/// Finally, calculate the loop scale from the accumulated backedge mass.
-///
-/// 3. Distribute mass in the function (\a computeMassInFunction()).
-///
-/// Finally, distribute mass through the DAG resulting from packaging all
-/// loops in the function. This uses the same algorithm as distributing
-/// mass in a loop, except that there are no exit or backedge edges.
-///
-/// 4. Loop unpackaging and cleanup (\a finalizeMetrics()).
-///
-/// Initialize the frequency to a floating point representation of its
-/// mass.
-///
-/// Visit loops top-down (reverse post-order), scaling the loop header's
-/// frequency by its psuedo-node's mass and loop scale. Keep track of the
-/// minimum and maximum final frequencies.
-///
-/// Using the min and max frequencies as a guide, translate floating point
-/// frequencies to an appropriate range in uint64_t.
-///
-/// It has some known flaws.
-///
-/// - Irreducible control flow isn't modelled correctly. In particular,
-/// LoopInfo and MachineLoopInfo ignore irreducible backedges. The main
-/// result is that irreducible SCCs will under-scaled. No mass is lost,
-/// but the computed branch weights for the loop pseudo-node will be
-/// incorrect.
-///
-/// Modelling irreducible control flow exactly involves setting up and
-/// solving a group of infinite geometric series. Such precision is
-/// unlikely to be worthwhile, since most of our algorithms give up on
-/// irreducible control flow anyway.
-///
-/// Nevertheless, we might find that we need to get closer. If
-/// LoopInfo/MachineLoopInfo flags loops with irreducible control flow
-/// (and/or the function as a whole), we can find the SCCs, compute an
-/// approximate exit frequency for the SCC as a whole, and scale up
-/// accordingly.
-///
-/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
-/// BlockFrequency's 64-bit integer precision.
-template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
- typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
- typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
- typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
- BranchProbabilityInfoT;
- typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
- typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
+ BlockFrequencyInfoImpl() { }
- typedef GraphTraits<const BlockT *> Successor;
- typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
+ void doFunction(FunctionT *fn, BranchProbabilityInfoT *bpi) {
+ Fn = fn;
+ BPI = bpi;
- const BranchProbabilityInfoT *BPI;
- const LoopInfoT *LI;
- const FunctionT *F;
+ // Clear everything.
+ RPO.clear();
+ POT.clear();
+ LoopExitProb.clear();
+ Freqs.clear();
- // All blocks in reverse postorder.
- std::vector<const BlockT *> RPOT;
- DenseMap<const BlockT *, BlockNode> Nodes;
+ BlockT *EntryBlock = fn->begin();
- typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
+ std::copy(po_begin(EntryBlock), po_end(EntryBlock), std::back_inserter(POT));
- rpot_iterator rpot_begin() const { return RPOT.begin(); }
- rpot_iterator rpot_end() const { return RPOT.end(); }
+ unsigned RPOidx = 0;
+ for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
+ BlockT *BB = *I;
+ RPO[BB] = ++RPOidx;
+ DEBUG(dbgs() << "RPO[" << getBlockName(BB) << "] = " << RPO[BB] << "\n");
+ }
- size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
+ // Travel over all blocks in postorder.
+ for (pot_iterator I = pot_begin(), E = pot_end(); I != E; ++I) {
+ BlockT *BB = *I;
+ BlockT *LastTail = nullptr;
+ DEBUG(dbgs() << "POT: " << getBlockName(BB) << "\n");
- BlockNode getNode(const rpot_iterator &I) const {
- return BlockNode(getIndex(I));
- }
- BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
+ for (typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
+ PI != PE; ++PI) {
- const BlockT *getBlock(const BlockNode &Node) const {
- assert(Node.Index < RPOT.size());
- return RPOT[Node.Index];
- }
-
- void initializeRPOT();
- void initializeLoops();
- void runOnFunction(const FunctionT *F);
+ BlockT *Pred = *PI;
+ if (isBackedge(Pred, BB) && (!LastTail || RPO[Pred] > RPO[LastTail]))
+ LastTail = Pred;
+ }
- void propagateMassToSuccessors(const BlockNode &LoopHead,
- const BlockNode &Node);
- void computeMassInLoops();
- void computeMassInLoop(const BlockNode &LoopHead);
- void computeMassInFunction();
+ if (LastTail)
+ doLoop(BB, LastTail);
+ }
- std::string getBlockName(const BlockNode &Node) const override {
- return bfi_detail::getBlockName(getBlock(Node));
+ // At the end assume the whole function as a loop, and travel over it once
+ // again.
+ doLoop(*(rpot_begin()), *(pot_begin()));
}
public:
- const FunctionT *getFunction() const { return F; }
- void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
- const LoopInfoT *LI);
- BlockFrequencyInfoImpl() : BPI(0), LI(0), F(0) {}
+ uint64_t getEntryFreq() { return EntryFreq; }
- using BlockFrequencyInfoImplBase::getEntryFreq;
+ /// getBlockFreq - Return block frequency. Return 0 if we don't have it.
BlockFrequency getBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
- }
- Float getFloatingBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
- }
-
- /// \brief Print the frequencies for the current function.
- ///
- /// Prints the frequencies for the blocks in the current function.
- ///
- /// Blocks are printed in the natural iteration order of the function, rather
- /// than reverse post-order. This provides two advantages: writing -analyze
- /// tests is easier (since blocks come out in source order), and even
- /// unreachable blocks are printed.
- ///
- /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
- /// we need to override it here.
- raw_ostream &print(raw_ostream &OS) const override;
- using BlockFrequencyInfoImplBase::dump;
-
- using BlockFrequencyInfoImplBase::printBlockFreq;
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
- }
-};
-
-template <class BT>
-void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
- const BranchProbabilityInfoT *BPI,
- const LoopInfoT *LI) {
- // Save the parameters.
- this->BPI = BPI;
- this->LI = LI;
- this->F = F;
-
- // Clean up left-over data structures.
- BlockFrequencyInfoImplBase::clear();
- RPOT.clear();
- Nodes.clear();
-
- // Initialize.
- DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
- << std::string(F->getName().size(), '=') << "\n");
- initializeRPOT();
- initializeLoops();
-
- // Visit loops in post-order to find thelocal mass distribution, and then do
- // the full function.
- computeMassInLoops();
- computeMassInFunction();
- finalizeMetrics();
-}
-
-template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
- const BlockT *Entry = F->begin();
- RPOT.reserve(F->size());
- std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
- std::reverse(RPOT.begin(), RPOT.end());
-
- assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
- "More nodes in function than Block Frequency Info supports");
-
- DEBUG(dbgs() << "reverse-post-order-traversal\n");
- for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
- BlockNode Node = getNode(I);
- DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
- Nodes[*I] = Node;
+ typename DenseMap<const BlockT *, BlockFrequency>::const_iterator
+ I = Freqs.find(BB);
+ if (I != Freqs.end())
+ return I->second;
+ return 0;
}
- Working.resize(RPOT.size());
- Freqs.resize(RPOT.size());
-}
-
-template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
- DEBUG(dbgs() << "loop-detection\n");
- if (LI->empty())
- return;
-
- // Visit loops top down and assign them an index.
- std::deque<const LoopT *> Q;
- Q.insert(Q.end(), LI->begin(), LI->end());
- while (!Q.empty()) {
- const LoopT *Loop = Q.front();
- Q.pop_front();
- Q.insert(Q.end(), Loop->begin(), Loop->end());
-
- // Save the order this loop was visited.
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
-
- Working[Header.Index].LoopIndex = PackagedLoops.size();
- PackagedLoops.emplace_back(Header);
- DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
+ void print(raw_ostream &OS) const {
+ OS << "\n\n---- Block Freqs ----\n";
+ for (typename FunctionT::iterator I = Fn->begin(), E = Fn->end(); I != E;) {
+ BlockT *BB = I++;
+ OS << " " << getBlockName(BB) << " = ";
+ printBlockFreq(OS, getBlockFreq(BB)) << "\n";
+
+ for (typename GraphTraits<BlockT *>::ChildIteratorType
+ SI = GraphTraits<BlockT *>::child_begin(BB),
+ SE = GraphTraits<BlockT *>::child_end(BB); SI != SE; ++SI) {
+ BlockT *Succ = *SI;
+ OS << " " << getBlockName(BB) << " -> " << getBlockName(Succ)
+ << " = "; printBlockFreq(OS, getEdgeFreq(BB, Succ)) << "\n";
+ }
+ }
}
- // Visit nodes in reverse post-order and add them to their deepest containing
- // loop.
- for (size_t Index = 0; Index < RPOT.size(); ++Index) {
- const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
- if (!Loop)
- continue;
-
- // If this is a loop header, find its parent loop (if any).
- if (Working[Index].isLoopHeader())
- if (!(Loop = Loop->getParentLoop()))
- continue;
-
- // Add this node to its containing loop's member list.
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
- const auto &HeaderData = Working[Header.Index];
- assert(HeaderData.isLoopHeader());
-
- Working[Index].ContainingLoop = Header;
- PackagedLoops[HeaderData.LoopIndex].Members.push_back(Index);
- DEBUG(dbgs() << " - loop = " << getBlockName(Header)
- << ": member = " << getBlockName(Index) << "\n");
+ void dump() const {
+ print(dbgs());
}
-}
-
-template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
- // Visit loops with the deepest first, and the top-level loops last.
