summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Analysis/BlockFrequencyInfoImpl.h1717
-rw-r--r--lib/Analysis/BlockFrequencyInfo.cpp8
-rw-r--r--lib/Analysis/BlockFrequencyInfoImpl.cpp932
-rw-r--r--lib/Analysis/CMakeLists.txt1
-rw-r--r--lib/CodeGen/MachineBlockFrequencyInfo.cpp12
-rw-r--r--test/Analysis/BlockFrequencyInfo/bad_input.ll50
-rw-r--r--test/Analysis/BlockFrequencyInfo/basic.ll55
-rw-r--r--test/Analysis/BlockFrequencyInfo/double_exit.ll165
-rw-r--r--test/Analysis/BlockFrequencyInfo/irreducible.ll197
-rw-r--r--test/Analysis/BlockFrequencyInfo/loop_with_branch.ll44
-rw-r--r--test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll59
-rw-r--r--test/CodeGen/XCore/llvm-intrinsics.ll6
12 files changed, 2930 insertions, 316 deletions
diff --git a/include/llvm/Analysis/BlockFrequencyInfoImpl.h b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
index f891afdf55..53a000d12f 100644
--- a/include/llvm/Analysis/BlockFrequencyInfoImpl.h
+++ b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
-// Shared implementation of BlockFrequencyInfo for IR and Machine Instructions.
+// Shared implementation of BlockFrequency for IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//
@@ -16,8 +16,6 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
@@ -26,374 +24,1527 @@
#include <string>
#include <vector>
+//===----------------------------------------------------------------------===//
+//
+// PositiveFloat definition.
+//
+// TODO: Make this private to BlockFrequencyInfoImpl or delete.
+//
+//===----------------------------------------------------------------------===//
namespace llvm {
+class PositiveFloatBase {
+public:
+ static const int32_t MaxExponent = 16383;
+ static const int32_t MinExponent = -16382;
+ static const int DefaultPrecision = 10;
+
+ static void dump(uint64_t D, int16_t E, int Width);
+ static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
+ unsigned Precision);
+ static std::string toString(uint64_t D, int16_t E, int Width,
+ unsigned Precision);
+ static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
+ static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
+ static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
+
+ static std::pair<uint64_t, bool> splitSigned(int64_t N) {
+ if (N >= 0)
+ return std::make_pair(N, false);
+ uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
+ return std::make_pair(Unsigned, true);
+ }
+ static int64_t joinSigned(uint64_t U, bool IsNeg) {
+ if (U > uint64_t(INT64_MAX))
+ return IsNeg ? INT64_MIN : INT64_MAX;
+ return IsNeg ? -int64_t(U) : int64_t(U);
+ }
-class BranchProbabilityInfo;
-class BlockFrequencyInfo;
-class MachineBranchProbabilityInfo;
-class MachineBlockFrequencyInfo;
+ static int32_t extractLg(const std::pair<int32_t, int> &Lg) {
+ return Lg.first;
+ }
+ static int32_t extractLgFloor(const std::pair<int32_t, int> &Lg) {
+ return Lg.first - (Lg.second > 0);
+ }
+ static int32_t extractLgCeiling(const std::pair<int32_t, int> &Lg) {
+ return Lg.first + (Lg.second < 0);
+ }
-namespace bfi_detail {
-template <class BlockT> struct TypeMap {};
-template <> struct TypeMap<BasicBlock> {
- typedef BasicBlock BlockT;
- typedef Function FunctionT;
- typedef BranchProbabilityInfo BranchProbabilityInfoT;
+ static std::pair<uint64_t, int16_t> divide64(uint64_t L, uint64_t R);
+ static std::pair<uint64_t, int16_t> multiply64(uint64_t L, uint64_t R);
+
+ static int compare(uint64_t L, uint64_t R, int Shift) {
+ assert(Shift >= 0);
+ assert(Shift < 64);
+
+ uint64_t L_adjusted = L >> Shift;
+ if (L_adjusted < R)
+ return -1;
+ if (L_adjusted > R)
+ return 1;
+
+ return L > L_adjusted << Shift ? 1 : 0;
+ }
};
-template <> struct TypeMap<MachineBasicBlock> {
- typedef MachineBasicBlock BlockT;
- typedef MachineFunction FunctionT;
- typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
+
+/// \brief Simple representation of a positive floating point.
+///
+/// PositiveFloat is a positive floating point number. It uses simple
+/// saturation arithmetic, and every operation is well-defined for every value.
+///
+/// The number is split into a signed exponent and unsigned digits. The number
+/// represented is \c getDigits()*2^getExponent(). In this way, the digits are
+/// much like the mantissa in the x87 long double, but there is no canonical
+/// form, so the same number can be represented by many bit representations
+/// (it's always in "denormal" mode).
+///
+/// PositiveFloat is templated on the underlying integer type for digits, which
+/// is expected to be one of uint64_t, uint32_t, uint16_t or uint8_t.
+///
+/// Unlike builtin floating point types, PositiveFloat is portable.
+///
+/// Unlike APFloat, PositiveFloat does not model architecture floating point
+/// behaviour (this should make it a little faster), and implements most
+/// operators (this makes it usable).
+///
+/// PositiveFloat is totally ordered. However, there is no canonical form, so
+/// there are multiple representations of most scalars. E.g.:
+///
+/// PositiveFloat(8u, 0) == PositiveFloat(4u, 1)
+/// PositiveFloat(4u, 1) == PositiveFloat(2u, 2)
+/// PositiveFloat(2u, 2) == PositiveFloat(1u, 3)
+///
+/// PositiveFloat implements most arithmetic operations. Precision is kept
+/// where possible. Uses simple saturation arithmetic, so that operations
+/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
+/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
+/// Any other division by 0.0 is defined to be getLargest().
+///
+/// As a convenience for modifying the exponent, left and right shifting are
+/// both implemented, and both interpret negative shifts as positive shifts in
+/// the opposite direction.
+///
+/// Future work might extract most of the implementation into a base class
+/// (e.g., \c Float) that has an \c IsSigned template parameter. The initial
+/// use case for this only needed positive semantics, but it wouldn't take much
+/// work to extend.
+///
+/// Exponents are limited to the range accepted by x87 long double. This makes
+/// it trivial to add functionality to convert to APFloat (this is already
+/// relied on for the implementation of printing).
+template <class DigitsT> class PositiveFloat : PositiveFloatBase {
+public:
+ static_assert(!std::numeric_limits<DigitsT>::is_signed,
+ "only unsigned floats supported");
+
+ typedef DigitsT DigitsType;
+
+private:
+ typedef std::numeric_limits<DigitsType> DigitsLimits;
+
+ static const int Width = sizeof(DigitsType) * 8;
+ static_assert(Width <= 64, "invalid integer width for digits");
+
+private:
+ DigitsType Digits;
+ int16_t Exponent;
+
+public:
+ PositiveFloat() : Digits(0), Exponent(0) {}
+
+ PositiveFloat(DigitsType Digits, int16_t Exponent)
+ : Digits(Digits), Exponent(Exponent) {}
+
+private:
+ PositiveFloat(const std::pair<uint64_t, int16_t> &X)
+ : Digits(X.first), Exponent(X.second) {}
+
+public:
+ static PositiveFloat getZero() { return PositiveFloat(0, 0); }
+ static PositiveFloat getOne() { return PositiveFloat(1, 0); }
+ static PositiveFloat getLargest() {
+ return PositiveFloat(DigitsLimits::max(), MaxExponent);
+ }
+ static PositiveFloat getFloat(uint64_t N) { return adjustToWidth(N, 0); }
+ static PositiveFloat getInverseFloat(uint64_t N) {
+ return getFloat(N).invert();
+ }
+ static PositiveFloat getFraction(DigitsType N, DigitsType D) {
+ return getQuotient(N, D);
+ }
+
+ int16_t getExponent() const { return Exponent; }
+ DigitsType getDigits() const { return Digits; }
+
+ /// \brief Convert to the given integer type.
+ ///
+ /// Convert to \c IntT using simple saturating arithmetic, truncating if
+ /// necessary.
+ template <class IntT> IntT toInt() const;
+
+ bool isZero() const { return !Digits; }
+ bool isLargest() const { return *this == getLargest(); }
+ bool isOne() const {
+ if (Exponent > 0 || Exponent <= -Width)
+ return false;
+ return Digits == DigitsType(1) << -Exponent;
+ }
+
+ /// \brief The log base 2, rounded.
