summaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
authorJakub Staszak <kubastaszak@gmail.com>2012-11-16 22:07:00 +0000
committerJakub Staszak <kubastaszak@gmail.com>2012-11-16 22:07:00 +0000
commit4d7f70cbb5611bb9f840377ddb65ca78f3afa8e2 (patch)
tree94effc0e6930dfe4c34c53542cad8d8d813a49f0 /include
parente56764bad10621ac9dcf9d3541533ff2cb0f88b4 (diff)
downloadllvm-4d7f70cbb5611bb9f840377ddb65ca78f3afa8e2.tar.gz
llvm-4d7f70cbb5611bb9f840377ddb65ca78f3afa8e2.tar.bz2
llvm-4d7f70cbb5611bb9f840377ddb65ca78f3afa8e2.tar.xz
Remove trailing spaces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168208 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include')
-rw-r--r--include/llvm/Constants.h140
1 files changed, 70 insertions, 70 deletions
diff --git a/include/llvm/Constants.h b/include/llvm/Constants.h
index 7f94ef464e..b7d1a488f5 100644
--- a/include/llvm/Constants.h
+++ b/include/llvm/Constants.h
@@ -8,9 +8,9 @@
//===----------------------------------------------------------------------===//
//
/// @file
-/// This file contains the declarations for the subclasses of Constant,
+/// This file contains the declarations for the subclasses of Constant,
/// which represent the different flavors of constant values that live in LLVM.
-/// Note that Constants are immutable (once created they never change) and are
+/// Note that Constants are immutable (once created they never change) and are
/// fully shared by structural equivalence. This means that two structurally
/// equivalent constants will always have the same address. Constant's are
/// created on demand as needed and never deleted: thus clients don't have to
@@ -44,7 +44,7 @@ template<class ConstantClass, class TypeClass>
struct ConvertConstantType;
//===----------------------------------------------------------------------===//
-/// This is the shared class of boolean and integer constants. This class
+/// This is the shared class of boolean and integer constants. This class
/// represents both boolean and integral constants.
/// @brief Class for constant integers.
class ConstantInt : public Constant {
@@ -63,11 +63,11 @@ public:
static ConstantInt *getFalse(LLVMContext &Context);
static Constant *getTrue(Type *Ty);
static Constant *getFalse(Type *Ty);
-
+
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
-
+
/// Return a ConstantInt with the specified integer value for the specified
/// type. If the type is wider than 64 bits, the value will be zero-extended
/// to fit the type, unless isSigned is true, in which case the value will
@@ -84,27 +84,27 @@ public:
/// @brief Get a ConstantInt for a specific signed value.
static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
static Constant *getSigned(Type *Ty, int64_t V);
-
+
/// Return a ConstantInt with the specified value and an implied Type. The
/// type is the integer type that corresponds to the bit width of the value.
static ConstantInt *get(LLVMContext &Context, const APInt &V);
/// Return a ConstantInt constructed from the string strStart with the given
- /// radix.
+ /// radix.
static ConstantInt *get(IntegerType *Ty, StringRef Str,
uint8_t radix);
-
+
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant *get(Type* Ty, const APInt& V);
-
+
/// Return the constant as an APInt value reference. This allows clients to
/// obtain a copy of the value, with all its precision in tact.
/// @brief Return the constant's value.
inline const APInt &getValue() const {
return Val;
}
-
+
/// getBitWidth - Return the bitwidth of this constant.
unsigned getBitWidth() const { return Val.getBitWidth(); }
@@ -126,8 +126,8 @@ public:
return Val.getSExtValue();
}
- /// A helper method that can be used to determine if the constant contained
- /// within is equal to a constant. This only works for very small values,
+ /// A helper method that can be used to determine if the constant contained
+ /// within is equal to a constant. This only works for very small values,
/// because this is all that can be represented with all types.
/// @brief Determine if this constant's value is same as an unsigned char.
bool equalsInt(uint64_t V) const {
@@ -141,11 +141,11 @@ public:
return reinterpret_cast<IntegerType*>(Value::getType());
}
- /// This static method returns true if the type Ty is big enough to
- /// represent the value V. This can be used to avoid having the get method
+ /// This static method returns true if the type Ty is big enough to
+ /// represent the value V. This can be used to avoid having the get method
/// assert when V is larger than Ty can represent. Note that there are two
/// versions of this method, one for unsigned and one for signed integers.