- for (auto L = PackagedLoops.rbegin(), LE = PackagedLoops.rend(); L != LE; ++L)
- computeMassInLoop(L->Header);
-}
-
-template <class BT>
-void BlockFrequencyInfoImpl<BT>::computeMassInLoop(const BlockNode &LoopHead) {
- // Compute mass in loop.
- DEBUG(dbgs() << "compute-mass-in-loop: " << getBlockName(LoopHead) << "\n");
-
- Working[LoopHead.Index].Mass = BlockMass::getFull();
- propagateMassToSuccessors(LoopHead, LoopHead);
-
- for (const BlockNode &M : getLoopPackage(LoopHead).Members)
- propagateMassToSuccessors(LoopHead, M);
-
- computeLoopScale(LoopHead);
- packageLoop(LoopHead);
-}
-template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
- // Compute mass in function.
- DEBUG(dbgs() << "compute-mass-in-function\n");
- assert(!Working.empty() && "no blocks in function");
- assert(!Working[0].isLoopHeader() && "entry block is a loop header");
-
- Working[0].Mass = BlockMass::getFull();
- for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
- // Check for nodes that have been packaged.
- BlockNode Node = getNode(I);
- if (Working[Node.Index].hasLoopHeader())
- continue;
-
- propagateMassToSuccessors(BlockNode(), Node);
+ // Utility method that looks up the block frequency associated with BB and
+ // prints it to OS.
+ raw_ostream &printBlockFreq(raw_ostream &OS,
+ const BlockT *BB) {
+ return printBlockFreq(OS, getBlockFreq(BB));
}
-}
-template <class BT>
-void
-BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(const BlockNode &LoopHead,
- const BlockNode &Node) {
- DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
- // Calculate probability for successors.
- Distribution Dist;
- if (Node != LoopHead && Working[Node.Index].isLoopHeader())
- addLoopSuccessorsToDist(LoopHead, Node, Dist);
- else {
- const BlockT *BB = getBlock(Node);
- for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
- SI != SE; ++SI)
- // Do not dereference SI, or getEdgeWeight() is linear in the number of
- // successors.
- addToDist(Dist, LoopHead, Node, getNode(*SI), BPI->getEdgeWeight(BB, SI));
+ raw_ostream &printBlockFreq(raw_ostream &OS,
+ const BlockFrequency &Freq) const {
+ // Convert fixed-point number to decimal.
+ uint64_t Frequency = Freq.getFrequency();
+ OS << Frequency / EntryFreq << ".";
+ uint64_t Rem = Frequency % EntryFreq;
+ uint64_t Eps = 1;
+ do {
+ Rem *= 10;
+ Eps *= 10;
+ OS << Rem / EntryFreq;
+ Rem = Rem % EntryFreq;
+ } while (Rem >= Eps/2);
+ return OS;
}
- // Distribute mass to successors, saving exit and backedge data in the
- // loop header.
- distributeMass(Node, LoopHead, Dist);
-}
+};
-template <class BT>
-raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
- if (!F)
- return OS;
- OS << "block-frequency-info: " << F->getName() << "\n";
- for (const BlockT &BB : *F)
- OS << " - " << bfi_detail::getBlockName(&BB)
- << ": float = " << getFloatingBlockFreq(&BB)
- << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
-
- // Add an extra newline for readability.
- OS << "\n";
- return OS;
-}
}
#endif
diff --git a/lib/Analysis/BlockFrequencyInfo.cpp b/lib/Analysis/BlockFrequencyInfo.cpp
index 13ab29a94d..39aef9e140 100644
--- a/lib/Analysis/BlockFrequencyInfo.cpp
+++ b/lib/Analysis/BlockFrequencyInfo.cpp
@@ -11,7 +11,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "block-freq"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
@@ -107,7 +106,6 @@ struct DOTGraphTraits<BlockFrequencyInfo*> : public DefaultDOTGraphTraits {
INITIALIZE_PASS_BEGIN(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfo)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
@@ -122,16 +120,14 @@ BlockFrequencyInfo::~BlockFrequencyInfo() {}
void BlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<BranchProbabilityInfo>();
- AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool BlockFrequencyInfo::runOnFunction(Function &F) {
BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
- LoopInfo &LI = getAnalysis<LoopInfo>();
if (!BFI)
BFI.reset(new ImplType);
- BFI->doFunction(&F, &BPI, &LI);
+ BFI->doFunction(&F, &BPI);
#ifndef NDEBUG
if (ViewBlockFreqPropagationDAG != GVDT_None)
view();
@@ -162,7 +158,7 @@ void BlockFrequencyInfo::view() const {
}
const Function *BlockFrequencyInfo::getFunction() const {
- return BFI ? BFI->getFunction() : nullptr;
+ return BFI ? BFI->Fn : nullptr;
}
raw_ostream &BlockFrequencyInfo::
diff --git a/lib/Analysis/BlockFrequencyInfoImpl.cpp b/lib/Analysis/BlockFrequencyInfoImpl.cpp
deleted file mode 100644
index e7424aebd7..0000000000
--- a/lib/Analysis/BlockFrequencyInfoImpl.cpp
+++ /dev/null
@@ -1,932 +0,0 @@
-//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Loops should be simplified before this analysis.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "block-freq"
-#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/Support/raw_ostream.h"
-#include <deque>
-
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-//
-// PositiveFloat implementation.
-//
-//===----------------------------------------------------------------------===//
-#ifndef _MSC_VER
-const int32_t PositiveFloatBase::MaxExponent;
-const int32_t PositiveFloatBase::MinExponent;
-#endif
-
-static void appendDigit(std::string &Str, unsigned D) {
- assert(D < 10);
- Str += '0' + D % 10;
-}
-
-static void appendNumber(std::string &Str, uint64_t N) {
- while (N) {
- appendDigit(Str, N % 10);
- N /= 10;
- }
-}
-
-static bool doesRoundUp(char Digit) {
- switch (Digit) {
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- return true;
- default:
- return false;
- }
-}
-
-static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
- assert(E >= PositiveFloatBase::MinExponent);
- assert(E <= PositiveFloatBase::MaxExponent);
-
- // Find a new E, but don't let it increase past MaxExponent.
- int LeadingZeros = PositiveFloatBase::countLeadingZeros64(D);
- int NewE = std::min(PositiveFloatBase::MaxExponent, E + 63 - LeadingZeros);
- int Shift = 63 - (NewE - E);
- assert(Shift <= LeadingZeros);
- assert(Shift == LeadingZeros || NewE == PositiveFloatBase::MaxExponent);
- D <<= Shift;
- E = NewE;
-
- // Check for a denormal.
- unsigned AdjustedE = E + 16383;
- if (!(D >> 63)) {
- assert(E == PositiveFloatBase::MaxExponent);
- AdjustedE = 0;
- }
-
- // Build the float and print it.
- uint64_t RawBits[2] = {D, AdjustedE};
- APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
- SmallVector<char, 24> Chars;
- Float.toString(Chars, Precision, 0);
- return std::string(Chars.begin(), Chars.end());
-}
-
-static std::string stripTrailingZeros(const std::string &Float) {
- size_t NonZero = Float.find_last_not_of('0');
- assert(NonZero != std::string::npos && "no . in floating point string");
-
- if (Float[NonZero] == '.')
- ++NonZero;
-
- return Float.substr(0, NonZero + 1);
-}
-
-std::string PositiveFloatBase::toString(uint64_t D, int16_t E, int Width,
- unsigned Precision) {
- if (!D)
- return "0.0";
-
- // Canonicalize exponent and digits.
- uint64_t Above0 = 0;
- uint64_t Below0 = 0;
- uint64_t Extra = 0;
- int ExtraShift = 0;
- if (E == 0) {
- Above0 = D;
- } else if (E > 0) {
- if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
- D <<= Shift;
- E -= Shift;
-
- if (!E)
- Above0 = D;
- }
- } else if (E > -64) {
- Above0 = D >> -E;
- Below0 = D << (64 + E);
- } else if (E > -120) {
- Below0 = D >> (-E - 64);
- Extra = D << (128 + E);
- ExtraShift = -64 - E;
- }
-
- // Fall back on APFloat for very small and very large numbers.
- if (!Above0 && !Below0)
- return toStringAPFloat(D, E, Precision);
-
- // Append the digits before the decimal.
- std::string Str;
- size_t DigitsOut = 0;
- if (Above0) {
- appendNumber(Str, Above0);
- DigitsOut = Str.size();
- } else
- appendDigit(Str, 0);
- std::reverse(Str.begin(), Str.end());
-
- // Return early if there's nothing after the decimal.
- if (!Below0)
- return Str + ".0";
-
- // Append the decimal and beyond.
- Str += '.';
- uint64_t Error = UINT64_C(1) << (64 - Width);
-
- // We need to shift Below0 to the right to make space for calculating
- // digits. Save the precision we're losing in Extra.
- Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
- Below0 >>= 4;
- size_t SinceDot = 0;
- size_t AfterDot = Str.size();
- do {
- if (ExtraShift) {
- --ExtraShift;
- Error *= 5;
- } else
- Error *= 10;
-
- Below0 *= 10;
- Extra *= 10;
- Below0 += (Extra >> 60);
- Extra = Extra & (UINT64_MAX >> 4);
- appendDigit(Str, Below0 >> 60);
- Below0 = Below0 & (UINT64_MAX >> 4);
- if (DigitsOut || Str.back() != '0')
- ++DigitsOut;
- ++SinceDot;
- } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
- (!Precision || DigitsOut <= Precision || SinceDot < 2));
-
- // Return early for maximum precision.
