summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorBill Wendling <isanbard@gmail.com>2012-03-29 23:23:59 +0000
committerBill Wendling <isanbard@gmail.com>2012-03-29 23:23:59 +0000
commit288967dfac246c8e35dc4f85afb667e74d1d26a8 (patch)
tree7dd4eef16e2e567d38180a3dbdbc01f5e9be3b0c /lib
parent7a4c071cd9f67599eba21e902079d0e85f2abf97 (diff)
downloadllvm-288967dfac246c8e35dc4f85afb667e74d1d26a8.tar.gz
llvm-288967dfac246c8e35dc4f85afb667e74d1d26a8.tar.bz2
llvm-288967dfac246c8e35dc4f85afb667e74d1d26a8.tar.xz
Revert r153694. It was causing failures in the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153701 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/ExecutionEngine/MCJIT/MCJITMemoryManager.h38
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp295
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp409
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h176
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h168
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp627
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h86
7 files changed, 1046 insertions, 753 deletions
diff --git a/lib/ExecutionEngine/MCJIT/MCJITMemoryManager.h b/lib/ExecutionEngine/MCJIT/MCJITMemoryManager.h
index a68949aa41..118b0d42ee 100644
--- a/lib/ExecutionEngine/MCJIT/MCJITMemoryManager.h
+++ b/lib/ExecutionEngine/MCJIT/MCJITMemoryManager.h
@@ -34,12 +34,12 @@ public:
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID) {
- return JMM->allocateSpace(Size, Alignment);
+ return JMM->allocateDataSection(Size, Alignment, SectionID);
}
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID) {
- return JMM->allocateSpace(Size, Alignment);
+ return JMM->allocateCodeSection(Size, Alignment, SectionID);
}
virtual void *getPointerToNamedFunction(const std::string &Name,
@@ -47,6 +47,40 @@ public:
return JMM->getPointerToNamedFunction(Name, AbortOnFailure);
}
+ // Allocate ActualSize bytes, or more, for the named function. Return
+ // a pointer to the allocated memory and update Size to reflect how much
+ // memory was acutally allocated.
+ uint8_t *startFunctionBody(const char *Name, uintptr_t &Size) {
+ // FIXME: This should really reference the MCAsmInfo to get the global
+ // prefix.
+ if (Name[0] == '_') ++Name;
+ Function *F = M->getFunction(Name);
+ // Some ObjC names have a prefixed \01 in the IR. If we failed to find
+ // the symbol and it's of the ObjC conventions (starts with "-" or
+ // "+"), try prepending a \01 and see if we can find it that way.
+ if (!F && (Name[0] == '-' || Name[0] == '+'))
+ F = M->getFunction((Twine("\1") + Name).str());
+ assert(F && "No matching function in JIT IR Module!");
+ return JMM->startFunctionBody(F, Size);
+ }
+
+ // Mark the end of the function, including how much of the allocated
+ // memory was actually used.
+ void endFunctionBody(const char *Name, uint8_t *FunctionStart,
+ uint8_t *FunctionEnd) {
+ // FIXME: This should really reference the MCAsmInfo to get the global
+ // prefix.
+ if (Name[0] == '_') ++Name;
+ Function *F = M->getFunction(Name);
+ // Some ObjC names have a prefixed \01 in the IR. If we failed to find
+ // the symbol and it's of the ObjC conventions (starts with "-" or
+ // "+"), try prepending a \01 and see if we can find it that way.
+ if (!F && (Name[0] == '-' || Name[0] == '+'))
+ F = M->getFunction((Twine("\1") + Name).str());
+ assert(F && "No matching function in JIT IR Module!");
+ JMM->endFunctionBody(F, FunctionStart, FunctionEnd);
+ }
+
};
} // End llvm namespace
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
index 7a2b858611..2896c2d556 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
@@ -26,290 +26,45 @@ RuntimeDyldImpl::~RuntimeDyldImpl() {}
namespace llvm {
-namespace {
- // Helper for extensive error checking in debug builds.
- error_code Check(error_code Err) {
- if (Err) {
- report_fatal_error(Err.message());
- }
- return Err;
- }
-} // end anonymous namespace
+void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
+ uint8_t *EndAddress) {
+ // FIXME: DEPRECATED in favor of by-section allocation.
+ // Allocate memory for the function via the memory manager.
+ uintptr_t Size = EndAddress - StartAddress + 1;
+ uintptr_t AllocSize = Size;
+ uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize);
+ assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
+ "Memory manager failed to allocate enough memory!");
+ // Copy the function payload into the memory block.
+ memcpy(Mem, StartAddress, Size);
+ MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
+ // Remember where we put it.
+ unsigned SectionID = Sections.size();
+ Sections.push_back(sys::MemoryBlock(Mem, Size));
+ // Default the assigned address for this symbol to wherever this
+ // allocated it.
+ SymbolTable[Name] = SymbolLoc(SectionID, 0);
+ DEBUG(dbgs() << " allocated to [" << Mem << ", " << Mem + Size << "]\n");
+}
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
- // First, resolve relocations assotiated with external symbols.
- resolveSymbols();
-
// Just iterate over the sections we have and resolve all the relocations
// in them. Gross overkill, but it gets the job done.
for (int i = 0, e = Sections.size(); i != e; ++i) {
- reassignSectionAddress(i, Sections[i].LoadAddress);
+ reassignSectionAddress(i, SectionLoadAddress[i]);
}
}
void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress,
uint64_t TargetAddress) {
- for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
- if (Sections[i].Address == LocalAddress) {
- reassignSectionAddress(i, TargetAddress);
- return;
- }
- }
- llvm_unreachable("Attempting to remap address of unknown section!");
-}
-
-bool RuntimeDyldImpl::loadObject(const MemoryBuffer *InputBuffer) {
- // FIXME: ObjectFile don't modify MemoryBuffer.
- // It should use const MemoryBuffer as parameter.
- ObjectFile *obj
- = ObjectFile::createObjectFile(const_cast<MemoryBuffer*>(InputBuffer));
-
- Arch = (Triple::ArchType)obj->getArch();
-
- LocalSymbolMap LocalSymbols; // Functions and data symbols from the
- // object file.