- /// Although ConstantInt canonicalizes everything to an unsigned integer,
+ /// Although ConstantInt canonicalizes everything to an unsigned integer,
/// the signed version avoids callers having to convert a signed quantity
/// to the appropriate unsigned type before calling the method.
/// @returns true if V is a valid value for type Ty
@@ -162,7 +162,7 @@ public:
return Val == 0;
}
- /// This is just a convenience method to make client code smaller for a
+ /// This is just a convenience method to make client code smaller for a
/// common case. It also correctly performs the comparison without the
/// potential for an assertion from getZExtValue().
/// @brief Determine if the value is one.
@@ -174,17 +174,17 @@ public:
/// to true.
/// @returns true iff this constant's bits are all set to true.
/// @brief Determine if the value is all ones.
- bool isMinusOne() const {
+ bool isMinusOne() const {
return Val.isAllOnesValue();
}
/// This function will return true iff this constant represents the largest
/// value that may be represented by the constant's type.
- /// @returns true iff this is the largest value that may be represented
+ /// @returns true iff this is the largest value that may be represented
/// by this type.
/// @brief Determine if the value is maximal.
bool isMaxValue(bool isSigned) const {
- if (isSigned)
+ if (isSigned)
return Val.isMaxSignedValue();
else
return Val.isMaxValue();
@@ -192,11 +192,11 @@ public:
/// This function will return true iff this constant represents the smallest
/// value that may be represented by this constant's type.
- /// @returns true if this is the smallest value that may be represented by
+ /// @returns true if this is the smallest value that may be represented by
/// this type.
/// @brief Determine if the value is minimal.
bool isMinValue(bool isSigned) const {
- if (isSigned)
+ if (isSigned)
return Val.isMinSignedValue();
else
return Val.isMinValue();
@@ -248,7 +248,7 @@ public:
/// method returns the negative zero constant for floating point or vector
/// floating point types; for all other types, it returns the null value.
static Constant *getZeroValueForNegation(Type *Ty);
-
+
/// get() - This returns a ConstantFP, or a vector containing a splat of a
/// ConstantFP, for the specified value in the specified type. This should
/// only be used for simple constant values like 2.0/1.0 etc, that are
@@ -258,7 +258,7 @@ public:
static ConstantFP *get(LLVMContext &Context, const APFloat &V);
static ConstantFP *getNegativeZero(Type* Ty);
static ConstantFP *getInfinity(Type *Ty, bool Negative = false);
-
+
/// isValueValidForType - return true if Ty is big enough to represent V.
static bool isValueValidForType(Type *Ty, const APFloat &V);
inline const APFloat &getValueAPF() const { return Val; }
@@ -308,7 +308,7 @@ protected:
}
public:
static ConstantAggregateZero *get(Type *Ty);
-
+
virtual void destroyConstant();
/// getSequentialElement - If this CAZ has array or vector type, return a zero
@@ -346,7 +346,7 @@ protected:
public:
// ConstantArray accessors
static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
-
+
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
@@ -392,7 +392,7 @@ public:
static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
return get(getTypeForElements(V, Packed), V);
}
- static Constant *getAnon(LLVMContext &Ctx,
+ static Constant *getAnon(LLVMContext &Ctx,
ArrayRef<Constant*> V, bool Packed = false) {
return get(getTypeForElements(Ctx, V, Packed), V);
}
@@ -405,7 +405,7 @@ public:
static StructType *getTypeForElements(LLVMContext &Ctx,
ArrayRef<Constant*> V,
bool Packed = false);
-
+
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
@@ -443,11 +443,11 @@ protected:
public:
// ConstantVector accessors
static Constant *get(ArrayRef<Constant*> V);
-
+
/// getSplat - Return a ConstantVector with the specified constant in each
/// element.