- if (!Precision || DigitsOut <= Precision)
- return stripTrailingZeros(Str);
-
- // Find where to truncate.
- size_t Truncate =
- std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
-
- // Check if there's anything to truncate.
- if (Truncate >= Str.size())
- return stripTrailingZeros(Str);
-
- bool Carry = doesRoundUp(Str[Truncate]);
- if (!Carry)
- return stripTrailingZeros(Str.substr(0, Truncate));
-
- // Round with the first truncated digit.
- for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
- I != E; ++I) {
- if (*I == '.')
- continue;
- if (*I == '9') {
- *I = '0';
- continue;
- }
-
- ++*I;
- Carry = false;
- break;
- }
-
- // Add "1" in front if we still need to carry.
- return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
-}
-
-raw_ostream &PositiveFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
- int Width, unsigned Precision) {
- return OS << toString(D, E, Width, Precision);
-}
-
-void PositiveFloatBase::dump(uint64_t D, int16_t E, int Width) {
- print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
- << "]";
-}
-
-static std::pair<uint64_t, int16_t>
-getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
- if (ShouldRound)
- if (!++N)
- // Rounding caused an overflow.
- return std::make_pair(UINT64_C(1), Shift + 64);
- return std::make_pair(N, Shift);
-}
-
-std::pair<uint64_t, int16_t> PositiveFloatBase::divide64(uint64_t Dividend,
- uint64_t Divisor) {
- // Input should be sanitized.
- assert(Divisor);
- assert(Dividend);
-
- // Minimize size of divisor.
- int16_t Shift = 0;
- if (int Zeros = countTrailingZeros(Divisor)) {
- Shift -= Zeros;
- Divisor >>= Zeros;
- }
-
- // Check for powers of two.
- if (Divisor == 1)
- return std::make_pair(Dividend, Shift);
-
- // Maximize size of dividend.
- if (int Zeros = countLeadingZeros64(Dividend)) {
- Shift -= Zeros;
- Dividend <<= Zeros;
- }
-
- // Start with the result of a divide.
- uint64_t Quotient = Dividend / Divisor;
- Dividend %= Divisor;
-
- // Continue building the quotient with long division.
- //
- // TODO: continue with largers digits.
- while (!(Quotient >> 63) && Dividend) {
- // Shift Dividend, and check for overflow.
- bool IsOverflow = Dividend >> 63;
- Dividend <<= 1;
- --Shift;
-
- // Divide.
- bool DoesDivide = IsOverflow || Divisor <= Dividend;
- Quotient = (Quotient << 1) | uint64_t(DoesDivide);
- Dividend -= DoesDivide ? Divisor : 0;
- }
-
- // Round.
- if (Dividend >= getHalf(Divisor))
- if (!++Quotient)
- // Rounding caused an overflow in Quotient.
- return std::make_pair(UINT64_C(1), Shift + 64);
-
- return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
-}
-
-std::pair<uint64_t, int16_t> PositiveFloatBase::multiply64(uint64_t L,
- uint64_t R) {
- // Separate into two 32-bit digits (U.L).
- uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
-
- // Compute cross products.
- uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
-
- // Sum into two 64-bit digits.
- uint64_t Upper = P1, Lower = P4;
- auto addWithCarry = [&](uint64_t N) {
- uint64_t NewLower = Lower + (N << 32);
- Upper += (N >> 32) + (NewLower < Lower);
- Lower = NewLower;
- };
- addWithCarry(P2);
- addWithCarry(P3);
-
- // Check whether the upper digit is empty.
- if (!Upper)
- return std::make_pair(Lower, 0);
-
- // Shift as little as possible to maximize precision.
- unsigned LeadingZeros = countLeadingZeros64(Upper);
- int16_t Shift = 64 - LeadingZeros;
- if (LeadingZeros)
- Upper = Upper << LeadingZeros | Lower >> Shift;
- bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
- return getRoundedFloat(Upper, ShouldRound, Shift);
-}
-
-//===----------------------------------------------------------------------===//
-//
-// BlockMass implementation.
-//
-//===----------------------------------------------------------------------===//
-BlockMass &BlockMass::operator*=(const BranchProbability &P) {
- uint32_t N = P.getNumerator(), D = P.getDenominator();
- assert(D && "divide by 0");
- assert(N <= D && "fraction greater than 1");
-
- // Fast path for multiplying by 1.0.
- if (!Mass || N == D)
- return *this;
-
- // Get as much precision as we can.
- int Shift = countLeadingZeros(Mass);
- uint64_t ShiftedQuotient = (Mass << Shift) / D;
- uint64_t Product = ShiftedQuotient * N >> Shift;
-
- // Now check for what's lost.
- uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
- uint64_t Lost = Mass - Product - Left;
-
- // TODO: prove this assertion.
- assert(Lost <= UINT32_MAX);
-
- // Take the product plus a portion of the spoils.
- Mass = Product + Lost * N / D;
- return *this;
-}
-
-PositiveFloat<uint64_t> BlockMass::toFloat() const {
- if (isFull())
- return PositiveFloat<uint64_t>(1, 0);
- return PositiveFloat<uint64_t>(getMass() + 1, -64);
-}
-
-void BlockMass::dump() const { print(dbgs()); }
-
-static char getHexDigit(int N) {
- assert(N < 16);
- if (N < 10)
- return '0' + N;
- return 'a' + N - 10;
-}
-raw_ostream &BlockMass::print(raw_ostream &OS) const {
- for (int Digits = 0; Digits < 16; ++Digits)
- OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
- return OS;
-}
-
-//===----------------------------------------------------------------------===//
-//
-// BlockFrequencyInfoImpl implementation.
-//
-//===----------------------------------------------------------------------===//
-namespace {
-
-typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
-typedef BlockFrequencyInfoImplBase::Distribution Distribution;
-typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
-typedef BlockFrequencyInfoImplBase::Float Float;
-typedef BlockFrequencyInfoImplBase::PackagedLoopData PackagedLoopData;
-typedef BlockFrequencyInfoImplBase::Weight Weight;
-typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
-
-/// \brief Dithering mass distributer.
-///
-/// This class splits up a single mass into portions by weight, dithering to
-/// spread out error. No mass is lost. The dithering precision depends on the
-/// precision of the product of \a BlockMass and \a BranchProbability.
-///
-/// The distribution algorithm follows.
-///
-/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
-/// mass to distribute in \a RemMass.
-///
-/// 2. For each portion:
-///
-/// 1. Construct a branch probability, P, as the portion's weight divided
-/// by the current value of \a RemWeight.
-/// 2. Calculate the portion's mass as \a RemMass times P.
-/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
-/// the current portion's weight and mass.
-///
-/// Mass is distributed in two ways: full distribution and forward
-/// distribution. The latter ignores backedges, and uses the parallel fields
-/// \a RemForwardWeight and \a RemForwardMass.
-struct DitheringDistributer {
- uint32_t RemWeight;
- uint32_t RemForwardWeight;
-
- BlockMass RemMass;
- BlockMass RemForwardMass;
-
- DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
-
- BlockMass takeLocalMass(uint32_t Weight) {
- (void)takeMass(Weight);
- return takeForwardMass(Weight);
- }
- BlockMass takeExitMass(uint32_t Weight) {
- (void)takeForwardMass(Weight);
- return takeMass(Weight);
- }
- BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); }
-
-private:
- BlockMass takeForwardMass(uint32_t Weight);
- BlockMass takeMass(uint32_t Weight);
-};
-}
-
-DitheringDistributer::DitheringDistributer(Distribution &Dist,
- const BlockMass &Mass) {
- Dist.normalize();
- RemWeight = Dist.Total;
- RemForwardWeight = Dist.ForwardTotal;
- RemMass = Mass;
- RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass();
-}
-
-BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) {
- // Compute the amount of mass to take.
- assert(Weight && "invalid weight");
- assert(Weight <= RemForwardWeight);
- BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight);
-
- // Decrement totals (dither).
- RemForwardWeight -= Weight;
- RemForwardMass -= Mass;
- return Mass;
-}
-BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
- assert(Weight && "invalid weight");
- assert(Weight <= RemWeight);
- BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
-
- // Decrement totals (dither).
- RemWeight -= Weight;
- RemMass -= Mass;
- return Mass;
-}
-
-void Distribution::add(const BlockNode &Node, uint64_t Amount,
- Weight::DistType Type) {
- assert(Amount && "invalid weight of 0");
- uint64_t NewTotal = Total + Amount;
-
- // Check for overflow. It should be impossible to overflow twice.
- bool IsOverflow = NewTotal < Total;
- assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
- DidOverflow |= IsOverflow;
-
- // Update the total.
- Total = NewTotal;
-
- // Save the weight.
- Weight W;
- W.TargetNode = Node;
- W.Amount = Amount;
- W.Type = Type;
- Weights.push_back(W);
-
- if (Type == Weight::Backedge)
- return;
-
- // Update forward total. Don't worry about overflow here, since then Total
- // will exceed 32-bits and they'll both be recomputed in normalize().