- ObjSectionToIDMap LocalSections; // Used sections from the object file
-
- error_code err;
- // Parse symbols
- DEBUG(dbgs() << "Parse symbols:\n");
- for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
- i != e; i.increment(err)) {
- Check(err);
- object::SymbolRef::Type SymType;
- StringRef Name;
- Check(i->getType(SymType));
- Check(i->getName(Name));
-
- if (SymType == object::SymbolRef::ST_Function ||
- SymType == object::SymbolRef::ST_Data) {
- uint64_t FileOffset;
- uint32_t flags;
- StringRef sData;
- section_iterator si = obj->end_sections();
- Check(i->getFileOffset(FileOffset));
- Check(i->getFlags(flags));
- Check(i->getSection(si));
- if (si == obj->end_sections()) continue;
- Check(si->getContents(sData));
- const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
- (uintptr_t)FileOffset;
- uintptr_t SectOffset = (uintptr_t)(SymPtr - (const uint8_t*)sData.begin());
- unsigned SectionID
- = findOrEmitSection(*si,
- SymType == object::SymbolRef::ST_Function,
- LocalSections);
- bool isGlobal = flags & SymbolRef::SF_Global;
- LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
- DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
- << " flags: " << flags
- << " SID: " << SectionID
- << " Offset: " << format("%p", SectOffset));
- if (isGlobal)
- SymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
- }
- DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
- }
-
- // Parse and proccess relocations
- DEBUG(dbgs() << "Parse relocations:\n");
- for (section_iterator si = obj->begin_sections(),
- se = obj->end_sections(); si != se; si.increment(err)) {
- Check(err);
- bool isFirstRelocation = true;
- unsigned SectionID = 0;
- StubMap Stubs;
-
- for (relocation_iterator i = si->begin_relocations(),
- e = si->end_relocations(); i != e; i.increment(err)) {
- Check(err);
-
- // If it's first relocation in this section, find its SectionID
- if (isFirstRelocation) {
- SectionID = findOrEmitSection(*si, true, LocalSections);
- DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
- isFirstRelocation = false;
- }
-
- ObjRelocationInfo RI;
- RI.SectionID = SectionID;
- Check(i->getAdditionalInfo(RI.AdditionalInfo));
- Check(i->getOffset(RI.Offset));
- Check(i->getSymbol(RI.Symbol));
- Check(i->getType(RI.Type));
-
- DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
- << " Offset: " << format("%p", (uintptr_t)RI.Offset)
- << " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
- << "\n");
- processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
- }
- }
- return false;
-}
-
-unsigned RuntimeDyldImpl::emitSection(const SectionRef &Section,
- bool IsCode) {
-
- unsigned StubBufSize = 0,
- StubSize = getMaxStubSize();
- error_code err;
- if (StubSize > 0) {
- for (relocation_iterator i = Section.begin_relocations(),
- e = Section.end_relocations(); i != e; i.increment(err))
- StubBufSize += StubSize;
- }
- StringRef data;
- uint64_t Alignment64;
- Check(Section.getContents(data));
- Check(Section.getAlignment(Alignment64));
-
- unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
- unsigned DataSize = data.size();
- unsigned Allocate = DataSize + StubBufSize;
- unsigned SectionID = Sections.size();
- const char *pData = data.data();
- uint8_t *Addr = IsCode
- ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
- : MemMgr->allocateDataSection(Allocate, Alignment, SectionID);
-
- memcpy(Addr, pData, DataSize);
- DEBUG(dbgs() << "emitSection SectionID: " << SectionID
- << " obj addr: " << format("%p", pData)
- << " new addr: " << format("%p", Addr)
- << " DataSize: " << DataSize
- << " StubBufSize: " << StubBufSize
- << " Allocate: " << Allocate
- << "\n");
- Sections.push_back(SectionEntry(Addr, Allocate, DataSize,(uintptr_t)pData));
- return SectionID;
-}
-
-unsigned RuntimeDyldImpl::findOrEmitSection(const SectionRef &Section,
- bool IsCode,
- ObjSectionToIDMap &LocalSections) {
-
- unsigned SectionID = 0;
- ObjSectionToIDMap::iterator i = LocalSections.find(Section);
- if (i != LocalSections.end())
- SectionID = i->second;
- else {
- SectionID = emitSection(Section, IsCode);
- LocalSections[Section] = SectionID;
- }
- return SectionID;
-}
-
-void RuntimeDyldImpl::AddRelocation(const RelocationValueRef &Value,
- unsigned SectionID, uintptr_t Offset,
- uint32_t RelType) {
- DEBUG(dbgs() << "AddRelocation SymNamePtr: " << format("%p", Value.SymbolName)
- << " SID: " << Value.SectionID
- << " Addend: " << format("%p", Value.Addend)
- << " Offset: " << format("%p", Offset)
- << " RelType: " << format("%x", RelType)
- << "\n");
-
- if (Value.SymbolName == 0) {
- Relocations[Value.SectionID].push_back(RelocationEntry(
- SectionID,
- Offset,
- RelType,
- Value.Addend));
- } else
- SymbolRelocations[Value.SymbolName].push_back(RelocationEntry(
- SectionID,
- Offset,
- RelType,
- Value.Addend));
-}
-
-uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
- // TODO: There is only ARM far stub now. We should add the Thumb stub,
- // and stubs for branches Thumb - ARM and ARM - Thumb.
- if (Arch == Triple::arm) {
- uint32_t *StubAddr = (uint32_t*)Addr;
- *StubAddr = 0xe51ff004; // ldr pc,<label>
- return (uint8_t*)++StubAddr;
- }
- else
- return Addr;
+ assert(SectionLocalMemToID.count(LocalAddress) &&
+ "Attempting to remap address of unknown section!");
+ unsigned SectionID = SectionLocalMemToID[LocalAddress];
+ reassignSectionAddress(SectionID, TargetAddress);
}
-// Assign an address to a symbol name and resolve all the relocations
-// associated with it.
-void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
- uint64_t Addr) {
- // The address to use for relocation resolution is not
- // the address of the local section buffer. We must be doing
- // a remote execution environment of some sort. Re-apply any
- // relocations referencing this section with the given address.
- //
- // Addr is a uint64_t because we can't assume the pointer width
- // of the target is the same as that of the host. Just use a generic
- // "big enough" type.
- Sections[SectionID].LoadAddress = Addr;
- DEBUG(dbgs() << "Resolving relocations Section #" << SectionID
- << "\t" << format("%p", (uint8_t *)Addr)
- << "\n");
- resolveRelocationList(Relocations[SectionID], Addr);
-}
-
-void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
- uint64_t Value) {
- uint8_t *Target = Sections[RE.SectionID].Address + RE.Offset;
- DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
- << " + " << RE.Offset << " (" << format("%p", Target) << ")"
- << " Data: " << RE.Data
- << " Addend: " << RE.Addend
- << "\n");
-
- resolveRelocation(Target, Sections[RE.SectionID].LoadAddress + RE.Offset,
- Value, RE.Data, RE.Addend);
-}
-
-void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
- uint64_t Value) {
- for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
- resolveRelocationEntry(Relocs[i], Value);
- }
-}
-
-// resolveSymbols - Resolve any relocations to the specified symbols if
-// we know where it lives.
-void RuntimeDyldImpl::resolveSymbols() {
- StringMap<RelocationList>::iterator i = SymbolRelocations.begin(),
- e = SymbolRelocations.end();
- for (; i != e; i++) {
- StringRef Name = i->first();
- RelocationList &Relocs = i->second;
- StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
- if (Loc == SymbolTable.end()) {
- // This is an external symbol, try to get it address from
- // MemoryManager.
- uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
- true);
- DEBUG(dbgs() << "Resolving relocations Name: " << Name
- << "\t" << format("%p", Addr)
- << "\n");
- resolveRelocationList(Relocs, (uintptr_t)Addr);
- } else {
- // Change the relocation to be section relative rather than symbol
- // relative and move it to the resolved relocation list.
- DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
- for (int i = 0, e = Relocs.size(); i != e; ++i) {
- RelocationEntry Entry = Relocs[i];
- Entry.Addend += Loc->second.second;
- Relocations[Loc->second.first].push_back(Entry);
- }
- Relocs.clear();
- }
- }
-}
-
-
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
index 9d46b21f59..e15b200c5e 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -25,58 +25,222 @@ using namespace llvm::object;
namespace llvm {
+namespace {
-void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress,
- uint64_t FinalAddress,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) {
- switch (Type) {
- default:
- llvm_unreachable("Relocation type not implemented yet!");
- break;
+// FIXME: this function should probably not live here...
+//
+// Returns the name and address of an unrelocated symbol in an ELF section
+void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
+ //FIXME: error checking here required to catch corrupt ELF objects...
+ error_code Err = Sym->getName(Name);
+
+ uint64_t AddrInSection;
+ Err = Sym->getAddress(AddrInSection);
+
+ SectionRef empty_section;
+ section_iterator Section(empty_section);
+ Err = Sym->getSection(Section);
+
+ StringRef SectionContents;
+ Section->getContents(SectionContents);
+
+ Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
+}
+
+}
+
+bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
+ if (!isCompatibleFormat(InputBuffer))
+ return true;
+
+ OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
+
+ Arch = Obj->getArch();
+
+ // Map address in the Object file image to function names
+ IntervalMap<uint64_t, StringRef>::Allocator A;
+ IntervalMap<uint64_t, StringRef> FuncMap(A);
+
+ // This is a bit of a hack. The ObjectFile we've just loaded reports
+ // section addresses as 0 and doesn't provide access to the section
+ // offset (from which we could calculate the address. Instead,
+ // we're storing the address when it comes up in the ST_Debug case
+ // below.
