summaryrefslogtreecommitdiff
path: root/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2009-11-26 17:12:50 +0000
committerChris Lattner <sabre@nondot.org>2009-11-26 17:12:50 +0000
commite405c64f6b91635c8884411447ff5756c2e6b4c3 (patch)
tree6ae53a8b6d00bc2ee50cac8c19982d9166f0e7f5 /lib/Analysis/ValueTracking.cpp
parentfa3966881f7f0317803b09161602c9c7eeb2d3a3 (diff)
downloadllvm-e405c64f6b91635c8884411447ff5756c2e6b4c3.tar.gz
llvm-e405c64f6b91635c8884411447ff5756c2e6b4c3.tar.bz2
llvm-e405c64f6b91635c8884411447ff5756c2e6b4c3.tar.xz
move DecomposeGEPExpression out into ValueTracking.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89956 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r--lib/Analysis/ValueTracking.cpp154
1 files changed, 154 insertions, 0 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index f4b550f9f7..5f9d0370f5 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -948,6 +948,160 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return false;
}
+
+/// GetLinearExpression - Analyze the specified value as a linear expression:
+/// "A*V + B". Return the scale and offset values as APInts and return V as a
+/// Value*. The incoming Value is known to be a scalar integer.
+static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
+ const TargetData *TD) {
+ assert(isa<IntegerType>(V->getType()) && "Not an integer value");
+
+ if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
+ switch (BOp->getOpcode()) {
+ default: break;
+ case Instruction::Or:
+ // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
+ // analyze it.
+ if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
+ break;
+ // FALL THROUGH.
+ case Instruction::Add:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
+ Offset += RHSC->getValue();
+ return V;
+ case Instruction::Mul:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
+ Offset *= RHSC->getValue();
+ Scale *= RHSC->getValue();
+ return V;
+ case Instruction::Shl:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
+ Offset <<= RHSC->getValue().getLimitedValue();
+ Scale <<= RHSC->getValue().getLimitedValue();
+ return V;
+ }
+ }
+ }
+
+ Scale = 1;
+ Offset = 0;
+ return V;
+}
+
+/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
+/// into a base pointer with a constant offset and a number of scaled symbolic
+/// offsets.
+///
+/// When TargetData is around, this function is capable of analyzing everything
+/// that Value::getUnderlyingObject() can look through. When not, it just looks
+/// through pointer casts.
+///
+const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
+ SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
+ const TargetData *TD) {
+ // FIXME: Should limit depth like getUnderlyingObject?
+ BaseOffs = 0;
+ while (1) {
+ // See if this is a bitcast or GEP.
+ const Operator *Op = dyn_cast<Operator>(V);
+ if (Op == 0) {
+ // The only non-operator case we can handle are GlobalAliases.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->mayBeOverridden()) {
+ V = GA->getAliasee();
+ continue;
+ }
+ }
+ return V;
+ }
+
+ if (Op->getOpcode() == Instruction::BitCast) {
+ V = Op->getOperand(0);
+ continue;
+ }
+
+ const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
+ if (GEPOp == 0)
+ return V;
+
+ // Don't attempt to analyze GEPs over unsized objects.
+ if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
+ ->getElementType()->isSized())
+ return V;
+
+ // If we are lacking TargetData information, we can't compute the offets of
+ // elements computed by GEPs. However, we can handle bitcast equivalent
+ // GEPs.
+ if (!TD) {
+ if (!GEPOp->hasAllZeroIndices())
+ return V;
+ V = GEPOp->getOperand(0);
+ continue;
+ }
+
+ // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
+ gep_type_iterator GTI = gep_type_begin(GEPOp);
+ for (User::const_op_iterator I = GEPOp->op_begin()+1,
+ E = GEPOp->op_end(); I != E; ++I) {
+ Value *Index = *I;
+ // Compute the (potentially symbolic) offset in bytes for this index.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
+ // For a struct, add the member offset.
+ unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
+ if (FieldNo == 0) continue;
+
+ BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
+ continue;
+ }
+
+ // For an array/pointer, add the element offset, explicitly scaled.
+ if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
+ if (CIdx->isZero()) continue;
+ BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
+ continue;
+ }
+
+ // TODO: Could handle linear expressions here like A[X+1], also A[X*4|1].
+ uint64_t Scale = TD->getTypeAllocSize(*GTI);
+
+ unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
+ APInt IndexScale(Width, 0), IndexOffset(Width, 0);
+ Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD);
+
+ Scale *= IndexScale.getZExtValue();
+ BaseOffs += IndexOffset.getZExtValue()*Scale;
+
+
+ // If we already had an occurrance of this index variable, merge this
+ // scale into it. For example, we want to handle:
+ // A[x][x] -> x*16 + x*4 -> x*20
+ // This also ensures that 'x' only appears in the index list once.
+ for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
+ if (VarIndices[i].first == Index) {
+ Scale += VarIndices[i].second;
+ VarIndices.erase(VarIndices.begin()+i);
+ break;
+ }
+ }
+
+ // Make sure that we have a scale that makes sense for this target's
+ // pointer size.
+ if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
+ Scale <<= ShiftBits;
+ Scale >>= ShiftBits;
+ }
+
+ if (Scale)
+ VarIndices.push_back(std::make_pair(Index, Scale));
+ }
+
+ // Analyze the base pointer next.
+ V = GEPOp->getOperand(0);
+ }
+}
+
+
// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of