- ForwardTotal += Amount;
-}
-
-static void combineWeight(Weight &W, const Weight &OtherW) {
- assert(OtherW.TargetNode.isValid());
- if (!W.Amount) {
- W = OtherW;
- return;
- }
- assert(W.Type == OtherW.Type);
- assert(W.TargetNode == OtherW.TargetNode);
- assert(W.Amount < W.Amount + OtherW.Amount);
- W.Amount += OtherW.Amount;
-}
-static void combineWeightsBySorting(WeightList &Weights) {
- // Sort so edges to the same node are adjacent.
- std::sort(Weights.begin(), Weights.end(),
- [](const Weight &L,
- const Weight &R) { return L.TargetNode < R.TargetNode; });
-
- // Combine adjacent edges.
- WeightList::iterator O = Weights.begin();
- for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
- ++O, (I = L)) {
- *O = *I;
-
- // Find the adjacent weights to the same node.
- for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
- combineWeight(*O, *L);
- }
-
- // Erase extra entries.
- Weights.erase(O, Weights.end());
- return;
-}
-static void combineWeightsByHashing(WeightList &Weights) {
- // Collect weights into a DenseMap.
- typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
- HashTable Combined(NextPowerOf2(2 * Weights.size()));
- for (const Weight &W : Weights)
- combineWeight(Combined[W.TargetNode.Index], W);
-
- // Check whether anything changed.
- if (Weights.size() == Combined.size())
- return;
-
- // Fill in the new weights.
- Weights.clear();
- Weights.reserve(Combined.size());
- for (const auto &I : Combined)
- Weights.push_back(I.second);
-}
-static void combineWeights(WeightList &Weights) {
- // Use a hash table for many successors to keep this linear.
- if (Weights.size() > 128) {
- combineWeightsByHashing(Weights);
- return;
- }
-
- combineWeightsBySorting(Weights);
-}
-static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
- assert(Shift >= 0);
- assert(Shift < 64);
- if (!Shift)
- return N;
- return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
-}
-void Distribution::normalize() {
- // Early exit for termination nodes.
- if (Weights.empty())
- return;
-
- // Only bother if there are multiple successors.
- if (Weights.size() > 1)
- combineWeights(Weights);
-
- // Early exit when combined into a single successor.
- if (Weights.size() == 1) {
- Total = 1;
- ForwardTotal = Weights.front().Type != Weight::Backedge;
- Weights.front().Amount = 1;
- return;
- }
-
- // Determine how much to shift right so that the total fits into 32-bits.
- //
- // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
- // for each weight can cause a 32-bit overflow.
- int Shift = 0;
- if (DidOverflow)
- Shift = 33;
- else if (Total > UINT32_MAX)
- Shift = 33 - countLeadingZeros(Total);
-
- // Early exit if nothing needs to be scaled.
- if (!Shift)
- return;
-
- // Recompute the total through accumulation (rather than shifting it) so that
- // it's accurate after shifting. ForwardTotal is dirty here anyway.
- Total = 0;
- ForwardTotal = 0;
-
- // Sum the weights to each node and shift right if necessary.
- for (Weight &W : Weights) {
- // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
- // can round here without concern about overflow.
- assert(W.TargetNode.isValid());
- W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
- assert(W.Amount <= UINT32_MAX);
-
- // Update the total.
- Total += W.Amount;
- if (W.Type == Weight::Backedge)
- continue;
-
- // Update the forward total.
- ForwardTotal += W.Amount;
- }
- assert(Total <= UINT32_MAX);
-}
-
-void BlockFrequencyInfoImplBase::clear() {
- *this = BlockFrequencyInfoImplBase();
-}
-
-/// \brief Clear all memory not needed downstream.
-///
-/// Releases all memory not used downstream. In particular, saves Freqs.
-static void cleanup(BlockFrequencyInfoImplBase &BFI) {
- std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
- BFI.clear();
- BFI.Freqs = std::move(SavedFreqs);
-}
-
-/// \brief Get a possibly packaged node.
-///
-/// Get the node currently representing Node, which could be a containing
-/// loop.
-///
-/// This function should only be called when distributing mass. As long as
-/// there are no irreducilbe edges to Node, then it will have complexity O(1)
-/// in this context.
-///
-/// In general, the complexity is O(L), where L is the number of loop headers
-/// Node has been packaged into. Since this method is called in the context
-/// of distributing mass, L will be the number of loop headers an early exit
-/// edge jumps out of.
-static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI,
- const BlockNode &Node) {
- assert(Node.isValid());
- if (!BFI.Working[Node.Index].IsPackaged)
- return Node;
- if (!BFI.Working[Node.Index].ContainingLoop.isValid())
- return Node;
- return getPackagedNode(BFI, BFI.Working[Node.Index].ContainingLoop);
-}
-
-/// \brief Get the appropriate mass for a possible pseudo-node loop package.
-///
-/// Get appropriate mass for Node. If Node is a loop-header (whose loop has
-/// been packaged), returns the mass of its pseudo-node. If it's a node inside
-/// a packaged loop, it returns the loop's pseudo-node.
-static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI,
- const BlockNode &Node) {
- assert(Node.isValid());
- assert(!BFI.Working[Node.Index].IsPackaged);
- if (!BFI.Working[Node.Index].IsAPackage)
- return BFI.Working[Node.Index].Mass;
-
- return BFI.getLoopPackage(Node).Mass;
-}
-
-void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
- const BlockNode &LoopHead,
- const BlockNode &Pred,
- const BlockNode &Succ,
- uint64_t Weight) {
- if (!Weight)
- Weight = 1;
-
-#ifndef NDEBUG
- auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) {
- dbgs() << " =>"
- << " [" << Type << "] weight = " << Weight;
- if (Succ != LoopHead)
- dbgs() << ", succ = " << getBlockName(Succ);
- if (Resolved != Succ)
- dbgs() << ", resolved = " << getBlockName(Resolved);
- dbgs() << "\n";
- };
- (void)debugSuccessor;
-#endif
-
- if (Succ == LoopHead) {
- DEBUG(debugSuccessor("backedge", Succ));
- Dist.addBackedge(LoopHead, Weight);
- return;
- }
- BlockNode Resolved = getPackagedNode(*this, Succ);
- assert(Resolved != LoopHead);
-
- if (Working[Resolved.Index].ContainingLoop != LoopHead) {
- DEBUG(debugSuccessor(" exit ", Resolved));
- Dist.addExit(Resolved, Weight);
- return;
- }
-
- if (!LoopHead.isValid() && Resolved < Pred) {
- // Irreducible backedge. Skip this edge in the distribution.
- DEBUG(debugSuccessor("skipped ", Resolved));
- return;
- }
-
- DEBUG(debugSuccessor(" local ", Resolved));
- Dist.addLocal(Resolved, Weight);
-}
-
-void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
- const BlockNode &LoopHead, const BlockNode &LocalLoopHead,
- Distribution &Dist) {
- PackagedLoopData &LoopPackage = getLoopPackage(LocalLoopHead);
- const PackagedLoopData::ExitMap &Exits = LoopPackage.Exits;
-
- // Copy the exit map into Dist.
- for (const auto &I : Exits)
- addToDist(Dist, LoopHead, LocalLoopHead, I.first, I.second.getMass());
-
- // We don't need this map any more. Clear it to prevent quadratic memory
- // usage in deeply nested loops with irreducible control flow.
- LoopPackage.Exits.clear();
-}
-
-/// \brief Get the maximum allowed loop scale.
-///
-/// Gives the maximum number of estimated iterations allowed for a loop.
-/// Downstream users have trouble with very large numbers (even within
-/// 64-bits). Perhaps they can be changed to use PositiveFloat.
-///
-/// TODO: change downstream users so that this can be increased or removed.
-static Float getMaxLoopScale() { return Float(1, 12); }
-
-/// \brief Compute the loop scale for a loop.
-void BlockFrequencyInfoImplBase::computeLoopScale(const BlockNode &LoopHead) {
- // Compute loop scale.
- DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(LoopHead) << "\n");
-
- // LoopScale == 1 / ExitMass
- // ExitMass == HeadMass - BackedgeMass
- PackagedLoopData &LoopPackage = getLoopPackage(LoopHead);
- BlockMass ExitMass = BlockMass::getFull() - LoopPackage.BackedgeMass;
-
- // Block scale stores the inverse of the scale.
- LoopPackage.Scale = ExitMass.toFloat().inverse();
-
- DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
- << " - " << LoopPackage.BackedgeMass << ")\n"
- << " - scale = " << LoopPackage.Scale << "\n");
-
- if (LoopPackage.Scale > getMaxLoopScale()) {
- LoopPackage.Scale = getMaxLoopScale();
- DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
- }
-}
-
-/// \brief Package up a loop.
-void BlockFrequencyInfoImplBase::packageLoop(const BlockNode &LoopHead) {
- DEBUG(dbgs() << "packaging-loop: " << getBlockName(LoopHead) << "\n");
- Working[LoopHead.Index].IsAPackage = true;
- for (const BlockNode &M : getLoopPackage(LoopHead).Members) {
- DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
- Working[M.Index].IsPackaged = true;
- }
-}
-
-void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
- const BlockNode &LoopHead,
- Distribution &Dist) {
- BlockMass Mass = getPackageMass(*this, Source);
- DEBUG(dbgs() << " => mass: " << Mass
- << " ( general | forward )\n");
-
- // Distribute mass to successors as laid out in Dist.