+ //
+ StringMap<uint64_t> DebugSymbolMap;
+
+ symbol_iterator SymEnd = Obj->end_symbols();
+ error_code Err;
+ for (symbol_iterator Sym = Obj->begin_symbols();
+ Sym != SymEnd; Sym.increment(Err)) {
+ SymbolRef::Type Type;
+ Sym->getType(Type);
+ if (Type == SymbolRef::ST_Function) {
+ StringRef Name;
+ uint64_t Addr;
+ getSymbolInfo(Sym, Addr, Name);
+
+ uint64_t Size;
+ Err = Sym->getSize(Size);
+
+ uint8_t *Start;
+ uint8_t *End;
+ Start = reinterpret_cast<uint8_t*>(Addr);
+ End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
+
+ extractFunction(Name, Start, End);
+ FuncMap.insert(Addr, Addr + Size - 1, Name);
+ } else if (Type == SymbolRef::ST_Debug) {
+ // This case helps us find section addresses
+ StringRef Name;
+ uint64_t Addr;
+ getSymbolInfo(Sym, Addr, Name);
+ DebugSymbolMap[Name] = Addr;
+ }
+ }
+
+ // Iterate through the relocations for this object
+ section_iterator SecEnd = Obj->end_sections();
+ for (section_iterator Sec = Obj->begin_sections();
+ Sec != SecEnd; Sec.increment(Err)) {
+ StringRef SecName;
+ uint64_t SecAddr;
+ Sec->getName(SecName);
+ // Ignore sections that aren't in our map
+ if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
+ continue;
+ }
+ SecAddr = DebugSymbolMap[SecName];
+ relocation_iterator RelEnd = Sec->end_relocations();
+ for (relocation_iterator Rel = Sec->begin_relocations();
+ Rel != RelEnd; Rel.increment(Err)) {
+ uint64_t RelOffset;
+ uint64_t RelType;
+ int64_t RelAddend;
+ SymbolRef RelSym;
+ StringRef SymName;
+ uint64_t SymAddr;
+ uint64_t SymOffset;
+
+ Rel->getAddress(RelOffset);
+ Rel->getType(RelType);
+ Rel->getAdditionalInfo(RelAddend);
+ Rel->getSymbol(RelSym);
+ RelSym.getName(SymName);
+ RelSym.getAddress(SymAddr);
+ RelSym.getFileOffset(SymOffset);
+
+ // If this relocation is inside a function, we want to store the
+ // function name and a function-relative offset
+ IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
+ = FuncMap.find(SecAddr + RelOffset);
+ if (ContainingFunc.valid()) {
+ // Re-base the relocation to make it relative to the target function
+ RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
+ Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
+ RelOffset,
+ RelType,
+ RelAddend,
+ true));
+ } else {
+ Relocations[SymName].push_back(RelocationEntry(SecName,
+ RelOffset,
+ RelType,
+ RelAddend,
+ false));
+ }
+ }
+ }
+ return false;
+}
+
+void RuntimeDyldELF::resolveRelocations() {
+ // FIXME: deprecated. should be changed to use the by-section
+ // allocation and relocation scheme.
+
+ // Just iterate over the symbols in our symbol table and assign their
+ // addresses.
+ StringMap<SymbolLoc>::iterator i = SymbolTable.begin();
+ StringMap<SymbolLoc>::iterator e = SymbolTable.end();
+ for (;i != e; ++i) {
+ assert (i->getValue().second == 0 && "non-zero offset in by-function sym!");
+ reassignSymbolAddress(i->getKey(),
+ (uint8_t*)Sections[i->getValue().first].base());
+ }
+}
+
+void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
+ uint8_t *TargetAddr;
+ if (RE.IsFunctionRelative) {
+ StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
+ assert(Loc != SymbolTable.end() && "Function for relocation not found");
+ TargetAddr =
+ reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
+ Loc->second.second + RE.Offset;
+ } else {
+ // FIXME: Get the address of the target section and add that to RE.Offset
+ llvm_unreachable("Non-function relocation not implemented yet!");
+ }
+
+ switch (RE.Type) {
+ default: llvm_unreachable("Relocation type not implemented yet!");
case ELF::R_X86_64_64: {
- uint64_t *Target = (uint64_t*)(LocalAddress);
- *Target = Value + Addend;
+ uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
+ *Target = Addr + RE.Addend;
break;
}
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S: {
- Value += Addend;
+ uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
// FIXME: Handle the possibility of this assertion failing
- assert((Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
- (Type == ELF::R_X86_64_32S &&
+ assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
+ (RE.Type == ELF::R_X86_64_32S &&
(Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
- uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
*Target = TruncatedAddr;
break;
}
case ELF::R_X86_64_PC32: {
- uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
- int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
- assert(RealOffset <= 214783647 && RealOffset >= -214783648);
- int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
+ uint64_t RealOffset = *Placeholder +
+ reinterpret_cast<uint64_t>(Addr) +
+ RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
+ assert((RealOffset & 0xFFFFFFFF) == RealOffset);
+ uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Placeholder = TruncOffset;
break;
}
}
}
-void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
- uint32_t FinalAddress,
- uint32_t Value,
- uint32_t Type,
- int32_t Addend) {
- switch (Type) {
+void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
+ uint8_t *TargetAddr;
+ if (RE.IsFunctionRelative) {
+ StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
+ assert(Loc != SymbolTable.end() && "Function for relocation not found");
+ TargetAddr =
+ reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
+ Loc->second.second + RE.Offset;
+ } else {
+ // FIXME: Get the address of the target section and add that to RE.Offset
+ llvm_unreachable("Non-function relocation not implemented yet!");
+ }
+
+ switch (RE.Type) {
case ELF::R_386_32: {
- uint32_t *Target = (uint32_t*)(LocalAddress);
- *Target = Value + Addend;
+ uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
+ *Target = Addr + RE.Addend;
break;
}
case ELF::R_386_PC32: {
- uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
- uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
+ uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
+ RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
*Placeholder = RealOffset;
break;
}
@@ -84,174 +248,57 @@ void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
// There are other relocation types, but it appears these are the
// only ones currently used by the LLVM ELF object writer
llvm_unreachable("Relocation type not implemented yet!");
- break;
}
}
-void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress,
- uint32_t FinalAddress,
- uint32_t Value,
- uint32_t Type,
- int32_t Addend) {
- // TODO: Add Thumb relocations.
- uint32_t* TargetPtr = (uint32_t*)LocalAddress;
- Value += Addend;
-
- DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress
- << " FinalAddress: " << format("%p",FinalAddress)
- << " Value: " << format("%x",Value)
- << " Type: " << format("%x",Type)
- << " Addend: " << format("%x",Addend)
- << "\n");
-
- switch(Type) {
- default:
- llvm_unreachable("Not implemented relocation type!");
-
- // Just write 32bit value to relocation address
- case ELF::R_ARM_ABS32 :
- *TargetPtr = Value;
- break;
-
- // Write first 16 bit of 32 bit value to the mov instruction.
- // Last 4 bit should be shifted.
- case ELF::R_ARM_MOVW_ABS_NC :
- Value = Value & 0xFFFF;
- *TargetPtr |= Value & 0xFFF;
- *TargetPtr |= ((Value >> 12) & 0xF) << 16;
- break;
-
- // Write last 16 bit of 32 bit value to the mov instruction.
- // Last 4 bit should be shifted.
- case ELF::R_ARM_MOVT_ABS :
- Value = (Value >> 16) & 0xFFFF;
- *TargetPtr |= Value & 0xFFF;
- *TargetPtr |= ((Value >> 12) & 0xF) << 16;
- break;
-
- // Write 24 bit relative value to the branch instruction.
- case ELF::R_ARM_PC24 : // Fall through.
- case ELF::R_ARM_CALL : // Fall through.
- case ELF::R_ARM_JUMP24 :
- int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
- RelValue = (RelValue & 0x03FFFFFC) >> 2;
- *TargetPtr &= 0xFF000000;
- *TargetPtr |= RelValue;
- break;
- }
+void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
}
-void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
- uint64_t FinalAddress,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) {
+void RuntimeDyldELF::resolveRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
switch (Arch) {
case Triple::x86_64:
- resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
+ resolveX86_64Relocation(Name, Addr, RE);
break;
case Triple::x86:
- resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
- (uint32_t)(Value & 0xffffffffL), Type,
- (uint32_t)(Addend & 0xffffffffL));
+ resolveX86Relocation(Name, Addr, RE);
break;
- case Triple::arm: // Fall through.