+ ///
+ /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
+ int32_t lg() const { return extractLg(lgImpl()); }
+
+ /// \brief The log base 2, rounded towards INT32_MIN.
+ ///
+ /// Get the lg floor. lg 0 is defined to be INT32_MIN.
+ int32_t lgFloor() const { return extractLgFloor(lgImpl()); }
+
+ /// \brief The log base 2, rounded towards INT32_MAX.
+ ///
+ /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
+ int32_t lgCeiling() const { return extractLgCeiling(lgImpl()); }
+
+ bool operator==(const PositiveFloat &X) const { return compare(X) == 0; }
+ bool operator<(const PositiveFloat &X) const { return compare(X) < 0; }
+ bool operator!=(const PositiveFloat &X) const { return compare(X) != 0; }
+ bool operator>(const PositiveFloat &X) const { return compare(X) > 0; }
+ bool operator<=(const PositiveFloat &X) const { return compare(X) <= 0; }
+ bool operator>=(const PositiveFloat &X) const { return compare(X) >= 0; }
+
+ bool operator!() const { return isZero(); }
+
+ /// \brief Convert to a decimal representation in a string.
+ ///
+ /// Convert to a string. Uses scientific notation for very large/small
+ /// numbers. Scientific notation is used roughly for numbers outside of the
+ /// range 2^-64 through 2^64.
+ ///
+ /// \c Precision indicates the number of decimal digits of precision to use;
+ /// 0 requests the maximum available.
+ ///
+ /// As a special case to make debugging easier, if the number is small enough
+ /// to convert without scientific notation and has more than \c Precision
+ /// digits before the decimal place, it's printed accurately to the first
+ /// digit past zero. E.g., assuming 10 digits of precision:
+ ///
+ /// 98765432198.7654... => 98765432198.8
+ /// 8765432198.7654... => 8765432198.8
+ /// 765432198.7654... => 765432198.8
+ /// 65432198.7654... => 65432198.77
+ /// 5432198.7654... => 5432198.765
+ std::string toString(unsigned Precision = DefaultPrecision) {
+ return PositiveFloatBase::toString(Digits, Exponent, Width, Precision);
+ }
+
+ /// \brief Print a decimal representation.
+ ///
+ /// Print a string. See toString for documentation.
+ raw_ostream &print(raw_ostream &OS,
+ unsigned Precision = DefaultPrecision) const {
+ return PositiveFloatBase::print(OS, Digits, Exponent, Width, Precision);
+ }
+ void dump() const { return PositiveFloatBase::dump(Digits, Exponent, Width); }
+
+ PositiveFloat &operator+=(const PositiveFloat &X);
+ PositiveFloat &operator-=(const PositiveFloat &X);
+ PositiveFloat &operator*=(const PositiveFloat &X);
+ PositiveFloat &operator/=(const PositiveFloat &X);
+ PositiveFloat &operator<<=(int16_t Shift) { shiftLeft(Shift); return *this; }
+ PositiveFloat &operator>>=(int16_t Shift) { shiftRight(Shift); return *this; }
+
+private:
+ void shiftLeft(int32_t Shift);
+ void shiftRight(int32_t Shift);
+
+ /// \brief Adjust two floats to have matching exponents.
+ ///
+ /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
+ /// by value. Does nothing if \a isZero() for either.
+ ///
+ /// The value that compares smaller will lose precision, and possibly become
+ /// \a isZero().
+ PositiveFloat matchExponents(PositiveFloat X);
+
+ /// \brief Increase exponent to match another float.
+ ///
+ /// Increases \c this to have an exponent matching \c X. May decrease the
+ /// exponent of \c X in the process, and \c this may possibly become \a
+ /// isZero().
+ void increaseExponentToMatch(PositiveFloat &X, int32_t ExponentDiff);
+
+public:
+ /// \brief Scale a large number accurately.
+ ///
+ /// Scale N (multiply it by this). Uses full precision multiplication, even
+ /// if Width is smaller than 64, so information is not lost.
+ uint64_t scale(uint64_t N) const;
+ uint64_t scaleByInverse(uint64_t N) const {
+ // TODO: implement directly, rather than relying on inverse. Inverse is
+ // expensive.
+ return inverse().scale(N);
+ }
+ int64_t scale(int64_t N) const {
+ std::pair<uint64_t, bool> Unsigned = splitSigned(N);
+ return joinSigned(scale(Unsigned.first), Unsigned.second);
+ }
+ int64_t scaleByInverse(int64_t N) const {
+ std::pair<uint64_t, bool> Unsigned = splitSigned(N);
+ return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
+ }
+
+ int compare(const PositiveFloat &X) const;
+ int compareTo(uint64_t N) const {
+ PositiveFloat Float = getFloat(N);
+ int Compare = compare(Float);
+ if (Width == 64 || Compare != 0)
+ return Compare;
+
+ // Check for precision loss. We know *this == RoundTrip.
+ uint64_t RoundTrip = Float.template toInt<uint64_t>();
+ return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
+ }
+ int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
+
+ PositiveFloat &invert() { return *this = PositiveFloat::getFloat(1) / *this; }
+ PositiveFloat inverse() const { return PositiveFloat(*this).invert(); }
+
+private:
+ static PositiveFloat getProduct(DigitsType L, DigitsType R);
+ static PositiveFloat getQuotient(DigitsType Dividend, DigitsType Divisor);
+
+ std::pair<int32_t, int> lgImpl() const;
+ static int countLeadingZerosWidth(DigitsType Digits) {
+ if (Width == 64)
+ return countLeadingZeros64(Digits);
+ if (Width == 32)
+ return countLeadingZeros32(Digits);
+ return countLeadingZeros32(Digits) + Width - 32;
+ }
+
+ static PositiveFloat adjustToWidth(uint64_t N, int32_t S) {
+ assert(S >= MinExponent);
+ assert(S <= MaxExponent);
+ if (Width == 64 || N <= DigitsLimits::max())
+ return PositiveFloat(N, S);
+
+ // Shift right.
+ int Shift = 64 - Width - countLeadingZeros64(N);
+ DigitsType Shifted = N >> Shift;
+
+ // Round.
+ assert(S + Shift <= MaxExponent);
+ return getRounded(PositiveFloat(Shifted, S + Shift),
+ N & UINT64_C(1) << (Shift - 1));
+ }
+
+ static PositiveFloat getRounded(PositiveFloat P, bool Round) {
+ if (!Round)
+ return P;
+ if (P.Digits == DigitsLimits::max())
+ // Careful of overflow in the exponent.
+ return PositiveFloat(1, P.Exponent) <<= Width;
+ return PositiveFloat(P.Digits + 1, P.Exponent);
+ }
};
+
+#define POSITIVE_FLOAT_BOP(op, base) \
+ template <class DigitsT> \
+ PositiveFloat<DigitsT> operator op(const PositiveFloat<DigitsT> &L, \
+ const PositiveFloat<DigitsT> &R) { \
+ return PositiveFloat<DigitsT>(L) base R; \
+ }
+POSITIVE_FLOAT_BOP(+, += )
+POSITIVE_FLOAT_BOP(-, -= )
+POSITIVE_FLOAT_BOP(*, *= )
+POSITIVE_FLOAT_BOP(/, /= )
+POSITIVE_FLOAT_BOP(<<, <<= )
+POSITIVE_FLOAT_BOP(>>, >>= )
+#undef POSITIVE_FLOAT_BOP
+
+template <class DigitsT>
+raw_ostream &operator<<(raw_ostream &OS, const PositiveFloat<DigitsT> &X) {
+ return X.print(OS, 10);
}
-/// BlockFrequencyInfoImpl implements block frequency algorithm for IR and
-/// Machine Instructions. Algorithm starts with value ENTRY_FREQ
-/// for the entry block and then propagates frequencies using branch weights
-/// from (Machine)BranchProbabilityInfo. LoopInfo is not required because
-/// algorithm can find "backedges" by itself.