- DitheringDistributer D(Dist, Mass);
-
-#ifndef NDEBUG
- auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
- const char *Desc) {
- dbgs() << " => assign " << M << " (" << D.RemMass << "|"
- << D.RemForwardMass << ")";
- if (Desc)
- dbgs() << " [" << Desc << "]";
- if (T.isValid())
- dbgs() << " to " << getBlockName(T);
- dbgs() << "\n";
- };
- (void)debugAssign;
-#endif
-
- PackagedLoopData *LoopPackage = 0;
- if (LoopHead.isValid())
- LoopPackage = &getLoopPackage(LoopHead);
- for (const Weight &W : Dist.Weights) {
- // Check for a local edge (forward and non-exit).
- if (W.Type == Weight::Local) {
- BlockMass Local = D.takeLocalMass(W.Amount);
- getPackageMass(*this, W.TargetNode) += Local;
- DEBUG(debugAssign(W.TargetNode, Local, nullptr));
- continue;
- }
-
- // Backedges and exits only make sense if we're processing a loop.
- assert(LoopPackage && "backedge or exit outside of loop");
-
- // Check for a backedge.
- if (W.Type == Weight::Backedge) {
- BlockMass Back = D.takeBackedgeMass(W.Amount);
- LoopPackage->BackedgeMass += Back;
- DEBUG(debugAssign(BlockNode(), Back, "back"));
- continue;
- }
-
- // This must be an exit.
- assert(W.Type == Weight::Exit);
- BlockMass Exit = D.takeExitMass(W.Amount);
- LoopPackage->Exits.push_back(std::make_pair(W.TargetNode, Exit));
- DEBUG(debugAssign(W.TargetNode, Exit, "exit"));
- }
-}
-
-static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
- const Float &Min, const Float &Max) {
- // Scale the Factor to a size that creates integers. Ideally, integers would
- // be scaled so that Max == UINT64_MAX so that they can be best
- // differentiated. However, the register allocator currently deals poorly
- // with large numbers. Instead, push Min up a little from 1 to give some
- // room to differentiate small, unequal numbers.
- //
- // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
- Float ScalingFactor = Min.inverse();
- if ((Max / Min).lg() < 60)
- ScalingFactor <<= 3;
-
- // Translate the floats to integers.
- DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
- << ", factor = " << ScalingFactor << "\n");
- for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
- Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
- BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
- DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
- << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
- << ", int = " << BFI.Freqs[Index].Integer << "\n");
- }
-}
-
-static void scaleBlockData(BlockFrequencyInfoImplBase &BFI,
- const BlockNode &Node,
- const PackagedLoopData &Loop) {
- Float F = Loop.Mass.toFloat() * Loop.Scale;
-
- Float &Current = BFI.Freqs[Node.Index].Floating;
- Float Updated = Current * F;
-
- DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => "
- << Updated << "\n");
-
- Current = Updated;
-}
-
-/// \brief Unwrap a loop package.
-///
-/// Visits all the members of a loop, adjusting their BlockData according to
-/// the loop's pseudo-node.
-static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI,
- const BlockNode &Head) {
- assert(Head.isValid());
-
- PackagedLoopData &LoopPackage = BFI.getLoopPackage(Head);
- DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head)
- << ": mass = " << LoopPackage.Mass
- << ", scale = " << LoopPackage.Scale << "\n");
- scaleBlockData(BFI, Head, LoopPackage);
-
- // Propagate the head scale through the loop. Since members are visited in
- // RPO, the head scale will be updated by the loop scale first, and then the
- // final head scale will be used for updated the rest of the members.
- for (const BlockNode &M : LoopPackage.Members) {
- const FrequencyData &HeadData = BFI.Freqs[Head.Index];
- FrequencyData &Freqs = BFI.Freqs[M.Index];
- Float NewFreq = Freqs.Floating * HeadData.Floating;
- DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating
- << " => " << NewFreq << "\n");
- Freqs.Floating = NewFreq;
- }
-}
-
-void BlockFrequencyInfoImplBase::finalizeMetrics() {
- // Set initial frequencies from loop-local masses.
- for (size_t Index = 0; Index < Working.size(); ++Index)
- Freqs[Index].Floating = Working[Index].Mass.toFloat();
-
- // Unwrap loop packages in reverse post-order, tracking min and max
- // frequencies.
- auto Min = Float::getLargest();
- auto Max = Float::getZero();
- for (size_t Index = 0; Index < Working.size(); ++Index) {
- if (Working[Index].isLoopHeader())
- unwrapLoopPackage(*this, BlockNode(Index));
-
- // Update max scale.
- Min = std::min(Min, Freqs[Index].Floating);
- Max = std::max(Max, Freqs[Index].Floating);
- }
-
- // Convert to integers.
- convertFloatingToInteger(*this, Min, Max);
-
- // Clean up data structures.
- cleanup(*this);
-
- // Print out the final stats.
- DEBUG(dump());
-}
-
-BlockFrequency
-BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
- if (!Node.isValid())
- return 0;
- return Freqs[Node.Index].Integer;
-}
-Float
-BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
- if (!Node.isValid())
- return Float::getZero();
- return Freqs[Node.Index].Floating;
-}
-
-std::string
-BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
- return std::string();
-}
-
-raw_ostream &
-BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
- const BlockNode &Node) const {
- return OS << getFloatingBlockFreq(Node);
-}
-
-raw_ostream &
-BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
- const BlockFrequency &Freq) const {
- Float Block(Freq.getFrequency(), 0);
- Float Entry(getEntryFreq(), 0);
-
- return OS << Block / Entry;
-}
diff --git a/lib/Analysis/CMakeLists.txt b/lib/Analysis/CMakeLists.txt
index 0b0b2f92ea..c6d4573885 100644
--- a/lib/Analysis/CMakeLists.txt
+++ b/lib/Analysis/CMakeLists.txt
@@ -7,7 +7,6 @@ add_llvm_library(LLVMAnalysis
Analysis.cpp
BasicAliasAnalysis.cpp
BlockFrequencyInfo.cpp
- BlockFrequencyInfoImpl.cpp
BranchProbabilityInfo.cpp
CFG.cpp
CFGPrinter.cpp
diff --git a/lib/CodeGen/MachineBlockFrequencyInfo.cpp b/lib/CodeGen/MachineBlockFrequencyInfo.cpp
index d3ac0c0437..70efa307d5 100644
--- a/lib/CodeGen/MachineBlockFrequencyInfo.cpp
+++ b/lib/CodeGen/MachineBlockFrequencyInfo.cpp
@@ -11,12 +11,9 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "block-freq"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
@@ -115,7 +112,6 @@ struct DOTGraphTraits<MachineBlockFrequencyInfo*> :
INITIALIZE_PASS_BEGIN(MachineBlockFrequencyInfo, "machine-block-freq",
"Machine Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
-INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineBlockFrequencyInfo, "machine-block-freq",
"Machine Block Frequency Analysis", true, true)
@@ -131,18 +127,16 @@ MachineBlockFrequencyInfo::~MachineBlockFrequencyInfo() {}
void MachineBlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineBranchProbabilityInfo>();
- AU.addRequired<MachineLoopInfo>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool MachineBlockFrequencyInfo::runOnMachineFunction(MachineFunction &F) {
MachineBranchProbabilityInfo &MBPI =
- getAnalysis<MachineBranchProbabilityInfo>();
- MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
+ getAnalysis<MachineBranchProbabilityInfo>();
if (!MBFI)
MBFI.reset(new ImplType);
- MBFI->doFunction(&F, &MBPI, &MLI);
+ MBFI->doFunction(&F, &MBPI);
#ifndef NDEBUG
if (ViewMachineBlockFreqPropagationDAG != GVDT_None) {
view();
@@ -172,7 +166,7 @@ getBlockFreq(const MachineBasicBlock *MBB) const {
}
const MachineFunction *MachineBlockFrequencyInfo::getFunction() const {
- return MBFI ? MBFI->getFunction() : nullptr;
+ return MBFI ? MBFI->Fn : nullptr;
}
raw_ostream &
diff --git a/test/Analysis/BlockFrequencyInfo/bad_input.ll b/test/Analysis/BlockFrequencyInfo/bad_input.ll
deleted file mode 100644
index bcdc1e6f0b..0000000000
--- a/test/Analysis/BlockFrequencyInfo/bad_input.ll
+++ /dev/null
@@ -1,50 +0,0 @@
-; RUN: opt < %s -analyze -block-freq | FileCheck %s
-
-declare void @g(i32 %x)
-
-; CHECK-LABEL: Printing analysis {{.*}} for function 'branch_weight_0':
-; CHECK-NEXT: block-frequency-info: branch_weight_0
-define void @branch_weight_0(i32 %a) {
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- br label %for.body
-
-; Check that we get 1,4 instead of 0,3.
-; CHECK-NEXT: for.body: float = 4.0,
-for.body:
- %i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
- call void @g(i32 %i)
- %inc = add i32 %i, 1
- %cmp = icmp ugt i32 %inc, %a
- br i1 %cmp, label %for.end, label %for.body, !prof !0
-
-; CHECK-NEXT: for.end: float = 1.0, int = [[ENTRY]]
-for.end:
- ret void
-}
-
-!0 = metadata !{metadata !"branch_weights", i32 0, i32 3}
-
-; CHECK-LABEL: Printing analysis {{.*}} for function 'infinite_loop'
-; CHECK-NEXT: block-frequency-info: infinite_loop
-define void @infinite_loop(i1 %x) {
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- br i1 %x, label %for.body, label %for.end, !prof !1
-
-; Check that the loop scale maxes out at 4096, giving 2048 here.