static Constant *getSplat(unsigned NumElts, Constant *Elt);
-
+
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
@@ -512,7 +512,7 @@ public:
return V->getValueID() == ConstantPointerNullVal;
}
};
-
+
//===----------------------------------------------------------------------===//
/// ConstantDataSequential - A vector or array constant whose element type is a
/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
@@ -527,7 +527,7 @@ class ConstantDataSequential : public Constant {
/// DataElements - A pointer to the bytes underlying this constant (which is
/// owned by the uniquing StringMap).
const char *DataElements;
-
+
/// Next - This forms a link list of ConstantDataSequential nodes that have
/// the same value but different type. For example, 0,0,0,1 could be a 4
/// element array of i8, or a 1-element array of i32. They'll both end up in
@@ -539,7 +539,7 @@ protected:
explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
: Constant(ty, VT, 0, 0), DataElements(Data), Next(0) {}
~ConstantDataSequential() { delete Next; }
-
+
static Constant *getImpl(StringRef Bytes, Type *Ty);
protected:
@@ -548,13 +548,13 @@ protected:
return User::operator new(s, 0);
}
public:
-
+
/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
/// formed with a vector or array of the specified element type.
/// ConstantDataArray only works with normal float and int types that are
/// stored densely in memory, not with things like i42 or x86_f80.
static bool isElementTypeCompatible(const Type *Ty);
-
+
/// getElementAsInteger - If this is a sequential container of integers (of
/// any size), return the specified element in the low bits of a uint64_t.
uint64_t getElementAsInteger(unsigned i) const;
@@ -566,26 +566,26 @@ public:
/// getElementAsFloat - If this is an sequential container of floats, return
/// the specified element as a float.
float getElementAsFloat(unsigned i) const;
-
+
/// getElementAsDouble - If this is an sequential container of doubles, return
/// the specified element as a double.
double getElementAsDouble(unsigned i) const;
-
+
/// getElementAsConstant - Return a Constant for a specified index's element.
/// Note that this has to compute a new constant to return, so it isn't as
/// efficient as getElementAsInteger/Float/Double.
Constant *getElementAsConstant(unsigned i) const;
-
+
/// getType - Specialize the getType() method to always return a
/// SequentialType, which reduces the amount of casting needed in parts of the
/// compiler.
inline SequentialType *getType() const {
return reinterpret_cast<SequentialType*>(Value::getType());
}
-
+
/// getElementType - Return the element type of the array/vector.
Type *getElementType() const;
-
+
/// getNumElements - Return the number of elements in the array or vector.
unsigned getNumElements() const;
@@ -594,14 +594,14 @@ public:
/// byte.
uint64_t getElementByteSize() const;
-
+
/// isString - This method returns true if this is an array of i8.
bool isString() const;
-
+
/// isCString - This method returns true if the array "isString", ends with a
/// nul byte, and does not contains any other nul bytes.
bool isCString() const;
-
+
/// getAsString - If this array is isString(), then this method returns the
/// array as a StringRef. Otherwise, it asserts out.
///
@@ -609,7 +609,7 @@ public:
assert(isString() && "Not a string");
return getRawDataValues();
}
-
+
/// getAsCString - If this array is isCString(), then this method returns the
/// array (without the trailing null byte) as a StringRef. Otherwise, it
/// asserts out.
@@ -619,14 +619,14 @@ public:
StringRef Str = getAsString();
return Str.substr(0, Str.size()-1);
}
-
+
/// getRawDataValues - Return the raw, underlying, bytes of this data. Note
/// that this is an extremely tricky thing to work with, as it exposes the
/// host endianness of the data elements.
StringRef getRawDataValues() const;
-
+
virtual void destroyConstant();
-
+
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const Value *V) {
@@ -656,7 +656,7 @@ protected:
return User::operator new(s, 0);
}
public:
-
+
/// get() constructors - Return a constant with array type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
@@ -666,7 +666,7 @@ public:
static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
-
+
/// getString - This method constructs a CDS and initializes it with a text
/// string. The default behavior (AddNull==true) causes a null terminator to
/// be placed at the end of the array (increasing the length of the string by
@@ -681,14 +681,14 @@ public:
inline ArrayType *getType() const {
return reinterpret_cast<ArrayType*>(Value::getType());
}
-
+
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const Value *V) {
return V->getValueID() == ConstantDataArrayVal;
}
};
-
+
//===----------------------------------------------------------------------===//
/// ConstantDataVector - A vector constant whose element type is a simple
/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
@@ -708,7 +708,7 @@ protected:
return User::operator new(s, 0);
}
public:
-
+
/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
@@ -718,7 +718,7 @@ public:
static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
-
+
/// getSplat - Return a ConstantVector with the specified constant in each
/// element. The specified constant has to be a of a compatible type (i8/i16/
/// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
@@ -727,14 +727,14 @@ public:
/// getSplatValue - If this is a splat constant, meaning that all of the
/// elements have the same value, return that value. Otherwise return NULL.