-template <class BT>
-class BlockFrequencyInfoImpl {
- typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
- typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
- typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
- BranchProbabilityInfoT;
+#define POSITIVE_FLOAT_COMPARE_TO_TYPE(op, T1, T2) \
+ template <class DigitsT> \
+ bool operator op(const PositiveFloat<DigitsT> &L, T1 R) { \
+ return L.compareTo(T2(R)) op 0; \
+ } \
+ template <class DigitsT> \
+ bool operator op(T1 L, const PositiveFloat<DigitsT> &R) { \
+ return 0 op R.compareTo(T2(L)); \
+ }
+#define POSITIVE_FLOAT_COMPARE_TO(op) \
+ POSITIVE_FLOAT_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
+ POSITIVE_FLOAT_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
+ POSITIVE_FLOAT_COMPARE_TO_TYPE(op, int64_t, int64_t) \
+ POSITIVE_FLOAT_COMPARE_TO_TYPE(op, int32_t, int64_t)
+POSITIVE_FLOAT_COMPARE_TO(< )
+POSITIVE_FLOAT_COMPARE_TO(> )
+POSITIVE_FLOAT_COMPARE_TO(== )
+POSITIVE_FLOAT_COMPARE_TO(!= )
+POSITIVE_FLOAT_COMPARE_TO(<= )
+POSITIVE_FLOAT_COMPARE_TO(>= )
+#undef POSITIVE_FLOAT_COMPARE_TO
+#undef POSITIVE_FLOAT_COMPARE_TO_TYPE
+
+template <class DigitsT>
+uint64_t PositiveFloat<DigitsT>::scale(uint64_t N) const {
+ if (Width == 64 || N <= DigitsLimits::max())
+ return (getFloat(N) * *this).template toInt<uint64_t>();
+
+ // Defer to the 64-bit version.
+ return PositiveFloat<uint64_t>(Digits, Exponent).scale(N);
+}
+
+template <class DigitsT>
+PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getProduct(DigitsType L,
+ DigitsType R) {
+ // Check for zero.
+ if (!L || !R)
+ return getZero();
+
+ // Check for numbers that we can compute with 64-bit math.
+ if (Width <= 32 || (L <= UINT32_MAX && R <= UINT32_MAX))
+ return adjustToWidth(uint64_t(L) * uint64_t(R), 0);
+
+ // Do the full thing.
+ return PositiveFloat(multiply64(L, R));
+}
+template <class DigitsT>
+PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getQuotient(DigitsType Dividend,
+ DigitsType Divisor) {
+ // Check for zero.
+ if (!Dividend)
+ return getZero();
+ if (!Divisor)
+ return getLargest();
+
+ if (Width == 64)
+ return PositiveFloat(divide64(Dividend, Divisor));
+
+ // We can compute this with 64-bit math.
+ int Shift = countLeadingZeros64(Dividend);
+ uint64_t Shifted = uint64_t(Dividend) << Shift;
+ uint64_t Quotient = Shifted / Divisor;
+
+ // If Quotient needs to be shifted, then adjustToWidth will round.
+ if (Quotient > DigitsLimits::max())
+ return adjustToWidth(Quotient, -Shift);
+
+ // Round based on the value of the next bit.
+ return getRounded(PositiveFloat(Quotient, -Shift),
+ Shifted % Divisor >= getHalf(Divisor));
+}
+
+template <class DigitsT>
+template <class IntT>
+IntT PositiveFloat<DigitsT>::toInt() const {
+ typedef std::numeric_limits<IntT> Limits;
+ if (*this < 1)
+ return 0;
+ if (*this >= Limits::max())
+ return Limits::max();
- DenseMap<const BlockT *, BlockFrequency> Freqs;
+ IntT N = Digits;
+ if (Exponent > 0) {
+ assert(size_t(Exponent) < sizeof(IntT) * 8);
+ return N << Exponent;
+ }
+ if (Exponent < 0) {
+ assert(size_t(-Exponent) < sizeof(IntT) * 8);
+ return N >> -Exponent;
+ }
+ return N;
+}
- BranchProbabilityInfoT *BPI;
+template <class DigitsT>
+std::pair<int32_t, int> PositiveFloat<DigitsT>::lgImpl() const {
+ if (isZero())
+ return std::make_pair(INT32_MIN, 0);
- FunctionT *Fn;
+ // Get the floor of the lg of Digits.
+ int32_t LocalFloor = Width - countLeadingZerosWidth(Digits) - 1;
- typedef GraphTraits< Inverse<BlockT *> > GT;
+ // Get the floor of the lg of this.
+ int32_t Floor = Exponent + LocalFloor;
+ if (Digits == UINT64_C(1) << LocalFloor)
+ return std::make_pair(Floor, 0);
- static const uint64_t EntryFreq = 1 << 14;
+ // Round based on the next digit.
+ assert(LocalFloor >= 1);
+ bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
+ return std::make_pair(Floor + Round, Round ? 1 : -1);
+}
- std::string getBlockName(BasicBlock *BB) const {
- return BB->getName().str();
+template <class DigitsT>
+PositiveFloat<DigitsT> PositiveFloat<DigitsT>::matchExponents(PositiveFloat X) {
+ if (isZero() || X.isZero() || Exponent == X.Exponent)
+ return X;
+
+ int32_t Diff = int32_t(X.Exponent) - int32_t(Exponent);
+ if (Diff > 0)
+ increaseExponentToMatch(X, Diff);
+ else
+ X.increaseExponentToMatch(*this, -Diff);
+ return X;
+}
+template <class DigitsT>
+void PositiveFloat<DigitsT>::increaseExponentToMatch(PositiveFloat &X,
+ int32_t ExponentDiff) {
+ assert(ExponentDiff > 0);
+ if (ExponentDiff >= 2 * Width) {
+ *this = getZero();
+ return;
}
- std::string getBlockName(MachineBasicBlock *MBB) const {
- std::string str;
- raw_string_ostream ss(str);
- ss << "BB#" << MBB->getNumber();
+ // Use up any leading zeros on X, and then shift this.
+ int32_t ShiftX = std::min(countLeadingZerosWidth(X.Digits), ExponentDiff);
+ assert(ShiftX < Width);
- if (const BasicBlock *BB = MBB->getBasicBlock())
- ss << " derived from LLVM BB " << BB->getName();
+ int32_t ShiftThis = ExponentDiff - ShiftX;
+ if (ShiftThis >= Width) {
+ *this = getZero();
+ return;
+ }
+
+ X.Digits <<= ShiftX;
+ X.Exponent -= ShiftX;
+ Digits >>= ShiftThis;
+ Exponent += ShiftThis;
+ return;
+}
- return ss.str();
+template <class DigitsT>
+PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
+operator+=(const PositiveFloat &X) {
+ if (isLargest() || X.isZero())
+ return *this;
+ if (isZero() || X.isLargest())
+ return *this = X;
+
+ // Normalize exponents.
+ PositiveFloat Scaled = matchExponents(X);
+
+ // Check for zero again.
+ if (isZero())
+ return *this = Scaled;
+ if (Scaled.isZero())
+ return *this;
+
+ // Compute sum.
+ DigitsType Sum = Digits + Scaled.Digits;
+ bool DidOverflow = Sum < Digits;
+ Digits = Sum;
+ if (!DidOverflow)
+ return *this;
+
+ if (Exponent == MaxExponent)
+ return *this = getLargest();
+
+ ++Exponent;
+ Digits = UINT64_C(1) << (Width - 1) | Digits >> 1;
+
+ return *this;
+}
+template <class DigitsT>
+PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
+operator-=(const PositiveFloat &X) {
+ if (X.isZero())
+ return *this;
+ if (*this <= X)
+ return *this = getZero();
+
+ // Normalize exponents.
+ PositiveFloat Scaled = matchExponents(X);
+ assert(Digits >= Scaled.Digits);
+
+ // Compute difference.
+ if (!Scaled.isZero()) {
+ Digits -= Scaled.Digits;
+ return *this;
}
- void setBlockFreq(BlockT *BB, BlockFrequency Freq) {
- Freqs[BB] = Freq;
- DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") = ";
- printBlockFreq(dbgs(), Freq) << "\n");
+ // Check if X just barely lost its last bit. E.g., for 32-bit:
+ //
+ // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
+ if (*this == PositiveFloat(1, X.lgFloor() + Width)) {
+ Digits = DigitsType(0) - 1;
+ --Exponent;
+ }
+ return *this;
+}
+template <class DigitsT>
+PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
+operator*=(const PositiveFloat &X) {
+ if (isZero())
+ return *this;
+ if (X.isZero())
+ return *this = X;
+
+ // Save the exponents.