- case Triple::thumb:
- resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
- (uint32_t)(Value & 0xffffffffL), Type,
- (uint32_t)(Addend & 0xffffffffL));
+ case Triple::arm:
+ resolveArmRelocation(Name, Addr, RE);
break;
default: llvm_unreachable("Unsupported CPU type!");
}
}
-void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
- const ObjectFile &Obj,
- ObjSectionToIDMap &ObjSectionToID,
- LocalSymbolMap &Symbols,
- StubMap &Stubs) {
-
- uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
- intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
- RelocationValueRef Value;
- StringRef TargetName;
- const SymbolRef &Symbol = Rel.Symbol;
- Symbol.getName(TargetName);
- DEBUG(dbgs() << "\t\tRelType: " << RelType
- << " Addend: " << Addend
- << " TargetName: " << TargetName
- << "\n");
- // First look the symbol in object file symbols.
- LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data());
- if (lsi != Symbols.end()) {
- Value.SectionID = lsi->second.first;
- Value.Addend = lsi->second.second;
- } else {
- // Second look the symbol in global symbol table.
- StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data());
- if (gsi != SymbolTable.end()) {
- Value.SectionID = gsi->second.first;
- Value.Addend = gsi->second.second;
- } else {
- SymbolRef::Type SymType;
- Symbol.getType(SymType);
- switch (SymType) {
- case SymbolRef::ST_Debug: {
- // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
- // and can be changed by another developers. Maybe best way is add
- // a new symbol type ST_Section to SymbolRef and use it.
- section_iterator si = Obj.end_sections();
- Symbol.getSection(si);
- if (si == Obj.end_sections())
- llvm_unreachable("Symbol section not found, bad object file format!");
- DEBUG(dbgs() << "\t\tThis is section symbol\n");
- Value.SectionID = findOrEmitSection((*si), true, ObjSectionToID);
- Value.Addend = Addend;
- break;
- }
- case SymbolRef::ST_Unknown: {
- Value.SymbolName = TargetName.data();
- Value.Addend = Addend;
- break;
- }
- default:
- llvm_unreachable("Unresolved symbol type!");
- break;
- }
- }
+void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
+ // FIXME: deprecated. switch to reassignSectionAddress() instead.
+ //
+ // Actually moving the symbol address requires by-section mapping.
+ assert(Sections[SymbolTable.lookup(Name).first].base() == (void*)Addr &&
+ "Unable to relocate section in by-function JIT allocation model!");
+
+ RelocationList &Relocs = Relocations[Name];
+ for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
+ RelocationEntry &RE = Relocs[i];
+ resolveRelocation(Name, Addr, RE);
}
- DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
- << " Rel.Offset: " << Rel.Offset
- << "\n");
- if (Arch == Triple::arm &&
- (RelType == ELF::R_ARM_PC24 ||
- RelType == ELF::R_ARM_CALL ||
- RelType == ELF::R_ARM_JUMP24)) {
- // This is an ARM branch relocation, need to use a stub function.
- DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
- SectionEntry &Section = Sections[Rel.SectionID];
- uint8_t *Target = Section.Address + Rel.Offset;
-
- // Look up for existing stub.
- StubMap::const_iterator i = Stubs.find(Value);
- if (i != Stubs.end()) {
- resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address +
- i->second, RelType, 0);
- DEBUG(dbgs() << " Stub function found\n");
- } else {
- // Create a new stub function.
- DEBUG(dbgs() << " Create a new stub function\n");
- Stubs[Value] = Section.StubOffset;
- uint8_t *StubTargetAddr = createStubFunction(Section.Address +
- Section.StubOffset);
- AddRelocation(Value, Rel.SectionID,
- StubTargetAddr - Section.Address, ELF::R_ARM_ABS32);
- resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address +
- Section.StubOffset, RelType, 0);
- Section.StubOffset += getMaxStubSize();
- }
- } else
- AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
+}
+
+// Assign an address to a symbol name and resolve all the relocations
+// associated with it.
+void RuntimeDyldELF::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
+ // The address to use for relocation resolution is not
+ // the address of the local section buffer. We must be doing
+ // a remote execution environment of some sort. Re-apply any
+ // relocations referencing this section with the given address.
+ //
+ // Addr is a uint64_t because we can't assume the pointer width
+ // of the target is the same as that of the host. Just use a generic
+ // "big enough" type.
+ assert(0);
}
bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
index 36566da57a..e0f7d54f43 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
@@ -21,42 +21,158 @@ using namespace llvm;
namespace llvm {
class RuntimeDyldELF : public RuntimeDyldImpl {
-protected:
- void resolveX86_64Relocation(uint8_t *LocalAddress,
- uint64_t FinalAddress,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend);
-
- void resolveX86Relocation(uint8_t *LocalAddress,
- uint32_t FinalAddress,
- uint32_t Value,
- uint32_t Type,
- int32_t Addend);
-
- void resolveARMRelocation(uint8_t *LocalAddress,
- uint32_t FinalAddress,
- uint32_t Value,
- uint32_t Type,
- int32_t Addend);
-
- virtual void resolveRelocation(uint8_t *LocalAddress,
- uint64_t FinalAddress,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend);
-
- virtual void processRelocationRef(const ObjRelocationInfo &Rel,
- const ObjectFile &Obj,
- ObjSectionToIDMap &ObjSectionToID,
- LocalSymbolMap &Symbols, StubMap &Stubs);
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ struct RelocationEntry {
+ // Function or section this relocation is contained in.
+ std::string Target;
+ // Offset into the target function or section for the relocation.
+ uint32_t Offset;
+ // Relocation type
+ uint32_t Type;
+ // Addend encoded in the instruction itself, if any.
+ int32_t Addend;
+ // Has the relocation been recalcuated as an offset within a function?
+ bool IsFunctionRelative;
+ // Has this relocation been resolved previously?
+ bool isResolved;
+
+ RelocationEntry(StringRef t,
+ uint32_t offset,
+ uint32_t type,
+ int32_t addend,
+ bool isFunctionRelative)
+ : Target(t)
+ , Offset(offset)
+ , Type(type)
+ , Addend(addend)
+ , IsFunctionRelative(isFunctionRelative)
+ , isResolved(false) { }
+ };
+ typedef SmallVector<RelocationEntry, 4> RelocationList;
+ StringMap<RelocationList> Relocations;
+ unsigned Arch;
+
+ void resolveRelocations();
+
+ void resolveX86_64Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveX86Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveArmRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+public:
+ RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+
+ bool loadObject(MemoryBuffer *InputBuffer);
+
+ void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
+ bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
+};
+
+} // end namespace llvm
+
+#endif
+
+//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// ELF support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_ELF_H
+#define LLVM_RUNTIME_DYLD_ELF_H
+
+#include "RuntimeDyldImpl.h"
+
+using namespace llvm;
+
+
+namespace llvm {
+class RuntimeDyldELF : public RuntimeDyldImpl {
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ struct RelocationEntry {
+ // Function or section this relocation is contained in.
+ std::string Target;
+ // Offset into the target function or section for the relocation.
+ uint32_t Offset;
+ // Relocation type
+ uint32_t Type;
+ // Addend encoded in the instruction itself, if any.
+ int32_t Addend;
+ // Has the relocation been recalcuated as an offset within a function?
+ bool IsFunctionRelative;
+ // Has this relocation been resolved previously?
+ bool isResolved;
+
+ RelocationEntry(StringRef t,
+ uint32_t offset,
+ uint32_t type,
+ int32_t addend,
+ bool isFunctionRelative)
+ : Target(t)
+ , Offset(offset)
+ , Type(type)
+ , Addend(addend)
+ , IsFunctionRelative(isFunctionRelative)
+ , isResolved(false) { }
+ };
+ typedef SmallVector<RelocationEntry, 4> RelocationList;
+ StringMap<RelocationList> Relocations;
+ unsigned Arch;
+
+ void resolveRelocations();
+
+ void resolveX86_64Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveX86Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveArmRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
public:
RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+ bool loadObject(MemoryBuffer *InputBuffer);
+
+ void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
};
} // end namespace llvm
-#endif
+#endif
+
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
index d6430a91c2..28e99be9ab 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
@@ -15,125 +15,45 @@
#define LLVM_RUNTIME_DYLD_IMPL_H
#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "llvm/Object/ObjectFile.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/system_error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/ADT/Triple.h"
-#include <map>
-#include "llvm/Support/Format.h"
using namespace llvm;
-using namespace llvm::object;
namespace llvm {
-
-class SectionEntry {
-public:
- uint8_t* Address;
- size_t Size;
- uint64_t LoadAddress; // For each section, the address it will be
- // considered to live at for relocations. The same
- // as the pointer to the above memory block for
- // hosted JITs.