Constant *getSplatValue() const;
-
+
/// getType - Specialize the getType() method to always return a VectorType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline VectorType *getType() const {
return reinterpret_cast<VectorType*>(Value::getType());
}
-
+
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const Value *V) {
@@ -753,20 +753,20 @@ class BlockAddress : public Constant {
public:
/// get - Return a BlockAddress for the specified function and basic block.
static BlockAddress *get(Function *F, BasicBlock *BB);
-
+
/// get - Return a BlockAddress for the specified basic block. The basic
/// block must be embedded into a function.
static BlockAddress *get(BasicBlock *BB);
-
+
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-
+
Function *getFunction() const { return (Function*)Op<0>().get(); }
BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
-
+
virtual void destroyConstant();
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
-
+
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Value *V) {
return V->getValueID() == BlockAddressVal;
@@ -779,7 +779,7 @@ struct OperandTraits<BlockAddress> :
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
-
+
//===----------------------------------------------------------------------===//
/// ConstantExpr - a constant value that is initialized with an expression using
@@ -809,14 +809,14 @@ public:
/// getAlignOf constant expr - computes the alignment of a type in a target
/// independent way (Note: the return type is an i64).
static Constant *getAlignOf(Type *Ty);
-
+
/// getSizeOf constant expr - computes the (alloc) size of a type (in
/// address-units, not bits) in a target independent way (Note: the return
/// type is an i64).
///
static Constant *getSizeOf(Type *Ty);
- /// getOffsetOf constant expr - computes the offset of a struct field in a
+ /// getOffsetOf constant expr - computes the offset of a struct field in a
/// target independent way (Note: the return type is an i64).
///
static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
@@ -825,7 +825,7 @@ public:
/// which supports any aggregate type, and any Constant index.
///
static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
-
+
static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
static Constant *getFNeg(Constant *C);
static Constant *getNot(Constant *C);
@@ -931,7 +931,7 @@ public:
Type *Ty ///< The type to zext or bitcast C to
);
- // @brief Create a SExt or BitCast cast constant expression
+ // @brief Create a SExt or BitCast cast constant expression
static Constant *getSExtOrBitCast(
Constant *C, ///< The constant to sext or bitcast
Type *Ty ///< The type to sext or bitcast C to
@@ -951,14 +951,14 @@ public:
/// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
static Constant *getIntegerCast(
- Constant *C, ///< The integer constant to be casted
+ Constant *C, ///< The integer constant to be casted
Type *Ty, ///< The integer type to cast to
bool isSigned ///< Whether C should be treated as signed or not
);
/// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
static Constant *getFPCast(
- Constant *C, ///< The integer constant to be casted
+ Constant *C, ///< The integer constant to be casted
Type *Ty ///< The integer type to cast to
);
@@ -1062,7 +1062,7 @@ public:
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
-
+
/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values. The specified array must
/// have the same number of operands as our current one.
@@ -1083,7 +1083,7 @@ public:
static inline bool classof(const Value *V) {
return V->getValueID() == ConstantExprVal;
}
-
+
private:
// Shadow Value::setValueSubclassData with a private forwarding method so that
// subclasses cannot accidentally use it.
@@ -1128,11 +1128,11 @@ public:
/// getSequentialElement - If this Undef has array or vector type, return a
/// undef with the right element type.
UndefValue *getSequentialElement() const;
-
+
/// getStructElement - If this undef has struct type, return a undef with the
/// right element type for the specified element.
UndefValue *getStructElement(unsigned Elt) const;
-
+
/// getElementValue - Return an undef of the right value for the specified GEP
/// index.
UndefValue *getElementValue(Constant *C) const;