-; CHECK-NEXT: for.body: float = 2048.0,
-for.body:
- %i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
- call void @g(i32 %i)
- %inc = add i32 %i, 1
- br label %for.body
-
-; Check that the exit weight is half of entry, since half is lost in the
-; infinite loop above.
-; CHECK-NEXT: for.end: float = 0.5,
-for.end:
- ret void
-}
-
-!1 = metadata !{metadata !"branch_weights", i32 1, i32 1}
diff --git a/test/Analysis/BlockFrequencyInfo/basic.ll b/test/Analysis/BlockFrequencyInfo/basic.ll
index 006e6ab4d7..ce29fb5ce1 100644
--- a/test/Analysis/BlockFrequencyInfo/basic.ll
+++ b/test/Analysis/BlockFrequencyInfo/basic.ll
@@ -1,14 +1,13 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
define i32 @test1(i32 %i, i32* %a) {
-; CHECK-LABEL: Printing analysis {{.*}} for function 'test1':
-; CHECK-NEXT: block-frequency-info: test1
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+; CHECK: Printing analysis {{.*}} for function 'test1'
+; CHECK: entry = 1.0
entry:
br label %body
; Loop backedges are weighted and thus their bodies have a greater frequency.
-; CHECK-NEXT: body: float = 32.0,
+; CHECK: body = 32.0
body:
%iv = phi i32 [ 0, %entry ], [ %next, %body ]
%base = phi i32 [ 0, %entry ], [ %sum, %body ]
@@ -19,29 +18,29 @@ body:
%exitcond = icmp eq i32 %next, %i
br i1 %exitcond, label %exit, label %body
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+; CHECK: exit = 1.0
exit:
ret i32 %sum
}
define i32 @test2(i32 %i, i32 %a, i32 %b) {
-; CHECK-LABEL: Printing analysis {{.*}} for function 'test2':
-; CHECK-NEXT: block-frequency-info: test2
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+; CHECK: Printing analysis {{.*}} for function 'test2'
+; CHECK: entry = 1.0
entry:
%cond = icmp ult i32 %i, 42
br i1 %cond, label %then, label %else, !prof !0
; The 'then' branch is predicted more likely via branch weight metadata.
-; CHECK-NEXT: then: float = 0.9411{{[0-9]*}},
+; CHECK: then = 0.94116
then:
br label %exit
-; CHECK-NEXT: else: float = 0.05882{{[0-9]*}},
+; CHECK: else = 0.05877
else:
br label %exit
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+; FIXME: It may be a bug that we don't sum back to 1.0.
+; CHECK: exit = 0.99993
exit:
%result = phi i32 [ %a, %then ], [ %b, %else ]
ret i32 %result
@@ -50,37 +49,37 @@ exit:
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}
define i32 @test3(i32 %i, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
-; CHECK-LABEL: Printing analysis {{.*}} for function 'test3':
-; CHECK-NEXT: block-frequency-info: test3
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+; CHECK: Printing analysis {{.*}} for function 'test3'
+; CHECK: entry = 1.0
entry:
switch i32 %i, label %case_a [ i32 1, label %case_b
i32 2, label %case_c
i32 3, label %case_d
i32 4, label %case_e ], !prof !1
-; CHECK-NEXT: case_a: float = 0.05,
+; CHECK: case_a = 0.04998
case_a:
br label %exit
-; CHECK-NEXT: case_b: float = 0.05,
+; CHECK: case_b = 0.04998
case_b:
br label %exit
; The 'case_c' branch is predicted more likely via branch weight metadata.
-; CHECK-NEXT: case_c: float = 0.8,
+; CHECK: case_c = 0.79998
case_c:
br label %exit
-; CHECK-NEXT: case_d: float = 0.05,
+; CHECK: case_d = 0.04998
case_d:
br label %exit
-; CHECK-NEXT: case_e: float = 0.05,
+; CHECK: case_e = 0.04998
case_e:
br label %exit
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+; FIXME: It may be a bug that we don't sum back to 1.0.
+; CHECK: exit = 0.99993
exit:
%result = phi i32 [ %a, %case_a ],
[ %b, %case_b ],
@@ -92,50 +91,44 @@ exit:
!1 = metadata !{metadata !"branch_weights", i32 4, i32 4, i32 64, i32 4, i32 4}
+; CHECK: Printing analysis {{.*}} for function 'nested_loops'
+; CHECK: entry = 1.0
+; This test doesn't seem to be assigning sensible frequencies to nested loops.
define void @nested_loops(i32 %a) {
-; CHECK-LABEL: Printing analysis {{.*}} for function 'nested_loops':
-; CHECK-NEXT: block-frequency-info: nested_loops
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %for.cond1.preheader
-; CHECK-NEXT: for.cond1.preheader: float = 4001.0,
for.cond1.preheader:
%x.024 = phi i32 [ 0, %entry ], [ %inc12, %for.inc11 ]
br label %for.cond4.preheader
-; CHECK-NEXT: for.cond4.preheader: float = 16008001.0,
for.cond4.preheader:
%y.023 = phi i32 [ 0, %for.cond1.preheader ], [ %inc9, %for.inc8 ]
%add = add i32 %y.023, %x.024
br label %for.body6
-; CHECK-NEXT: for.body6: float = 64048012001.0,
for.body6:
%z.022 = phi i32 [ 0, %for.cond4.preheader ], [ %inc, %for.body6 ]
%add7 = add i32 %add, %z.022
- tail call void @g(i32 %add7)
+ tail call void @g(i32 %add7) #2
%inc = add i32 %z.022, 1
%cmp5 = icmp ugt i32 %inc, %a
br i1 %cmp5, label %for.inc8, label %for.body6, !prof !2
-; CHECK-NEXT: for.inc8: float = 16008001.0,
for.inc8:
%inc9 = add i32 %y.023, 1
%cmp2 = icmp ugt i32 %inc9, %a
br i1 %cmp2, label %for.inc11, label %for.cond4.preheader, !prof !2
-; CHECK-NEXT: for.inc11: float = 4001.0,
for.inc11:
%inc12 = add i32 %x.024, 1
%cmp = icmp ugt i32 %inc12, %a
br i1 %cmp, label %for.end13, label %for.cond1.preheader, !prof !2
-; CHECK-NEXT: for.end13: float = 1.0, int = [[ENTRY]]
for.end13:
ret void
}
-declare void @g(i32)
+declare void @g(i32) #1
!2 = metadata !{metadata !"branch_weights", i32 1, i32 4000}
diff --git a/test/Analysis/BlockFrequencyInfo/double_exit.ll b/test/Analysis/BlockFrequencyInfo/double_exit.ll
deleted file mode 100644
index 2fe617c9f5..0000000000
--- a/test/Analysis/BlockFrequencyInfo/double_exit.ll
+++ /dev/null
@@ -1,165 +0,0 @@
-; RUN: opt < %s -analyze -block-freq | FileCheck %s
-
-; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit':
-; CHECK-NEXT: block-frequency-info: double_exit
-define i32 @double_exit(i32 %N) {
-; Mass = 1
-; Frequency = 1
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- br label %outer
-
-; Mass = 1
-; Backedge mass = 1/3, exit mass = 2/3
-; Loop scale = 3/2
-; Psuedo-edges = exit
-; Psuedo-mass = 1
-; Frequency = 1*3/2*1 = 3/2
-; CHECK-NEXT: outer: float = 1.5,
-outer:
- %I.0 = phi i32 [ 0, %entry ], [ %inc6, %outer.inc ]
- %Return.0 = phi i32 [ 0, %entry ], [ %Return.1, %outer.inc ]
- %cmp = icmp slt i32 %I.0, %N
- br i1 %cmp, label %inner, label %exit, !prof !2 ; 2:1
-
-; Mass = 1
-; Backedge mass = 3/5, exit mass = 2/5
-; Loop scale = 5/2
-; Pseudo-edges = outer.inc @ 1/5, exit @ 1/5
-; Pseudo-mass = 2/3
-; Frequency = 3/2*1*5/2*2/3 = 5/2
-; CHECK-NEXT: inner: float = 2.5,
-inner:
- %Return.1 = phi i32 [ %Return.0, %outer ], [ %call4, %inner.inc ]
- %J.0 = phi i32 [ %I.0, %outer ], [ %inc, %inner.inc ]
- %cmp2 = icmp slt i32 %J.0, %N
- br i1 %cmp2, label %inner.body, label %outer.inc, !prof !1 ; 4:1
-
-; Mass = 4/5
-; Frequency = 5/2*4/5 = 2
-; CHECK-NEXT: inner.body: float = 2.0,
-inner.body:
- %call = call i32 @c2(i32 %I.0, i32 %J.0)
- %tobool = icmp ne i32 %call, 0
- br i1 %tobool, label %exit, label %inner.inc, !prof !0 ; 3:1
-
-; Mass = 3/5
-; Frequency = 5/2*3/5 = 3/2
-; CHECK-NEXT: inner.inc: float = 1.5,
-inner.inc:
- %call4 = call i32 @logic2(i32 %Return.1, i32 %I.0, i32 %J.0)
- %inc = add nsw i32 %J.0, 1
- br label %inner
-
-; Mass = 1/3
-; Frequency = 3/2*1/3 = 1/2
-; CHECK-NEXT: outer.inc: float = 0.5,