+ int32_t Exponents = int32_t(Exponent) + int32_t(X.Exponent);
+
+ // Get the raw product.
+ *this = getProduct(Digits, X.Digits);
+
+ // Combine with exponents.
+ return *this <<= Exponents;
+}
+template <class DigitsT>
+PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
+operator/=(const PositiveFloat &X) {
+ if (isZero())
+ return *this;
+ if (X.isZero())
+ return *this = getLargest();
+
+ // Save the exponents.
+ int32_t Exponents = int32_t(Exponent) - int32_t(X.Exponent);
+
+ // Get the raw quotient.
+ *this = getQuotient(Digits, X.Digits);
+
+ // Combine with exponents.
+ return *this <<= Exponents;
+}
+template <class DigitsT>
+void PositiveFloat<DigitsT>::shiftLeft(int32_t Shift) {
+ if (!Shift || isZero())
+ return;
+ assert(Shift != INT32_MIN);
+ if (Shift < 0) {
+ shiftRight(-Shift);
+ return;
}
- /// getEdgeFreq - Return edge frequency based on SRC frequency and Src -> Dst
- /// edge probability.
- BlockFrequency getEdgeFreq(BlockT *Src, BlockT *Dst) const {
- BranchProbability Prob = BPI->getEdgeProbability(Src, Dst);
- return getBlockFreq(Src) * Prob;
+ // Shift as much as we can in the exponent.
+ int32_t ExponentShift = std::min(Shift, MaxExponent - Exponent);
+ Exponent += ExponentShift;
+ if (ExponentShift == Shift)
+ return;
+
+ // Check this late, since it's rare.
+ if (isLargest())
+ return;
+
+ // Shift the digits themselves.
+ Shift -= ExponentShift;
+ if (Shift > countLeadingZerosWidth(Digits)) {
+ // Saturate.
+ *this = getLargest();
+ return;
}
- /// incBlockFreq - Increase BB block frequency by FREQ.
- ///
- void incBlockFreq(BlockT *BB, BlockFrequency Freq) {
- Freqs[BB] += Freq;
- DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") += ";
- printBlockFreq(dbgs(), Freq) << " --> ";
- printBlockFreq(dbgs(), Freqs[BB]) << "\n");
+ Digits <<= Shift;
+ return;
+}
+
+template <class DigitsT>
+void PositiveFloat<DigitsT>::shiftRight(int32_t Shift) {
+ if (!Shift || isZero())
+ return;
+ assert(Shift != INT32_MIN);
+ if (Shift < 0) {
+ shiftLeft(-Shift);
+ return;
+ }
+
+ // Shift as much as we can in the exponent.
+ int32_t ExponentShift = std::min(Shift, Exponent - MinExponent);
+ Exponent -= ExponentShift;
+ if (ExponentShift == Shift)
+ return;
+
+ // Shift the digits themselves.
+ Shift -= ExponentShift;
+ if (Shift >= Width) {
+ // Saturate.
+ *this = getZero();
+ return;
}
- // All blocks in postorder.
- std::vector<BlockT *> POT;
+ Digits >>= Shift;
+ return;
+}
- // Map Block -> Position in reverse-postorder list.
- DenseMap<BlockT *, unsigned> RPO;
+template <class DigitsT>
+int PositiveFloat<DigitsT>::compare(const PositiveFloat &X) const {
+ // Check for zero.
+ if (isZero())
+ return X.isZero() ? 0 : -1;
+ if (X.isZero())
+ return 1;
+
+ // Check for the scale. Use lgFloor to be sure that the exponent difference
+ // is always lower than 64.
+ int32_t lgL = lgFloor(), lgR = X.lgFloor();
+ if (lgL != lgR)
+ return lgL < lgR ? -1 : 1;
+
+ // Compare digits.
+ if (Exponent < X.Exponent)
+ return PositiveFloatBase::compare(Digits, X.Digits, X.Exponent - Exponent);
+
+ return -PositiveFloatBase::compare(X.Digits, Digits, Exponent - X.Exponent);
+}
- // For each loop header, record the per-iteration probability of exiting the
- // loop. This is the reciprocal of the expected number of loop iterations.
- typedef DenseMap<BlockT*, BranchProbability> LoopExitProbMap;
- LoopExitProbMap LoopExitProb;
+template <class T> struct isPodLike<PositiveFloat<T>> {
+ static const bool value = true;
+};
+}
- // (reverse-)postorder traversal iterators.
- typedef typename std::vector<BlockT *>::iterator pot_iterator;
- typedef typename std::vector<BlockT *>::reverse_iterator rpot_iterator;
+//===----------------------------------------------------------------------===//
+//
+// BlockMass definition.
+//
+// TODO: Make this private to BlockFrequencyInfoImpl or delete.
+//
+//===----------------------------------------------------------------------===//
+namespace llvm {
+
+/// \brief Mass of a block.
+///
+/// This class implements a sort of fixed-point fraction always between 0.0 and
+/// 1.0. getMass() == UINT64_MAX indicates a value of 1.0.
+///
+/// Masses can be added and subtracted. Simple saturation arithmetic is used,
+/// so arithmetic operations never overflow or underflow.
+///
+/// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
+/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
+/// quite, maximum precision).
+///
+/// Masses can be scaled by \a BranchProbability at maximum precision.
+class BlockMass {
+ uint64_t Mass;
+
+public:
+ BlockMass() : Mass(0) {}
+ explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
+
+ static BlockMass getEmpty() { return BlockMass(); }
+ static BlockMass getFull() { return BlockMass(UINT64_MAX); }
- pot_iterator pot_begin() { return POT.begin(); }
- pot_iterator pot_end() { return POT.end(); }
+ uint64_t getMass() const { return Mass; }
- rpot_iterator rpot_begin() { return POT.rbegin(); }
- rpot_iterator rpot_end() { return POT.rend(); }
+ bool isFull() const { return Mass == UINT64_MAX; }
+ bool isEmpty() const { return !Mass; }
- rpot_iterator rpot_at(BlockT *BB) {
- rpot_iterator I = rpot_begin();
- unsigned idx = RPO.lookup(BB);
- assert(idx);
- std::advance(I, idx - 1);
+ bool operator!() const { return isEmpty(); }
- assert(*I == BB);
- return I;
+ /// \brief Add another mass.
+ ///
+ /// Adds another mass, saturating at \a isFull() rather than overflowing.
+ BlockMass &operator+=(const BlockMass &X) {
+ uint64_t Sum = Mass + X.Mass;
+ Mass = Sum < Mass ? UINT64_MAX : Sum;
+ return *this;
}
- /// isBackedge - Return if edge Src -> Dst is a reachable backedge.
+ /// \brief Subtract another mass.
///
- bool isBackedge(BlockT *Src, BlockT *Dst) const {
- unsigned a = RPO.lookup(Src);
- if (!a)
- return false;
- unsigned b = RPO.lookup(Dst);
- assert(b && "Destination block should be reachable");
- return a >= b;
+ /// Subtracts another mass, saturating at \a isEmpty() rather than
+ /// undeflowing.
+ BlockMass &operator-=(const BlockMass &X) {
+ uint64_t Diff = Mass - X.Mass;
+ Mass = Diff > Mass ? 0 : Diff;
+ return *this;
}
- /// getSingleBlockPred - return single BB block predecessor or NULL if
- /// BB has none or more predecessors.
- BlockT *getSingleBlockPred(BlockT *BB) {
- typename GT::ChildIteratorType
- PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
- PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
+ /// \brief Scale by another mass.
+ ///
+ /// The current implementation is a little imprecise, but it's relatively
+ /// fast, never overflows, and maintains the property that 1.0*1.0==1.0
+ /// (where isFull represents the number 1.0). It's an approximation of
+ /// 128-bit multiply that gets right-shifted by 64-bits.
+ ///
+ /// For a given digit size, multiplying two-digit numbers looks like:
+ ///
+ /// U1 . L1
+ /// * U2 . L2
+ /// ============
+ /// 0 . . L1*L2
+ /// + 0 . U1*L2 . 0 // (shift left once by a digit-size)
+ /// + 0 . U2*L1 . 0 // (shift left once by a digit-size)
+ /// + U1*L2 . 0 . 0 // (shift left twice by a digit-size)
+ ///
+ /// BlockMass has 64-bit numbers. Split each into two 32-bit digits, stored
+ /// 64-bit. Add 1 to the lower digits, to model isFull as 1.0; this won't
+ /// overflow, since we have 64-bit storage for each digit.