- uintptr_t StubOffset; // It's used for architecturies with stub
- // functions for far relocations like ARM.
- uintptr_t ObjAddress; // Section address in object file. It's use for
- // calculate MachO relocation addend
- SectionEntry(uint8_t* address, size_t size, uintptr_t stubOffset,
- uintptr_t objAddress)
- : Address(address), Size(size), LoadAddress((uintptr_t)address),
- StubOffset(stubOffset), ObjAddress(objAddress) {}
-};
-
-class RelocationEntry {
-public:
- unsigned SectionID; // Section the relocation is contained in.
- uintptr_t Offset; // Offset into the section for the relocation.
- uint32_t Data; // Relocatino data. Including type of relocation
- // and another flags and parameners from
- intptr_t Addend; // Addend encoded in the instruction itself, if any,
- // plus the offset into the source section for
- // the symbol once the relocation is resolvable.
- RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend)
- : SectionID(id), Offset(offset), Data(data), Addend(addend) {}
-};
-
-// Raw relocation data from object file
-class ObjRelocationInfo {
-public:
- unsigned SectionID;
- uint64_t Offset;
- SymbolRef Symbol;
- uint64_t Type;
- int64_t AdditionalInfo;
-};
-
-class RelocationValueRef {
-public:
- unsigned SectionID;
- intptr_t Addend;
- const char *SymbolName;
- RelocationValueRef(): SectionID(0), Addend(0), SymbolName(0) {}
-
- inline bool operator==(const RelocationValueRef &Other) const {
- return std::memcmp(this, &Other, sizeof(RelocationValueRef)) == 0;
- }
- inline bool operator <(const RelocationValueRef &Other) const {
- return std::memcmp(this, &Other, sizeof(RelocationValueRef)) < 0;
- }
-};
-
class RuntimeDyldImpl {
protected:
+ unsigned CPUType;
+ unsigned CPUSubtype;
+
// The MemoryManager to load objects into.
RTDyldMemoryManager *MemMgr;
- // A list of emmitted sections.
- typedef SmallVector<SectionEntry, 64> SectionList;
- SectionList Sections;
+ // For each section, we have a MemoryBlock of it's data.
+ // Indexed by SectionID.
+ SmallVector<sys::MemoryBlock, 32> Sections;
+ // For each section, the address it will be considered to live at for
+ // relocations. The same as the pointer to the above memory block for hosted
+ // JITs. Indexed by SectionID.
+ SmallVector<uint64_t, 32> SectionLoadAddress;
- // Keep a map of sections from object file to the SectionID which
- // references it.
- typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
+ // Keep a map of starting local address to the SectionID which references it.
+ // Lookup function for when we assign virtual addresses.
+ DenseMap<void *, unsigned> SectionLocalMemToID;
// Master symbol table. As modules are loaded and external symbols are
// resolved, their addresses are stored here as a SectionID/Offset pair.
- typedef std::pair<unsigned, uintptr_t> SymbolLoc;
+ typedef std::pair<unsigned, uint64_t> SymbolLoc;
StringMap<SymbolLoc> SymbolTable;
- typedef DenseMap<const char*, SymbolLoc> LocalSymbolMap;
-
- // For each symbol, keep a list of relocations based on it. Anytime
- // its address is reassigned (the JIT re-compiled the function, e.g.),
- // the relocations get re-resolved.
- // The symbol (or section) the relocation is sourced from is the Key
- // in the relocation list where it's stored.
- typedef SmallVector<RelocationEntry, 64> RelocationList;
- // Relocations to sections already loaded. Indexed by SectionID which is the
- // source of the address. The target where the address will be writen is
- // SectionID/Offset in the relocation itself.
- DenseMap<unsigned, RelocationList> Relocations;
- // Relocations to external symbols that are not yet resolved.
- // Indexed by symbol name.
- StringMap<RelocationList> SymbolRelocations;
-
- typedef std::map<RelocationValueRef, uintptr_t> StubMap;
-
- Triple::ArchType Arch;
-
- inline unsigned getMaxStubSize() {
- if (Arch == Triple::arm || Arch == Triple::thumb)
- return 8; // 32-bit instruction and 32-bit address
- else
- return 0;
- }
bool HasError;
std::string ErrorStr;
@@ -146,62 +66,17 @@ protected:
}
uint8_t *getSectionAddress(unsigned SectionID) {
- return (uint8_t*)Sections[SectionID].Address;
+ return (uint8_t*)Sections[SectionID].base();
}
+ void extractFunction(StringRef Name, uint8_t *StartAddress,
+ uint8_t *EndAddress);
- /// \brief Emits section data from the object file to the MemoryManager.
- /// \param IsCode if it's true then allocateCodeSection() will be
- /// used for emmits, else allocateDataSection() will be used.
- /// \return SectionID.
- unsigned emitSection(const SectionRef &Section, bool IsCode);
-
- /// \brief Find Section in LocalSections. If the secton is not found - emit
- /// it and store in LocalSections.
- /// \param IsCode if it's true then allocateCodeSection() will be
- /// used for emmits, else allocateDataSection() will be used.
- /// \return SectionID.
- unsigned findOrEmitSection(const SectionRef &Section, bool IsCode,
- ObjSectionToIDMap &LocalSections);
-
- /// \brief If Value.SymbolName is NULL then store relocation to the
- /// Relocations, else store it in the SymbolRelocations.
- void AddRelocation(const RelocationValueRef &Value, unsigned SectionID,
- uintptr_t Offset, uint32_t RelType);
-
- /// \brief Emits long jump instruction to Addr.
- /// \return Pointer to the memory area for emitting target address.
- uint8_t* createStubFunction(uint8_t *Addr);
-
- /// \brief Resolves relocations from Relocs list with address from Value.
- void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
- void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value);
-
- /// \brief A object file specific relocation resolver
- /// \param Address Address to apply the relocation action
- /// \param Value Target symbol address to apply the relocation action
- /// \param Type object file specific relocation type
- /// \param Addend A constant addend used to compute the value to be stored
- /// into the relocatable field
- virtual void resolveRelocation(uint8_t *LocalAddress,
- uint64_t FinalAddress,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) = 0;
-
- /// \brief Parses the object file relocation and store it to Relocations
- /// or SymbolRelocations. Its depend from object file type.
- virtual void processRelocationRef(const ObjRelocationInfo &Rel,
- const ObjectFile &Obj,
- ObjSectionToIDMap &ObjSectionToID,
- LocalSymbolMap &Symbols, StubMap &Stubs) = 0;
-
- void resolveSymbols();
public:
RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
virtual ~RuntimeDyldImpl();
- bool loadObject(const MemoryBuffer *InputBuffer);
+ virtual bool loadObject(MemoryBuffer *InputBuffer) = 0;
void *getSymbolAddress(StringRef Name) {
// FIXME: Just look up as a function for now. Overly simple of course.
@@ -212,9 +87,9 @@ public:
return getSectionAddress(Loc.first) + Loc.second;
}
- void resolveRelocations();
+ virtual void resolveRelocations();
- void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+ virtual void reassignSectionAddress(unsigned SectionID, uint64_t Addr) = 0;
void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress);
@@ -228,7 +103,6 @@ public:
StringRef getErrorString() { return ErrorStr; }
virtual bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const = 0;
-
};
} // end namespace llvm
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
index 1318b44542..7130e0e174 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
@@ -21,55 +21,41 @@ using namespace llvm::object;
namespace llvm {
-void RuntimeDyldMachO::resolveRelocation(uint8_t *LocalAddress,
- uint64_t FinalAddress,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) {
- bool isPCRel = (Type >> 24) & 1;
- unsigned MachoType = (Type >> 28) & 0xf;
- unsigned Size = 1 << ((Type >> 25) & 3);
-
- DEBUG(dbgs() << "resolveRelocation LocalAddress: " << format("%p", LocalAddress)
- << " FinalAddress: " << format("%p", FinalAddress)
- << " Value: " << format("%p", Value)
- << " Addend: " << Addend
- << " isPCRel: " << isPCRel
- << " MachoType: " << MachoType
- << " Size: " << Size
- << "\n");
-
+bool RuntimeDyldMachO::
+resolveRelocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend) {
// This just dispatches to the proper target specific routine.