-outer.inc:
- %inc6 = add nsw i32 %I.0, 1
- br label %outer
-
-; Mass = 1
-; Frequency = 1
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
-exit:
- %Return.2 = phi i32 [ %Return.1, %inner.body ], [ %Return.0, %outer ]
- ret i32 %Return.2
-}
-
-!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
-!1 = metadata !{metadata !"branch_weights", i32 4, i32 1}
-!2 = metadata !{metadata !"branch_weights", i32 2, i32 1}
-
-declare i32 @c2(i32, i32)
-declare i32 @logic2(i32, i32, i32)
-
-; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit_in_loop':
-; CHECK-NEXT: block-frequency-info: double_exit_in_loop
-define i32 @double_exit_in_loop(i32 %N) {
-; Mass = 1
-; Frequency = 1
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- br label %outer
-
-; Mass = 1
-; Backedge mass = 1/2, exit mass = 1/2
-; Loop scale = 2
-; Pseudo-edges = exit
-; Psuedo-mass = 1
-; Frequency = 1*2*1 = 2
-; CHECK-NEXT: outer: float = 2.0,
-outer:
- %I.0 = phi i32 [ 0, %entry ], [ %inc12, %outer.inc ]
- %Return.0 = phi i32 [ 0, %entry ], [ %Return.3, %outer.inc ]
- %cmp = icmp slt i32 %I.0, %N
- br i1 %cmp, label %middle, label %exit, !prof !3 ; 1:1
-
-; Mass = 1
-; Backedge mass = 1/3, exit mass = 2/3
-; Loop scale = 3/2
-; Psuedo-edges = outer.inc
-; Psuedo-mass = 1/2
-; Frequency = 2*1*3/2*1/2 = 3/2
-; CHECK-NEXT: middle: float = 1.5,
-middle:
- %J.0 = phi i32 [ %I.0, %outer ], [ %inc9, %middle.inc ]
- %Return.1 = phi i32 [ %Return.0, %outer ], [ %Return.2, %middle.inc ]
- %cmp2 = icmp slt i32 %J.0, %N
- br i1 %cmp2, label %inner, label %outer.inc, !prof !2 ; 2:1
-
-; Mass = 1
-; Backedge mass = 3/5, exit mass = 2/5
-; Loop scale = 5/2
-; Pseudo-edges = middle.inc @ 1/5, outer.inc @ 1/5
-; Pseudo-mass = 2/3
-; Frequency = 3/2*1*5/2*2/3 = 5/2
-; CHECK-NEXT: inner: float = 2.5,
-inner:
- %Return.2 = phi i32 [ %Return.1, %middle ], [ %call7, %inner.inc ]
- %K.0 = phi i32 [ %J.0, %middle ], [ %inc, %inner.inc ]
- %cmp5 = icmp slt i32 %K.0, %N
- br i1 %cmp5, label %inner.body, label %middle.inc, !prof !1 ; 4:1
-
-; Mass = 4/5
-; Frequency = 5/2*4/5 = 2
-; CHECK-NEXT: inner.body: float = 2.0,
-inner.body:
- %call = call i32 @c3(i32 %I.0, i32 %J.0, i32 %K.0)
- %tobool = icmp ne i32 %call, 0
- br i1 %tobool, label %outer.inc, label %inner.inc, !prof !0 ; 3:1
-
-; Mass = 3/5
-; Frequency = 5/2*3/5 = 3/2
-; CHECK-NEXT: inner.inc: float = 1.5,
-inner.inc:
- %call7 = call i32 @logic3(i32 %Return.2, i32 %I.0, i32 %J.0, i32 %K.0)
- %inc = add nsw i32 %K.0, 1
- br label %inner
-
-; Mass = 1/3
-; Frequency = 3/2*1/3 = 1/2
-; CHECK-NEXT: middle.inc: float = 0.5,
-middle.inc:
- %inc9 = add nsw i32 %J.0, 1
- br label %middle
-
-; Mass = 1/2
-; Frequency = 2*1/2 = 1
-; CHECK-NEXT: outer.inc: float = 1.0,
-outer.inc:
- %Return.3 = phi i32 [ %Return.2, %inner.body ], [ %Return.1, %middle ]
- %inc12 = add nsw i32 %I.0, 1
- br label %outer
-
-; Mass = 1
-; Frequency = 1
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
-exit:
- ret i32 %Return.0
-}
-
-!3 = metadata !{metadata !"branch_weights", i32 1, i32 1}
-
-declare i32 @c3(i32, i32, i32)
-declare i32 @logic3(i32, i32, i32, i32)
diff --git a/test/Analysis/BlockFrequencyInfo/irreducible.ll b/test/Analysis/BlockFrequencyInfo/irreducible.ll
deleted file mode 100644
index 46a2958700..0000000000
--- a/test/Analysis/BlockFrequencyInfo/irreducible.ll
+++ /dev/null
@@ -1,197 +0,0 @@
-; RUN: opt < %s -analyze -block-freq | FileCheck %s
-
-; A loop with multiple exits should be handled correctly.
-;
-; CHECK-LABEL: Printing analysis {{.*}} for function 'multiexit':
-; CHECK-NEXT: block-frequency-info: multiexit
-define void @multiexit(i32 %a) {
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- br label %loop.1
-
-; CHECK-NEXT: loop.1: float = 1.333{{3*}},
-loop.1:
- %i = phi i32 [ 0, %entry ], [ %inc.2, %loop.2 ]
- call void @f(i32 %i)
- %inc.1 = add i32 %i, 1
- %cmp.1 = icmp ugt i32 %inc.1, %a
- br i1 %cmp.1, label %exit.1, label %loop.2, !prof !0
-
-; CHECK-NEXT: loop.2: float = 0.666{{6*7}},
-loop.2:
- call void @g(i32 %inc.1)
- %inc.2 = add i32 %inc.1, 1
- %cmp.2 = icmp ugt i32 %inc.2, %a
- br i1 %cmp.2, label %exit.2, label %loop.1, !prof !1
-
-; CHECK-NEXT: exit.1: float = 0.666{{6*7}},
-exit.1:
- call void @h(i32 %inc.1)
- br label %return
-
-; CHECK-NEXT: exit.2: float = 0.333{{3*}},
-exit.2:
- call void @i(i32 %inc.2)
- br label %return
-
-; CHECK-NEXT: return: float = 1.0, int = [[ENTRY]]
-return:
- ret void
-}
-
-declare void @f(i32 %x)
-declare void @g(i32 %x)
-declare void @h(i32 %x)
-declare void @i(i32 %x)
-
-!0 = metadata !{metadata !"branch_weights", i32 3, i32 3}
-!1 = metadata !{metadata !"branch_weights", i32 5, i32 5}
-
-; The current BlockFrequencyInfo algorithm doesn't handle multiple entrances
-; into a loop very well. The frequencies assigned to blocks in the loop are
-; predictable (and not absurd), but also not correct and therefore not worth
-; testing.
-;
-; There are two testcases below.
-;
-; For each testcase, I use a CHECK-NEXT/NOT combo like an XFAIL with the
-; granularity of a single check. If/when this behaviour is fixed, we'll know
-; about it, and the test should be updated.
-;
-; Testcase #1
-; ===========
-;
-; In this case c1 and c2 should have frequencies of 15/7 and 13/7,
-; respectively. To calculate this, consider assigning 1.0 to entry, and
-; distributing frequency iteratively (to infinity). At the first iteration,
-; entry gives 3/4 to c1 and 1/4 to c2. At every step after, c1 and c2 give 3/4
-; of what they have to each other. Somehow, all of it comes out to exit.
-;
-; c1 = 3/4 + 1/4*3/4 + 3/4*3^2/4^2 + 1/4*3^3/4^3 + 3/4*3^3/4^3 + ...
-; c2 = 1/4 + 3/4*3/4 + 1/4*3^2/4^2 + 3/4*3^3/4^3 + 1/4*3^3/4^3 + ...
-;
-; Simplify by splitting up the odd and even terms of the series and taking out
-; factors so that the infite series matches:
-;
-; c1 = 3/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
-; + 3/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
-; c2 = 1/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
-; + 9/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
-;
-; c1 = 15/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
-; c2 = 13/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
-;
-; Since this geometric series sums to 16/7:
-;
-; c1 = 15/7
-; c2 = 13/7
-;
-; If we treat c1 and c2 as members of the same loop, the exit frequency of the
-; loop as a whole is 1/4, so the loop scale should be 4. Summing c1 and c2
-; gives 28/7, or 4.0, which is nice confirmation of the math above.
-;
-; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
-; returns 3/4 and 13/16, respectively. LoopInfo ignores edges between loops
-; (and doesn't see any loops here at all), and -block-freq ignores the
-; irreducible edge from c2 to c1.
-;
-; CHECK-LABEL: Printing analysis {{.*}} for function 'multientry':
-; CHECK-NEXT: block-frequency-info: multientry
-define void @multientry(i32 %a) {
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- %choose = call i32 @choose(i32 %a)
- %compare = icmp ugt i32 %choose, %a
- br i1 %compare, label %c1, label %c2, !prof !2
-
-; This is like a single-line XFAIL (see above).