+ ///
+ /// To do this accurately, (a) multiply into two 64-bit digits, incrementing
+ /// the upper digit on overflows of the lower digit (carry), (b) subtract 1
+ /// from the lower digit, decrementing the upper digit on underflow (carry),
+ /// and (c) truncate the lower digit. For the 1.0*1.0 case, the upper digit
+ /// will be 0 at the end of step (a), and then will underflow back to isFull
+ /// (1.0) in step (b).
+ ///
+ /// Instead, the implementation does something a little faster with a small
+ /// loss of accuracy: ignore the lower 64-bit digit entirely. The loss of
+ /// accuracy is small, since the sum of the unmodelled carries is 0 or 1
+ /// (i.e., step (a) will overflow at most once, and step (b) will underflow
+ /// only if step (a) overflows).
+ ///
+ /// This is the formula we're calculating:
+ ///
+ /// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>32 + (U2 * (L1+1))>>32
+ ///
+ /// As a demonstration of 1.0*1.0, consider two 4-bit numbers that are both
+ /// full (1111).
+ ///
+ /// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>2 + (U2 * (L1+1))>>2
+ /// 11.11 * 11.11 == 11 * 11 + (11 * (11+1))/4 + (11 * (11+1))/4
+ /// == 1001 + (11 * 100)/4 + (11 * 100)/4
+ /// == 1001 + 1100/4 + 1100/4
+ /// == 1001 + 0011 + 0011
+ /// == 1111
+ BlockMass &operator*=(const BlockMass &X) {
+ uint64_t U1 = Mass >> 32, L1 = Mass & UINT32_MAX, U2 = X.Mass >> 32,
+ L2 = X.Mass & UINT32_MAX;
+ Mass = U1 * U2 + (U1 * (L2 + 1) >> 32) + ((L1 + 1) * U2 >> 32);
+ return *this;
+ }
- if (PI == PE)
- return nullptr;
+ /// \brief Multiply by a branch probability.
+ ///
+ /// Multiply by P. Guarantees full precision.
+ ///
+ /// This could be naively implemented by multiplying by the numerator and
+ /// dividing by the denominator, but in what order? Multiplying first can
+ /// overflow, while dividing first will lose precision (potentially, changing
+ /// a non-zero mass to zero).
+ ///
+ /// The implementation mixes the two methods. Since \a BranchProbability
+ /// uses 32-bits and \a BlockMass 64-bits, shift the mass as far to the left
+ /// as there is room, then divide by the denominator to get a quotient.
+ /// Multiplying by the numerator and right shifting gives a first
+ /// approximation.
+ ///
+ /// Calculate the error in this first approximation by calculating the
+ /// opposite mass (multiply by the opposite numerator and shift) and
+ /// subtracting both from teh original mass.
+ ///
+ /// Add to the first approximation the correct fraction of this error value.
+ /// This time, multiply first and then divide, since there is no danger of
+ /// overflow.
+ ///
+ /// \pre P represents a fraction between 0.0 and 1.0.
+ BlockMass &operator*=(const BranchProbability &P);
- BlockT *Pred = *PI;
+ bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
+ bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
+ bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
+ bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
+ bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
+ bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
- ++PI;
- if (PI != PE)
- return nullptr;
+ /// \brief Convert to floating point.
+ ///
+ /// Convert to a float. \a isFull() gives 1.0, while \a isEmpty() gives
+ /// slightly above 0.0.
+ PositiveFloat<uint64_t> toFloat() const;
- return Pred;
- }
+ void dump() const;
+ raw_ostream &print(raw_ostream &OS) const;
+};
- void doBlock(BlockT *BB, BlockT *LoopHead,
- SmallPtrSet<BlockT *, 8> &BlocksInLoop) {
+inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
+ return BlockMass(L) += R;
+}
+inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
+ return BlockMass(L) -= R;
+}
+inline BlockMass operator*(const BlockMass &L, const BlockMass &R) {
+ return BlockMass(L) *= R;
+}
+inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
+ return BlockMass(L) *= R;
+}
+inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
+ return BlockMass(R) *= L;
+}
- DEBUG(dbgs() << "doBlock(" << getBlockName(BB) << ")\n");
- setBlockFreq(BB, 0);
+inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
+ return X.print(OS);
+}
- if (BB == LoopHead) {
- setBlockFreq(BB, EntryFreq);
- return;
- }
+template <> struct isPodLike<BlockMass> {
+ static const bool value = true;
+};
+}
- if (BlockT *Pred = getSingleBlockPred(BB)) {
- if (BlocksInLoop.count(Pred))
- setBlockFreq(BB, getEdgeFreq(Pred, BB));
- // TODO: else? irreducible, ignore it for now.
- return;
- }
+//===----------------------------------------------------------------------===//
+//
+// BlockFrequencyInfoImpl definition.
+//
+//===----------------------------------------------------------------------===//
+namespace llvm {
+
+class BasicBlock;
+class BranchProbabilityInfo;
+class Function;
+class Loop;
+class LoopInfo;
+class MachineBasicBlock;
+class MachineBranchProbabilityInfo;
+class MachineFunction;
+class MachineLoop;
+class MachineLoopInfo;
+
+/// \brief Base class for BlockFrequencyInfoImpl
+///
+/// BlockFrequencyInfoImplBase has supporting data structures and some
+/// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
+/// the block type (or that call such algorithms) are skipped here.
+///
+/// Nevertheless, the majority of the overall algorithm documention lives with
+/// BlockFrequencyInfoImpl. See there for details.
+class BlockFrequencyInfoImplBase {
+public:
+ typedef PositiveFloat<uint64_t> Float;
- bool isInLoop = false;
- bool isLoopHead = false;
-
- for (typename GT::ChildIteratorType
- PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
- PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
- PI != PE; ++PI) {
- BlockT *Pred = *PI;
-
- if (isBackedge(Pred, BB)) {
- isLoopHead = true;
- } else if (BlocksInLoop.count(Pred)) {
- incBlockFreq(BB, getEdgeFreq(Pred, BB));
- isInLoop = true;
- }
- // TODO: else? irreducible.
+ /// \brief Representative of a block.
+ ///
+ /// This is a simple wrapper around an index into the reverse-post-order
+ /// traversal of the blocks.
+ ///
+ /// Unlike a block pointer, its order has meaning (location in the
+ /// topological sort) and it's class is the same regardless of block type.
+ struct BlockNode {
+ typedef uint32_t IndexType;
+ IndexType Index;
+
+ bool operator==(const BlockNode &X) const { return Index == X.Index; }
+ bool operator!=(const BlockNode &X) const { return Index != X.Index; }
+ bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
+ bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
+ bool operator<(const BlockNode &X) const { return Index < X.Index; }
+ bool operator>(const BlockNode &X) const { return Index > X.Index; }
+
+ BlockNode() : Index(UINT32_MAX) {}
+ BlockNode(IndexType Index) : Index(Index) {}
+
+ bool isValid() const { return Index <= getMaxIndex(); }
+ static size_t getMaxIndex() { return UINT32_MAX - 1; }
+ };
+
+ /// \brief Stats about a block itself.
+ struct FrequencyData {
+ Float Floating;
+ uint64_t Integer;
+ };
+
+ /// \brief Index of loop information.
+ struct WorkingData {
+ BlockNode ContainingLoop; ///< The block whose loop this block is inside.
+ uint32_t LoopIndex; ///< Index into PackagedLoops.
+ bool IsPackaged; ///< Has ContainingLoop been packaged up?
+ bool IsAPackage; ///< Has this block's loop been packaged up?
+ BlockMass Mass; ///< Mass distribution from the entry block.
+
+ WorkingData()
+ : LoopIndex(UINT32_MAX), IsPackaged(false), IsAPackage(false) {}
+
+ bool hasLoopHeader() const { return ContainingLoop.isValid(); }
+ bool isLoopHeader() const { return LoopIndex != UINT32_MAX; }
+ };
+
+ /// \brief Unscaled probability weight.
+ ///
+ /// Probability weight for an edge in the graph (including the
+ /// successor/target node).