- switch (Arch) {
+ switch (CPUType) {
default: llvm_unreachable("Unsupported CPU type!");
- case Triple::x86_64:
- resolveX86_64Relocation(LocalAddress,
- FinalAddress,
- (uintptr_t)Value,
- isPCRel,
- MachoType,
- Size,
- Addend);
- break;
- case Triple::x86:
- resolveI386Relocation(LocalAddress,
+ case mach::CTM_i386:
+ return resolveI386Relocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
Type,
Size,
Addend);
- break;
- case Triple::arm: // Fall through.
- case Triple::thumb:
- resolveARMRelocation(LocalAddress,
- FinalAddress,
- (uintptr_t)Value,
- isPCRel,
- MachoType,
- Size,
- Addend);
- break;
+ case mach::CTM_x86_64:
+ return resolveX86_64Relocation(LocalAddress,
+ FinalAddress,
+ (uintptr_t)Value,
+ isPCRel,
+ Type,
+ Size,
+ Addend);
+ case mach::CTM_ARM:
+ return resolveARMRelocation(LocalAddress,
+ FinalAddress,
+ (uintptr_t)Value,
+ isPCRel,
+ Type,
+ Size,
+ Addend);
}
}
@@ -204,84 +190,503 @@ resolveARMRelocation(uint8_t *LocalAddress,
return false;
}
-void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
- const ObjectFile &Obj,
- ObjSectionToIDMap &ObjSectionToID,
- LocalSymbolMap &Symbols,
- StubMap &Stubs) {
-
- uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
- RelocationValueRef Value;
- SectionEntry &Section = Sections[Rel.SectionID];
- uint8_t *Target = Section.Address + Rel.Offset;
-
- bool isExtern = (RelType >> 27) & 1;
- if (isExtern) {
- StringRef TargetName;
- const SymbolRef &Symbol = Rel.Symbol;
- Symbol.getName(TargetName);
- // First look the symbol in object file symbols.
- LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data());
- if (lsi != Symbols.end()) {
- Value.SectionID = lsi->second.first;
- Value.Addend = lsi->second.second;
- } else {
- // Second look the symbol in global symbol table.
- StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data());
- if (gsi != SymbolTable.end()) {
- Value.SectionID = gsi->second.first;
- Value.Addend = gsi->second.second;
- } else
- Value.SymbolName = TargetName.data();
- }
- } else {
- error_code err;
- uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
- section_iterator si = Obj.begin_sections(),
- se = Obj.end_sections();
- for (uint8_t i = 1; i < sectionIndex; i++) {
- error_code err;
- si.increment(err);
- if (si == se)
- break;
+bool RuntimeDyldMachO::
+loadSegment32(const MachOObject *Obj,
+ const MachOObject::LoadCommandInfo *SegmentLCI,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
+ // FIXME: This should really be combined w/ loadSegment64. Templatized
+ // function on the 32/64 datatypes maybe?
+ InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
+ Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
+ if (!SegmentLC)
+ return Error("unable to load segment load command");
+
+
+ SmallVector<unsigned, 16> SectionMap;
+ for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
+ InMemoryStruct<macho::Section> Sect;
+ Obj->ReadSection(*SegmentLCI, SectNum, Sect);
+ if (!Sect)
+ return Error("unable to load section: '" + Twine(SectNum) + "'");
+
+ // Allocate memory via the MM for the section.
+ uint8_t *Buffer;
+ uint32_t SectionID = Sections.size();
+ if (Sect->Flags == 0x80000400)
+ Buffer = MemMgr->allocateCodeSection(Sect->Size, Sect->Align, SectionID);
+ else
+ Buffer = MemMgr->allocateDataSection(Sect->Size, Sect->Align, SectionID);
+
+ DEBUG(dbgs() << "Loading "
+ << ((Sect->Flags == 0x80000400) ? "text" : "data")
+ << " (ID #" << SectionID << ")"
+ << " '" << Sect->SegmentName << ","
+ << Sect->Name << "' of size " << Sect->Size
+ << " to address " << Buffer << ".\n");
+
+ // Copy the payload from the object file into the allocated buffer.
+ uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
+ SegmentLC->FileSize).data();
+ memcpy(Buffer, Base + Sect->Address, Sect->Size);
+
+ // Remember what got allocated for this SectionID.
+ Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
+ SectionLocalMemToID[Buffer] = SectionID;
+
+ // By default, the load address of a section is its memory buffer.
+ SectionLoadAddress.push_back((uint64_t)Buffer);
+
+ // Keep a map of object file section numbers to corresponding SectionIDs
+ // while processing the file.
+ SectionMap.push_back(SectionID);
+ }
+
+ // Process the symbol table.
+ SmallVector<StringRef, 64> SymbolNames;
+ processSymbols32(Obj, SectionMap, SymbolNames, SymtabLC);
+
+ // Process the relocations for each section we're loading.
+ Relocations.grow(Relocations.size() + SegmentLC->NumSections);
+ Referrers.grow(Referrers.size() + SegmentLC->NumSections);
+ for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
+ InMemoryStruct<macho::Section> Sect;
+ Obj->ReadSection(*SegmentLCI, SectNum, Sect);
+ if (!Sect)
+ return Error("unable to load section: '" + Twine(SectNum) + "'");
+ for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
+ InMemoryStruct<macho::RelocationEntry> RE;
+ Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
+ if (RE->Word0 & macho::RF_Scattered)
+ return Error("NOT YET IMPLEMENTED: scattered relocations.");
+ // Word0 of the relocation is the offset into the section where the
+ // relocation should be applied. We need to translate that into an
+ // offset into a function since that's our atom.
+ uint32_t Offset = RE->Word0;
+ bool isExtern = (RE->Word1 >> 27) & 1;
+
+ // FIXME: Get the relocation addend from the target address.
+ // FIXME: VERY imporant for internal relocations.
+
+ // Figure out the source symbol of the relocation. If isExtern is true,
+ // this relocation references the symbol table, otherwise it references
+ // a section in the same object, numbered from 1 through NumSections
+ // (SectionBases is [0, NumSections-1]).
+ uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
+ if (!isExtern) {
+ assert(SourceNum > 0 && "Invalid relocation section number!");
+ unsigned SectionID = SectionMap[SourceNum - 1];
+ unsigned TargetID = SectionMap[SectNum];
+ DEBUG(dbgs() << "Internal relocation at Section #"
+ << TargetID << " + " << Offset
+ << " from Section #"
+ << SectionID << " (Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+
+ // Store the relocation information. It will get resolved when
+ // the section addresses are assigned.
+ uint32_t RelocationIndex = Relocations[SectionID].size();
+ Relocations[SectionID].push_back(RelocationEntry(TargetID,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
+ } else {
+ StringRef SourceName = SymbolNames[SourceNum];
+
+ // Now store the relocation information. Associate it with the source
+ // symbol. Just add it to the unresolved list and let the general
+ // path post-load resolve it if we know where the symbol is.
+ UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
+ << " from '" << SourceName << "(Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+ }
}
- assert(si != se && "No section containing relocation!");
- Value.SectionID = findOrEmitSection(*si, true, ObjSectionToID);
- Value.Addend = *(const intptr_t *)Target;
- if (Value.Addend) {
- // The MachO addend is offset from the current section, we need set it
- // as offset from destination section
- Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
+ }
+
+ // Resolve the addresses of any symbols that were defined in this segment.
+ for (int i = 0, e = SymbolNames.size(); i != e; ++i)
+ resolveSymbol(SymbolNames[i]);
+
+ return false;
+}
+
+
+bool RuntimeDyldMachO::
+loadSegment64(const MachOObject *Obj,
+ const MachOObject::LoadCommandInfo *SegmentLCI,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
+ InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
+ Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
+ if (!Segment64LC)
+ return Error("unable to load segment load command");
+
+
+ SmallVector<unsigned, 16> SectionMap;
+ for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
+ InMemoryStruct<macho::Section64> Sect;
+ Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
+ if (!Sect)
+ return Error("unable to load section: '" + Twine(SectNum) + "'");
+
+ // Allocate memory via the MM for the section.