-; CHECK-NEXT: c1:
-; CHECK-NOT: float = 2.142857{{[0-9]*}},
-c1:
- %i1 = phi i32 [ %a, %entry ], [ %i2.inc, %c2 ]
- %i1.inc = add i32 %i1, 1
- %choose1 = call i32 @choose(i32 %i1)
- %compare1 = icmp ugt i32 %choose1, %a
- br i1 %compare1, label %c2, label %exit, !prof !2
-
-; This is like a single-line XFAIL (see above).
-; CHECK-NEXT: c2:
-; CHECK-NOT: float = 1.857142{{[0-9]*}},
-c2:
- %i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ]
- %i2.inc = add i32 %i2, 1
- %choose2 = call i32 @choose(i32 %i2)
- %compare2 = icmp ugt i32 %choose2, %a
- br i1 %compare2, label %c1, label %exit, !prof !2
-
-; We still shouldn't lose any frequency.
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
-exit:
- ret void
-}
-
-; Testcase #2
-; ===========
-;
-; In this case c1 and c2 should be treated as equals in a single loop. The
-; exit frequency is 1/3, so the scaling factor for the loop should be 3.0. The
-; loop is entered 2/3 of the time, and c1 and c2 split the total loop frequency
-; evenly (1/2), so they should each have frequencies of 1.0 (3.0*2/3*1/2).
-; Another way of computing this result is by assigning 1.0 to entry and showing
-; that c1 and c2 should accumulate frequencies of:
-;
-; 1/3 + 2/9 + 4/27 + 8/81 + ...
-; 2^0/3^1 + 2^1/3^2 + 2^2/3^3 + 2^3/3^4 + ...
-;
-; At the first step, c1 and c2 each get 1/3 of the entry. At each subsequent
-; step, c1 and c2 each get 1/3 of what's left in c1 and c2 combined. This
-; infinite series sums to 1.
-;
-; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
-; returns 1/2 and 3/4, respectively. LoopInfo ignores edges between loops (and
-; treats c1 and c2 as self-loops only), and -block-freq ignores the irreducible
-; edge from c2 to c1.
-;
-; Below I use a CHECK-NEXT/NOT combo like an XFAIL with the granularity of a
-; single check. If/when this behaviour is fixed, we'll know about it, and the
-; test should be updated.
-;
-; CHECK-LABEL: Printing analysis {{.*}} for function 'crossloops':
-; CHECK-NEXT: block-frequency-info: crossloops
-define void @crossloops(i32 %a) {
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- %choose = call i32 @choose(i32 %a)
- switch i32 %choose, label %exit [ i32 1, label %c1
- i32 2, label %c2 ], !prof !3
-
-; This is like a single-line XFAIL (see above).
-; CHECK-NEXT: c1:
-; CHECK-NOT: float = 1.0,
-c1:
- %i1 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
- %i1.inc = add i32 %i1, 1
- %choose1 = call i32 @choose(i32 %i1)
- switch i32 %choose1, label %exit [ i32 1, label %c1
- i32 2, label %c2 ], !prof !3
-
-; This is like a single-line XFAIL (see above).
-; CHECK-NEXT: c2:
-; CHECK-NOT: float = 1.0,
-c2:
- %i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
- %i2.inc = add i32 %i2, 1
- %choose2 = call i32 @choose(i32 %i2)
- switch i32 %choose2, label %exit [ i32 1, label %c1
- i32 2, label %c2 ], !prof !3
-
-; We still shouldn't lose any frequency.
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
-exit:
- ret void
-}
-
-declare i32 @choose(i32)
-
-!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
-!3 = metadata !{metadata !"branch_weights", i32 2, i32 2, i32 2}
diff --git a/test/Analysis/BlockFrequencyInfo/loop_with_branch.ll b/test/Analysis/BlockFrequencyInfo/loop_with_branch.ll
deleted file mode 100644
index 9d27b6bf0f..0000000000
--- a/test/Analysis/BlockFrequencyInfo/loop_with_branch.ll
+++ /dev/null
@@ -1,44 +0,0 @@
-; RUN: opt < %s -analyze -block-freq | FileCheck %s
-
-; CHECK-LABEL: Printing analysis {{.*}} for function 'loop_with_branch':
-; CHECK-NEXT: block-frequency-info: loop_with_branch
-define void @loop_with_branch(i32 %a) {
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- %skip_loop = call i1 @foo0(i32 %a)
- br i1 %skip_loop, label %skip, label %header, !prof !0
-
-; CHECK-NEXT: skip: float = 0.25,
-skip:
- br label %exit
-
-; CHECK-NEXT: header: float = 4.5,
-header:
- %i = phi i32 [ 0, %entry ], [ %i.next, %back ]
- %i.next = add i32 %i, 1
- %choose = call i2 @foo1(i32 %i)
- switch i2 %choose, label %exit [ i2 0, label %left
- i2 1, label %right ], !prof !1
-
-; CHECK-NEXT: left: float = 1.5,
-left:
- br label %back
-
-; CHECK-NEXT: right: float = 2.25,
-right:
- br label %back
-
-; CHECK-NEXT: back: float = 3.75,
-back:
- br label %header
-
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
-exit:
- ret void
-}
-
-declare i1 @foo0(i32)
-declare i2 @foo1(i32)
-
-!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
-!1 = metadata !{metadata !"branch_weights", i32 1, i32 2, i32 3}
diff --git a/test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll b/test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll
deleted file mode 100644
index d93ffceb5f..0000000000
--- a/test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll
+++ /dev/null
@@ -1,59 +0,0 @@
-; RUN: opt < %s -analyze -block-freq | FileCheck %s
-
-; CHECK-LABEL: Printing analysis {{.*}} for function 'nested_loop_with_branches'
-; CHECK-NEXT: block-frequency-info: nested_loop_with_branches
-define void @nested_loop_with_branches(i32 %a) {
-; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
-entry:
- %v0 = call i1 @foo0(i32 %a)
- br i1 %v0, label %exit, label %outer, !prof !0
-
-; CHECK-NEXT: outer: float = 12.0,
-outer:
- %i = phi i32 [ 0, %entry ], [ %i.next, %inner.end ], [ %i.next, %no_inner ]
- %i.next = add i32 %i, 1
- %do_inner = call i1 @foo1(i32 %i)
- br i1 %do_inner, label %no_inner, label %inner, !prof !0
-
-; CHECK-NEXT: inner: float = 36.0,
-inner:
- %j = phi i32 [ 0, %outer ], [ %j.next, %inner.end ]
- %side = call i1 @foo3(i32 %j)
- br i1 %side, label %left, label %right, !prof !0
-
-; CHECK-NEXT: left: float = 9.0,
-left:
- %v4 = call i1 @foo4(i32 %j)
- br label %inner.end
-
-; CHECK-NEXT: right: float = 27.0,
-right:
- %v5 = call i1 @foo5(i32 %j)
- br label %inner.end
-
-; CHECK-NEXT: inner.end: float = 36.0,
-inner.end:
- %stay_inner = phi i1 [ %v4, %left ], [ %v5, %right ]
- %j.next = add i32 %j, 1
- br i1 %stay_inner, label %inner, label %outer, !prof !1
-
-; CHECK-NEXT: no_inner: float = 3.0,
-no_inner:
- %continue = call i1 @foo6(i32 %i)
- br i1 %continue, label %outer, label %exit, !prof !1
-
-; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
-exit:
- ret void
-}
-
-declare i1 @foo0(i32)
-declare i1 @foo1(i32)
-declare i1 @foo2(i32)
-declare i1 @foo3(i32)
-declare i1 @foo4(i32)
-declare i1 @foo5(i32)
-declare i1 @foo6(i32)
-
-!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
-!1 = metadata !{metadata !"branch_weights", i32 3, i32 1}
diff --git a/test/CodeGen/XCore/llvm-intrinsics.ll b/test/CodeGen/XCore/llvm-intrinsics.ll
index b436282615..e0acd66e4a 100644
--- a/test/CodeGen/XCore/llvm-intrinsics.ll
+++ b/test/CodeGen/XCore/llvm-intrinsics.ll
@@ -287,8 +287,9 @@ define void @Unwind1() {
; CHECKFP: .LBB{{[0-9_]+}}
; CHECKFP-NEXT: ldc r2, 40
; CHECKFP-NEXT: add r2, r10, r2
-; CHECKFP-NEXT: add r2, r2, r0
+; CHECKFP-NEXT: add r0, r2, r0
; CHECKFP-NEXT: mov r3, r1
+; CHECKFP-NEXT: mov r2, r0
; CHECKFP-NEXT: ldw r9, r10[4]
; CHECKFP-NEXT: ldw r8, r10[5]
; CHECKFP-NEXT: ldw r7, r10[6]
@@ -336,8 +337,9 @@ define void @Unwind1() {
; CHECK-NEXT: ldc r2, 36
; CHECK-NEXT: ldaw r3, sp[0]
; CHECK-NEXT: add r2, r3, r2
-; CHECK-NEXT: add r2, r2, r0
+; CHECK-NEXT: add r0, r2, r0
; CHECK-NEXT: mov r3, r1
+; CHECK-NEXT: mov r2, r0
; CHECK-NEXT: ldw r10, sp[2]
; CHECK-NEXT: ldw r9, sp[3]
; CHECK-NEXT: ldw r8, sp[4]