+ ///
+ /// All edges in the original function are 32-bit. However, exit edges from
+ /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
+ /// space in general.
+ ///
+ /// In addition to the raw weight amount, Weight stores the type of the edge
+ /// in the current context (i.e., the context of the loop being processed).
+ /// Is this a local edge within the loop, an exit from the loop, or a
+ /// backedge to the loop header?
+ struct Weight {
+ enum DistType { Local, Exit, Backedge };
+ DistType Type;
+ BlockNode TargetNode;
+ uint64_t Amount;
+ Weight() : Type(Local), Amount(0) {}
+ };
+
+ /// \brief Distribution of unscaled probability weight.
+ ///
+ /// Distribution of unscaled probability weight to a set of successors.
+ ///
+ /// This class collates the successor edge weights for later processing.
+ ///
+ /// \a DidOverflow indicates whether \a Total did overflow while adding to
+ /// the distribution. It should never overflow twice. There's no flag for
+ /// whether \a ForwardTotal overflows, since when \a Total exceeds 32-bits
+ /// they both get re-computed during \a normalize().
+ struct Distribution {
+ typedef SmallVector<Weight, 4> WeightList;
+ WeightList Weights; ///< Individual successor weights.
+ uint64_t Total; ///< Sum of all weights.
+ bool DidOverflow; ///< Whether \a Total did overflow.
+ uint32_t ForwardTotal; ///< Total excluding backedges.
+
+ Distribution() : Total(0), DidOverflow(false), ForwardTotal(0) {}
+ void addLocal(const BlockNode &Node, uint64_t Amount) {
+ add(Node, Amount, Weight::Local);
+ }
+ void addExit(const BlockNode &Node, uint64_t Amount) {
+ add(Node, Amount, Weight::Exit);
+ }
+ void addBackedge(const BlockNode &Node, uint64_t Amount) {
+ add(Node, Amount, Weight::Backedge);
}
- if (!isInLoop)
- return;
+ /// \brief Normalize the distribution.
+ ///
+ /// Combines multiple edges to the same \a Weight::TargetNode and scales
+ /// down so that \a Total fits into 32-bits.
+ ///
+ /// This is linear in the size of \a Weights. For the vast majority of
+ /// cases, adjacent edge weights are combined by sorting WeightList and
+ /// combining adjacent weights. However, for very large edge lists an
+ /// auxiliary hash table is used.
+ void normalize();
+
+ private:
+ void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
+ };
+
+ /// \brief Data for a packaged loop.
+ ///
+ /// Contains the data necessary to represent represent a loop as a node once
+ /// it's packaged.
+ ///
+ /// PackagedLoopData inherits from BlockData to give the node the necessary
+ /// stats. Further, it has a list of successors, list of members, and stores
+ /// the backedge mass assigned to this loop.
+ struct PackagedLoopData {
+ typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
+ typedef SmallVector<BlockNode, 4> MemberList;
+ BlockNode Header; ///< Header.
+ ExitMap Exits; ///< Successor edges (and weights).
+ MemberList Members; ///< Members of the loop.
+ BlockMass BackedgeMass; ///< Mass returned to loop header.
+ BlockMass Mass;
+ Float Scale;
+
+ PackagedLoopData(const BlockNode &Header) : Header(Header) {}
+ };
+
+ /// \brief Data about each block. This is used downstream.
+ std::vector<FrequencyData> Freqs;
+
+ /// \brief Loop data: see initializeLoops().
+ std::vector<WorkingData> Working;
+
+ /// \brief Indexed information about packaged loops.
+ std::vector<PackagedLoopData> PackagedLoops;
+
+ /// \brief Create the initial loop packages.
+ ///
+ /// Initializes PackagedLoops using the data in Working about backedges
+ /// and containing loops. Called by initializeLoops().
+ ///
+ /// \post WorkingData::LoopIndex has been initialized for every loop header
+ /// and PackagedLoopData::Members has been initialized.
- if (!isLoopHead)
- return;
+ /// \brief Add all edges out of a packaged loop to the distribution.
+ ///
+ /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
+ /// successor edge.
+ void addLoopSuccessorsToDist(const BlockNode &LoopHead,
+ const BlockNode &LocalLoopHead,
+ Distribution &Dist);
- // This block is a loop header, so boost its frequency by the expected
- // number of loop iterations. The loop blocks will be revisited so they all
- // get this boost.
- typename LoopExitProbMap::const_iterator I = LoopExitProb.find(BB);
- assert(I != LoopExitProb.end() && "Loop header missing from table");
- Freqs[BB] /= I->second;
- DEBUG(dbgs() << "Loop header scaled to ";
- printBlockFreq(dbgs(), Freqs[BB]) << ".\n");
+ /// \brief Add an edge to the distribution.
+ ///
+ /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
+ /// edge is forward/exit/backedge is in the context of LoopHead. Otherwise,
+ /// every edge should be a forward edge (since all the loops are packaged
+ /// up).
+ void addToDist(Distribution &Dist, const BlockNode &LoopHead,
+ const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
+
+ PackagedLoopData &getLoopPackage(const BlockNode &Head) {
+ assert(Head.Index < Working.size());
+ size_t Index = Working[Head.Index].LoopIndex;
+ assert(Index < PackagedLoops.size());
+ return PackagedLoops[Index];
}
- /// doLoop - Propagate block frequency down through the loop.
- void doLoop(BlockT *Head, BlockT *Tail) {
- DEBUG(dbgs() << "doLoop(" << getBlockName(Head) << ", "
- << getBlockName(Tail) << ")\n");
+ /// \brief Distribute mass according to a distribution.
+ ///
+ /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
+ /// backedges and exits are stored in its entry in PackagedLoops.
+ ///
+ /// Mass is distributed in parallel from two copies of the source mass.
+ ///
+ /// The first mass (forward) represents the distribution of mass through the
+ /// local DAG. This distribution should lose mass at loop exits and ignore
+ /// backedges.
+ ///
+ /// The second mass (general) represents the behavior of the loop in the
+ /// global context. In a given distribution from the head, how much mass
+ /// exits, and to where? How much mass returns to the loop head?
+ ///
+ /// The forward mass should be split up between local successors and exits,
+ /// but only actually distributed to the local successors. The general mass
+ /// should be split up between all three types of successors, but distributed
+ /// only to exits and backedges.
+ void distributeMass(const BlockNode &Source, const BlockNode &LoopHead,
+ Distribution &Dist);
- SmallPtrSet<BlockT *, 8> BlocksInLoop;
+ /// \brief Compute the loop scale for a loop.
+ void computeLoopScale(const BlockNode &LoopHead);
- for (rpot_iterator I = rpot_at(Head), E = rpot_at(Tail); ; ++I) {
- BlockT *BB = *I;
- doBlock(BB, Head, BlocksInLoop);
+ /// \brief Package up a loop.
+ void packageLoop(const BlockNode &LoopHead);
- BlocksInLoop.insert(BB);
- if (I == E)
- break;
- }
+ /// \brief Finalize frequency metrics.
+ ///
+ /// Unwraps loop packages, calculates final frequencies, and cleans up
+ /// no-longer-needed data structures.
+ void finalizeMetrics();
- // Compute loop's cyclic probability using backedges probabilities.
- BlockFrequency BackFreq;
- for (typename GT::ChildIteratorType
- PI = GraphTraits< Inverse<BlockT *> >::child_begin(Head),
- PE = GraphTraits< Inverse<BlockT *> >::child_end(Head);
- PI != PE; ++PI) {
- BlockT *Pred = *PI;
- assert(Pred);
- if (isBackedge(Pred, Head))
- BackFreq += getEdgeFreq(Pred, Head);
- }
+ /// \brief Clear all memory.
+ void clear();
- // The cyclic probability is freq(BackEdges) / freq(Head), where freq(Head)
- // only counts edges entering the loop, not the loop backedges.
- // The probability of leaving the loop on each iteration is:
- //
- // ExitProb = 1 - CyclicProb
- //
- // The Expected number of loop iterations is:
- //
- // Iterations = 1 / ExitProb
- //
- uint64_t D = std::max(getBlockFreq(Head).getFrequency(), UINT64_C(1));
- uint64_t N = std::max(BackFreq.getFrequency(), UINT64_C(1));
- if (N < D)
- N = D - N;
- else
- // We'd expect N < D, but rounding and saturation means that can't be
- // guaranteed.