+ uint8_t *Buffer;
+ uint32_t SectionID = Sections.size();
+ unsigned Align = 1 << Sect->Align; // .o file has log2 alignment.
+ if (Sect->Flags == 0x80000400)
+ Buffer = MemMgr->allocateCodeSection(Sect->Size, Align, SectionID);
+ else
+ Buffer = MemMgr->allocateDataSection(Sect->Size, Align, SectionID);
+
+ DEBUG(dbgs() << "Loading "
+ << ((Sect->Flags == 0x80000400) ? "text" : "data")
+ << " (ID #" << SectionID << ")"
+ << " '" << Sect->SegmentName << ","
+ << Sect->Name << "' of size " << Sect->Size
+ << " (align " << Align << ")"
+ << " to address " << Buffer << ".\n");
+
+ // Copy the payload from the object file into the allocated buffer.
+ uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
+ Segment64LC->FileSize).data();
+ memcpy(Buffer, Base + Sect->Address, Sect->Size);
+
+ // Remember what got allocated for this SectionID.
+ Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
+ SectionLocalMemToID[Buffer] = SectionID;
+
+ // By default, the load address of a section is its memory buffer.
+ SectionLoadAddress.push_back((uint64_t)Buffer);
+
+ // Keep a map of object file section numbers to corresponding SectionIDs
+ // while processing the file.
+ SectionMap.push_back(SectionID);
+ }
+
+ // Process the symbol table.
+ SmallVector<StringRef, 64> SymbolNames;
+ processSymbols64(Obj, SectionMap, SymbolNames, SymtabLC);
+
+ // Process the relocations for each section we're loading.
+ Relocations.grow(Relocations.size() + Segment64LC->NumSections);
+ Referrers.grow(Referrers.size() + Segment64LC->NumSections);
+ for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
+ InMemoryStruct<macho::Section64> Sect;
+ Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
+ if (!Sect)
+ return Error("unable to load section: '" + Twine(SectNum) + "'");
+ for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
+ InMemoryStruct<macho::RelocationEntry> RE;
+ Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
+ if (RE->Word0 & macho::RF_Scattered)
+ return Error("NOT YET IMPLEMENTED: scattered relocations.");
+ // Word0 of the relocation is the offset into the section where the
+ // relocation should be applied. We need to translate that into an
+ // offset into a function since that's our atom.
+ uint32_t Offset = RE->Word0;
+ bool isExtern = (RE->Word1 >> 27) & 1;
+
+ // FIXME: Get the relocation addend from the target address.
+ // FIXME: VERY imporant for internal relocations.
+
+ // Figure out the source symbol of the relocation. If isExtern is true,
+ // this relocation references the symbol table, otherwise it references
+ // a section in the same object, numbered from 1 through NumSections
+ // (SectionBases is [0, NumSections-1]).
+ uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
+ if (!isExtern) {
+ assert(SourceNum > 0 && "Invalid relocation section number!");
+ unsigned SectionID = SectionMap[SourceNum - 1];
+ unsigned TargetID = SectionMap[SectNum];
+ DEBUG(dbgs() << "Internal relocation at Section #"
+ << TargetID << " + " << Offset
+ << " from Section #"
+ << SectionID << " (Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+
+ // Store the relocation information. It will get resolved when
+ // the section addresses are assigned.
+ uint32_t RelocationIndex = Relocations[SectionID].size();
+ Relocations[SectionID].push_back(RelocationEntry(TargetID,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
+ } else {
+ StringRef SourceName = SymbolNames[SourceNum];
+
+ // Now store the relocation information. Associate it with the source
+ // symbol. Just add it to the unresolved list and let the general
+ // path post-load resolve it if we know where the symbol is.
+ UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
+ << " from '" << SourceName << "(Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+ }
}
}
- if (Arch == Triple::arm && RelType == macho::RIT_ARM_Branch24Bit) {
- // This is an ARM branch relocation, need to use a stub function.
-
- // Look up for existing stub.
- StubMap::const_iterator i = Stubs.find(Value);
- if (i != Stubs.end())
- resolveRelocation(Target, (uint64_t)Target,
- (uint64_t)Section.Address + i->second,
- RelType, 0);
- else {
- // Create a new stub function.
- Stubs[Value] = Section.StubOffset;
- uint8_t *StubTargetAddr = createStubFunction(Section.Address +
- Section.StubOffset);
- AddRelocation(Value, Rel.SectionID, StubTargetAddr - Section.Address,
- macho::RIT_Vanilla);
- resolveRelocation(Target, (uint64_t)Target,
- (uint64_t)Section.Address + Section.StubOffset,
- RelType, 0);
- Section.StubOffset += getMaxStubSize();
+ // Resolve the addresses of any symbols that were defined in this segment.
+ for (int i = 0, e = SymbolNames.size(); i != e; ++i)
+ resolveSymbol(SymbolNames[i]);
+
+ return false;
+}
+
+bool RuntimeDyldMachO::
+processSymbols32(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
+ // FIXME: Combine w/ processSymbols64. Factor 64/32 datatype and such.
+ for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
+ InMemoryStruct<macho::SymbolTableEntry> STE;
+ Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
+ if (!STE)
+ return Error("unable to read symbol: '" + Twine(i) + "'");
+ // Get the symbol name.
+ StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
+ SymbolNames.push_back(Name);
+
+ // FIXME: Check the symbol type and flags.
+ if (STE->Type != 0xF) // external, defined in this segment.
+ continue;
+ // Flags in the upper nibble we don't care about.
+ if ((STE->Flags & 0xf) != 0x0)
+ continue;
+
+ // Remember the symbol.
+ uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
+ SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
+
+ DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
+ << (getSectionAddress(SectionID) + STE->Value)
+ << "\n");
+ }
+ return false;
+}
+
+bool RuntimeDyldMachO::
+processSymbols64(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
+ for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
+ InMemoryStruct<macho::Symbol64TableEntry> STE;
+ Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
+ if (!STE)
+ return Error("unable to read symbol: '" + Twine(i) + "'");
+ // Get the symbol name.
+ StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
+ SymbolNames.push_back(Name);
+
+ // FIXME: Check the symbol type and flags.
+ if (STE->Type != 0xF) // external, defined in this segment.
+ continue;
+ // Flags in the upper nibble we don't care about.
+ if ((STE->Flags & 0xf) != 0x0)
+ continue;
+
+ // Remember the symbol.
+ uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
+ SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
+
+ DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
+ << (getSectionAddress(SectionID) + STE->Value)
+ << "\n");
+ }
+ return false;
+}
+
+// resolveSymbol - Resolve any relocations to the specified symbol if
+// we know where it lives.
+void RuntimeDyldMachO::resolveSymbol(StringRef Name) {
+ StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
+ if (Loc == SymbolTable.end())
+ return;
+
+ RelocationList &Relocs = UnresolvedRelocations[Name];
+ DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
+ for (int i = 0, e = Relocs.size(); i != e; ++i) {
+ // Change the relocation to be section relative rather than symbol
+ // relative and move it to the resolved relocation list.
+ RelocationEntry Entry = Relocs[i];
+ Entry.Addend += Loc->second.second;
+ uint32_t RelocationIndex = Relocations[Loc->second.first].size();
+ Relocations[Loc->second.first].push_back(Entry);
+ Referrers[Entry.SectionID].push_back(Referrer(Loc->second.first, RelocationIndex));
+ }
+ // FIXME: Keep a worklist of the relocations we've added so that we can
+ // resolve more selectively later.
+ Relocs.clear();
+}
+
+bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
+ // If the linker is in an error state, don't do anything.
+ if (hasError())
+ return true;
+ // Load the Mach-O wrapper object.
+ std::string ErrorStr;
+ OwningPtr<MachOObject> Obj(
+ MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
+ if (!Obj)
+ return Error("unable to load object: '" + ErrorStr + "'");
+
+ // Get the CPU type information from the header.