- N = 1;
-
- // Now ExitProb = N / D, make sure it fits in an i32/i32 fraction.
- assert(N <= D);
- if (D > UINT32_MAX) {
- unsigned Shift = 32 - countLeadingZeros(D);
- D >>= Shift;
- N >>= Shift;
- if (N == 0)
- N = 1;
- }
- BranchProbability LEP = BranchProbability(N, D);
- LoopExitProb.insert(std::make_pair(Head, LEP));
- DEBUG(dbgs() << "LoopExitProb[" << getBlockName(Head) << "] = " << LEP
- << " from 1 - ";
- printBlockFreq(dbgs(), BackFreq) << " / ";
- printBlockFreq(dbgs(), getBlockFreq(Head)) << ".\n");
+ virtual std::string getBlockName(const BlockNode &Node) const;
+
+ virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
+ void dump() const { print(dbgs()); }
+
+ Float getFloatingBlockFreq(const BlockNode &Node) const;
+
+ BlockFrequency getBlockFreq(const BlockNode &Node) const;
+
+ raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
+ raw_ostream &printBlockFreq(raw_ostream &OS,
+ const BlockFrequency &Freq) const;
+
+ uint64_t getEntryFreq() const {
+ assert(!Freqs.empty());
+ return Freqs[0].Integer;
}
+ /// \brief Virtual destructor.
+ ///
+ /// Need a virtual destructor to mask the compiler warning about
+ /// getBlockName().
+ virtual ~BlockFrequencyInfoImplBase() {}
+};
+
+namespace bfi_detail {
+template <class BlockT> struct TypeMap {};
+template <> struct TypeMap<BasicBlock> {
+ typedef BasicBlock BlockT;
+ typedef Function FunctionT;
+ typedef BranchProbabilityInfo BranchProbabilityInfoT;
+ typedef Loop LoopT;
+ typedef LoopInfo LoopInfoT;
+};
+template <> struct TypeMap<MachineBasicBlock> {
+ typedef MachineBasicBlock BlockT;
+ typedef MachineFunction FunctionT;
+ typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
+ typedef MachineLoop LoopT;
+ typedef MachineLoopInfo LoopInfoT;
+};
- friend class BlockFrequencyInfo;
- friend class MachineBlockFrequencyInfo;
+/// \brief Get the name of a MachineBasicBlock.
+///
+/// Get the name of a MachineBasicBlock. It's templated so that including from
+/// CodeGen is unnecessary (that would be a layering issue).
+///
+/// This is used mainly for debug output. The name is similar to
+/// MachineBasicBlock::getFullName(), but skips the name of the function.
+template <class BlockT> std::string getBlockName(const BlockT *BB) {
+ assert(BB && "Unexpected nullptr");
+ auto MachineName = "BB" + Twine(BB->getNumber());
+ if (BB->getBasicBlock())
+ return (MachineName + "[" + BB->getName() + "]").str();
+ return MachineName.str();
+}
+/// \brief Get the name of a BasicBlock.
+template <> inline std::string getBlockName(const BasicBlock *BB) {
+ assert(BB && "Unexpected nullptr");
+ return BB->getName().str();
+}
+}
- BlockFrequencyInfoImpl() { }
+/// \brief Shared implementation for block frequency analysis.
+///
+/// This is a shared implementation of BlockFrequencyInfo and
+/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
+/// blocks.
+///
+/// This algorithm leverages BlockMass and PositiveFloat to maintain precision,
+/// separates mass distribution from loop scaling, and dithers to eliminate
+/// probability mass loss.
+///
+/// The implementation is split between BlockFrequencyInfoImpl, which knows the
+/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
+/// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
+/// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
+/// reverse-post order. This gives two advantages: it's easy to compare the
+/// relative ordering of two nodes, and maps keyed on BlockT can be represented
+/// by vectors.
+///
+/// This algorithm is O(V+E), unless there is irreducible control flow, in
+/// which case it's O(V*E) in the worst case.
+///
+/// These are the main stages:
+///
+/// 0. Reverse post-order traversal (\a initializeRPOT()).
+///
+/// Run a single post-order traversal and save it (in reverse) in RPOT.
+/// All other stages make use of this ordering. Save a lookup from BlockT
+/// to BlockNode (the index into RPOT) in Nodes.
+///
+/// 1. Loop indexing (\a initializeLoops()).
+///
+/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
+/// the algorithm. In particular, store the immediate members of each loop
+/// in reverse post-order.
+///
+/// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
+///
+/// For each loop (bottom-up), distribute mass through the DAG resulting
+/// from ignoring backedges and treating sub-loops as a single pseudo-node.
+/// Track the backedge mass distributed to the loop header, and use it to
+/// calculate the loop scale (number of loop iterations).
+///
+/// Visiting loops bottom-up is a post-order traversal of loop headers.
+/// For each loop, immediate members that represent sub-loops will already
+/// have been visited and packaged into a pseudo-node.
+///
+/// Distributing mass in a loop is a reverse-post-order traversal through
+/// the loop. Start by assigning full mass to the Loop header. For each
+/// node in the loop:
+///
+/// - Fetch and categorize the weight distribution for its successors.
+/// If this is a packaged-subloop, the weight distribution is stored
+/// in \a PackagedLoopData::Exits. Otherwise, fetch it from
+/// BranchProbabilityInfo.
+///
+/// - Each successor is categorized as \a Weight::Local, a normal
+/// forward edge within the current loop, \a Weight::Backedge, a
+/// backedge to the loop header, or \a Weight::Exit, any successor
+/// outside the loop. The weight, the successor, and its category
+/// are stored in \a Distribution. There can be multiple edges to
+/// each successor.
+///
+/// - Normalize the distribution: scale weights down so that their sum
+/// is 32-bits, and coalesce multiple edges to the same node.
+///
+/// - Distribute the mass accordingly, dithering to minimize mass loss,
+/// as described in \a distributeMass(). Mass is distributed in
+/// parallel in two ways: forward, and general. Local successors
+/// take their mass from the forward mass, while exit and backedge
+/// successors take their mass from the general mass. Additionally,
+/// exit edges use up (ignored) mass from the forward mass, and local
+/// edges use up (ignored) mass from the general distribution.
+///
+/// Finally, calculate the loop scale from the accumulated backedge mass.
+///
+/// 3. Distribute mass in the function (\a computeMassInFunction()).
+///
+/// Finally, distribute mass through the DAG resulting from packaging all
+/// loops in the function. This uses the same algorithm as distributing
+/// mass in a loop, except that there are no exit or backedge edges.
+///
+/// 4. Loop unpackaging and cleanup (\a finalizeMetrics()).
+///
+/// Initialize the frequency to a floating point representation of its
+/// mass.
+///
+/// Visit loops top-down (reverse post-order), scaling the loop header's
+/// frequency by its psuedo-node's mass and loop scale. Keep track of the
+/// minimum and maximum final frequencies.
+///
+/// Using the min and max frequencies as a guide, translate floating point
+/// frequencies to an appropriate range in uint64_t.
+///
+/// It has some known flaws.
+///
+/// - Irreducible control flow isn't modelled correctly. In particular,
+/// LoopInfo and MachineLoopInfo ignore irreducible backedges. The main
+/// result is that irreducible SCCs will under-scaled. No mass is lost,
+/// but the computed branch weights for the loop pseudo-node will be
+/// incorrect.
+///
+/// Modelling irreducible control flow exactly involves setting up and
+/// solving a group of infinite geometric series. Such precision is
+/// unlikely to be worthwhile, since most of our algorithms give up on
+/// irreducible control flow anyway.
+///
+/// Nevertheless, we might find that we need to get closer. If
+/// LoopInfo/MachineLoopInfo flags loops with irreducible control flow
+/// (and/or the function as a whole), we can find the SCCs, compute an
+/// approximate exit frequency for the SCC as a whole, and scale up
+/// accordingly.
+///
+/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
+/// BlockFrequency's 64-bit integer precision.
+template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
+ typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
+ typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
+ typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
+ BranchProbabilityInfoT;
+ typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
+ typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
- void doFunction(FunctionT *fn, BranchProbabilityInfoT *bpi) {
- Fn = fn;
- BPI = bpi;
+ typedef GraphTraits<const BlockT *> Successor;
+ typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
- // Clear everything.