+ const macho::Header &Header = Obj->getHeader();
+
+ // FIXME: Error checking that the loaded object is compatible with
+ // the system we're running on.
+ CPUType = Header.CPUType;
+ CPUSubtype = Header.CPUSubtype;
+
+ // Validate that the load commands match what we expect.
+ const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
+ *DysymtabLCI = 0;
+ for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
+ const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
+ switch (LCI.Command.Type) {
+ case macho::LCT_Segment:
+ case macho::LCT_Segment64:
+ if (SegmentLCI)
+ return Error("unexpected input object (multiple segments)");
+ SegmentLCI = &LCI;
+ break;
+ case macho::LCT_Symtab:
+ if (SymtabLCI)
+ return Error("unexpected input object (multiple symbol tables)");
+ SymtabLCI = &LCI;
+ break;
+ case macho::LCT_Dysymtab:
+ if (DysymtabLCI)
+ return Error("unexpected input object (multiple symbol tables)");
+ DysymtabLCI = &LCI;
+ break;
+ default:
+ return Error("unexpected input object (unexpected load command");
}
- } else
- AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
+ }
+
+ if (!SymtabLCI)
+ return Error("no symbol table found in object");
+ if (!SegmentLCI)
+ return Error("no segments found in object");
+
+ // Read and register the symbol table data.
+ InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
+ Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
+ if (!SymtabLC)
+ return Error("unable to load symbol table load command");
+ Obj->RegisterStringTable(*SymtabLC);
+
+ // Read the dynamic link-edit information, if present (not present in static
+ // objects).
+ if (DysymtabLCI) {
+ InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
+ Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
+ if (!DysymtabLC)
+ return Error("unable to load dynamic link-exit load command");
+
+ // FIXME: We don't support anything interesting yet.
+// if (DysymtabLC->LocalSymbolsIndex != 0)
+// return Error("NOT YET IMPLEMENTED: local symbol entries");
+// if (DysymtabLC->ExternalSymbolsIndex != 0)
+// return Error("NOT YET IMPLEMENTED: non-external symbol entries");
+// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
+// return Error("NOT YET IMPLEMENTED: undefined symbol entries");
+ }
+
+ // Load the segment load command.
+ if (SegmentLCI->Command.Type == macho::LCT_Segment) {
+ if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
+ return true;
+ } else {
+ if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
+ return true;
+ }
+
+ // Assign the addresses of the sections from the object so that any
+ // relocations to them get set properly.
+ // FIXME: This is done directly from the client at the moment. We should
+ // default the values to the local storage, at least when the target arch
+ // is the same as the host arch.
+
+ return false;
}
+// Assign an address to a symbol name and resolve all the relocations
+// associated with it.
+void RuntimeDyldMachO::reassignSectionAddress(unsigned SectionID,
+ uint64_t Addr) {
+ // The address to use for relocation resolution is not
+ // the address of the local section buffer. We must be doing
+ // a remote execution environment of some sort. Re-apply any
+ // relocations referencing this section with the given address.
+ //
+ // Addr is a uint64_t because we can't assume the pointer width
+ // of the target is the same as that of the host. Just use a generic
+ // "big enough" type.
+
+ SectionLoadAddress[SectionID] = Addr;
+
+ RelocationList &Relocs = Relocations[SectionID];
+ for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
+ RelocationEntry &RE = Relocs[i];
+ uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
+ uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
+ bool isPCRel = (RE.Data >> 24) & 1;
+ unsigned Type = (RE.Data >> 28) & 0xf;
+ unsigned Size = 1 << ((RE.Data >> 25) & 3);
+
+ DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
+ << " + " << RE.Offset << " (" << format("%p", Target) << ")"
+ << " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
+ << "(" << (isPCRel ? "pcrel" : "absolute")
+ << ", type: " << Type << ", Size: " << Size << ", Addend: "
+ << RE.Addend << ").\n");
+
+ resolveRelocation(Target,
+ FinalTarget,
+ Addr,
+ isPCRel,
+ Type,
+ Size,
+ RE.Addend);
+ }
+ ReferrerList &Refers = Referrers[SectionID];
+ for (unsigned i = 0, e = Refers.size(); i != e; ++i) {
+ Referrer &R = Refers[i];
+ RelocationEntry &RE = Relocations[R.SectionID][R.Index];
+ uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
+ uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
+ bool isPCRel = (RE.Data >> 24) & 1;
+ unsigned Type = (RE.Data >> 28) & 0xf;
+ unsigned Size = 1 << ((RE.Data >> 25) & 3);
+
+ DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
+ << " + " << RE.Offset << " (" << format("%p", Target) << ")"
+ << " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
+ << "(" << (isPCRel ? "pcrel" : "absolute")
+ << ", type: " << Type << ", Size: " << Size << ", Addend: "
+ << RE.Addend << ").\n");
+
+ resolveRelocation(Target,
+ FinalTarget,
+ Addr,
+ isPCRel,
+ Type,
+ Size,
+ RE.Addend);
+ }
+}
-bool RuntimeDyldMachO::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
+bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
if (Magic == "\xFE\xED\xFA\xCE") return true;
if (Magic == "\xCE\xFA\xED\xFE") return true;
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
index 898b85190e..48a7253242 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
@@ -25,7 +25,55 @@ using namespace llvm::object;
namespace llvm {
class RuntimeDyldMachO : public RuntimeDyldImpl {
-protected:
+
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ // The symbol (or section) the relocation is sourced from is the Key
+ // in the relocation list where it's stored.
+ struct RelocationEntry {
+ unsigned SectionID; // Section the relocation is contained in.
+ uint64_t Offset; // Offset into the section for the relocation.
+ uint32_t Data; // Second word of the raw macho relocation entry.
+ int64_t Addend; // Addend encoded in the instruction itself, if any,
+ // plus the offset into the source section for
+ // the symbol once the relocation is resolvable.
+
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend)
+ : SectionID(id), Offset(offset), Data(data), Addend(addend) {}
+ };
+ typedef SmallVector<RelocationEntry, 4> RelocationList;
+
+ // For each section, keep a list of referrers in that section that are clients
+ // of relocations in other sections. Whenever a relocation gets created,
+ // create a corresponding referrer. Whenever relocations are re-resolved,
+ // re-resolve the referrers' relocations as well.
+ struct Referrer {
+ unsigned SectionID; // Section whose RelocationList contains the relocation.
+ uint32_t Index; // Index of the RelocatonEntry in that RelocationList.
+
+ Referrer(unsigned id, uint32_t index)
+ : SectionID(id), Index(index) {}
+ };
+ typedef SmallVector<Referrer, 4> ReferrerList;
+
+ // Relocations to sections already loaded. Indexed by SectionID which is the
+ // source of the address. The target where the address will be writen is
+ // SectionID/Offset in the relocation itself.
+ IndexedMap<RelocationList> Relocations;
+ // Referrers corresponding to Relocations.
+ IndexedMap<ReferrerList> Referrers;
+ // Relocations to symbols that are not yet resolved. Must be external
+ // relocations by definition. Indexed by symbol name.
+ StringMap<RelocationList> UnresolvedRelocations;
+
+ bool resolveRelocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend);
bool resolveI386Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
@@ -48,21 +96,35 @@ protected:
unsigned Size,
int64_t Addend);
- virtual void processRelocationRef(const ObjRelocationInfo &Rel,
- const ObjectFile &Obj,
- ObjSectionToIDMap &ObjSectionToID,
- LocalSymbolMap &Symbols, StubMap &Stubs);
+ bool loadSegment32(const MachOObject *Obj,
+ const MachOObject::LoadCommandInfo *SegmentLCI,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+ bool loadSegment64(const MachOObject *Obj,
+ const MachOObject::LoadCommandInfo *SegmentLCI,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+ bool processSymbols32(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+ bool processSymbols64(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+
+ void resolveSymbol(StringRef Name);
public:
- virtual void resolveRelocation(uint8_t *LocalAddress,
- uint64_t FinalAddress,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend);
-
RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
- bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
+ bool loadObject(MemoryBuffer *InputBuffer);
+
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
+ static bool isKnownFormat(const MemoryBuffer *InputBuffer);
+
+ bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
+ return isKnownFormat(InputBuffer);
+ }
};
} // end namespace llvm