- RPO.clear();
- POT.clear();
- LoopExitProb.clear();
- Freqs.clear();
+ const BranchProbabilityInfoT *BPI;
+ const LoopInfoT *LI;
+ const FunctionT *F;
- BlockT *EntryBlock = fn->begin();
+ // All blocks in reverse postorder.
+ std::vector<const BlockT *> RPOT;
+ DenseMap<const BlockT *, BlockNode> Nodes;
- std::copy(po_begin(EntryBlock), po_end(EntryBlock), std::back_inserter(POT));
+ typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
- unsigned RPOidx = 0;
- for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
- BlockT *BB = *I;
- RPO[BB] = ++RPOidx;
- DEBUG(dbgs() << "RPO[" << getBlockName(BB) << "] = " << RPO[BB] << "\n");
- }
+ rpot_iterator rpot_begin() const { return RPOT.begin(); }
+ rpot_iterator rpot_end() const { return RPOT.end(); }
- // Travel over all blocks in postorder.
- for (pot_iterator I = pot_begin(), E = pot_end(); I != E; ++I) {
- BlockT *BB = *I;
- BlockT *LastTail = nullptr;
- DEBUG(dbgs() << "POT: " << getBlockName(BB) << "\n");
+ size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
- for (typename GT::ChildIteratorType
- PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
- PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
- PI != PE; ++PI) {
+ BlockNode getNode(const rpot_iterator &I) const {
+ return BlockNode(getIndex(I));
+ }
+ BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
- BlockT *Pred = *PI;
- if (isBackedge(Pred, BB) && (!LastTail || RPO[Pred] > RPO[LastTail]))
- LastTail = Pred;
- }
+ const BlockT *getBlock(const BlockNode &Node) const {
+ assert(Node.Index < RPOT.size());
+ return RPOT[Node.Index];
+ }
- if (LastTail)
- doLoop(BB, LastTail);
- }
+ void initializeRPOT();
+ void initializeLoops();
+ void runOnFunction(const FunctionT *F);
- // At the end assume the whole function as a loop, and travel over it once
- // again.
- doLoop(*(rpot_begin()), *(pot_begin()));
+ void propagateMassToSuccessors(const BlockNode &LoopHead,
+ const BlockNode &Node);
+ void computeMassInLoops();
+ void computeMassInLoop(const BlockNode &LoopHead);
+ void computeMassInFunction();
+
+ std::string getBlockName(const BlockNode &Node) const override {
+ return bfi_detail::getBlockName(getBlock(Node));
}
public:
+ const FunctionT *getFunction() const { return F; }
- uint64_t getEntryFreq() { return EntryFreq; }
+ void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
+ const LoopInfoT *LI);
+ BlockFrequencyInfoImpl() : BPI(0), LI(0), F(0) {}
- /// getBlockFreq - Return block frequency. Return 0 if we don't have it.
+ using BlockFrequencyInfoImplBase::getEntryFreq;
BlockFrequency getBlockFreq(const BlockT *BB) const {
- typename DenseMap<const BlockT *, BlockFrequency>::const_iterator
- I = Freqs.find(BB);
- if (I != Freqs.end())
- return I->second;
- return 0;
+ return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
+ }
+ Float getFloatingBlockFreq(const BlockT *BB) const {
+ return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
}
- void print(raw_ostream &OS) const {
- OS << "\n\n---- Block Freqs ----\n";
- for (typename FunctionT::iterator I = Fn->begin(), E = Fn->end(); I != E;) {
- BlockT *BB = I++;
- OS << " " << getBlockName(BB) << " = ";
- printBlockFreq(OS, getBlockFreq(BB)) << "\n";
-
- for (typename GraphTraits<BlockT *>::ChildIteratorType
- SI = GraphTraits<BlockT *>::child_begin(BB),
- SE = GraphTraits<BlockT *>::child_end(BB); SI != SE; ++SI) {
- BlockT *Succ = *SI;
- OS << " " << getBlockName(BB) << " -> " << getBlockName(Succ)
- << " = "; printBlockFreq(OS, getEdgeFreq(BB, Succ)) << "\n";
- }
- }
+ /// \brief Print the frequencies for the current function.
+ ///
+ /// Prints the frequencies for the blocks in the current function.
+ ///
+ /// Blocks are printed in the natural iteration order of the function, rather
+ /// than reverse post-order. This provides two advantages: writing -analyze
+ /// tests is easier (since blocks come out in source order), and even
+ /// unreachable blocks are printed.
+ ///
+ /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
+ /// we need to override it here.
+ raw_ostream &print(raw_ostream &OS) const override;
+ using BlockFrequencyInfoImplBase::dump;
+
+ using BlockFrequencyInfoImplBase::printBlockFreq;
+ raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
+ return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
}
+};
+
+template <class BT>
+void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
+ const BranchProbabilityInfoT *BPI,
+ const LoopInfoT *LI) {
+ // Save the parameters.
+ this->BPI = BPI;
+ this->LI = LI;
+ this->F = F;
+
+ // Clean up left-over data structures.
+ BlockFrequencyInfoImplBase::clear();
+ RPOT.clear();
+ Nodes.clear();
+
+ // Initialize.
+ DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
+ << std::string(F->getName().size(), '=') << "\n");
+ initializeRPOT();
+ initializeLoops();
+
+ // Visit loops in post-order to find thelocal mass distribution, and then do
+ // the full function.
+ computeMassInLoops();
+ computeMassInFunction();
+ finalizeMetrics();
+}
- void dump() const {
- print(dbgs());
+template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
+ const BlockT *Entry = F->begin();
+ RPOT.reserve(F->size());
+ std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
+ std::reverse(RPOT.begin(), RPOT.end());
+
+ assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
+ "More nodes in function than Block Frequency Info supports");
+
+ DEBUG(dbgs() << "reverse-post-order-traversal\n");
+ for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
+ BlockNode Node = getNode(I);
+ DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
+ Nodes[*I] = Node;
}
- // Utility method that looks up the block frequency associated with BB and
- // prints it to OS.
- raw_ostream &printBlockFreq(raw_ostream &OS,
- const BlockT *BB) {
- return printBlockFreq(OS, getBlockFreq(BB));
+ Working.resize(RPOT.size());
+ Freqs.resize(RPOT.size());
+}
+
+template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
+ DEBUG(dbgs() << "loop-detection\n");
+ if (LI->empty())
+ return;
+
+ // Visit loops top down and assign them an index.
+ std::deque<const LoopT *> Q;
+ Q.insert(Q.end(), LI->begin(), LI->end());
+ while (!Q.empty()) {
+ const LoopT *Loop = Q.front();
+ Q.pop_front();
+ Q.insert(Q.end(), Loop->begin(), Loop->end());
+
+ // Save the order this loop was visited.
+ BlockNode Header = getNode(Loop->getHeader());
+ assert(Header.isValid());
+
+ Working[Header.Index].LoopIndex = PackagedLoops.size();
+ PackagedLoops.emplace_back(Header);
+ DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
}
- raw_ostream &printBlockFreq(raw_ostream &OS,
- const BlockFrequency &Freq) const {
- // Convert fixed-point number to decimal.
- uint64_t Frequency = Freq.getFrequency();
- OS << Frequency / EntryFreq << ".";
- uint64_t Rem = Frequency % EntryFreq;
- uint64_t Eps = 1;
- do {
- Rem *= 10;
- Eps *= 10;
- OS << Rem / EntryFreq;
- Rem = Rem % EntryFreq;
- } while (Rem >= Eps/2);
- return OS;
+ // Visit nodes in reverse post-order and add them to their deepest containing
+ // loop.
+ for (size_t Index = 0; Index < RPOT.size(); ++Index) {
+ const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
+ if (!Loop)
+ continue;
+
+ // If this is a loop header, find its parent loop (if any).
+ if (Working[Index].isLoopHeader())
+ if (!(Loop = Loop->getParentLoop()))
+ continue;
+
+ // Add this node to its containing loop's member list.
+ BlockNode Header = getNode(Loop->getHeader());
+ assert(Header.isValid());
+ const auto &HeaderData = Working[Header.Index];
+ assert(HeaderData.isLoopHeader());
+
+ Working[Index].ContainingLoop = Header;
+ PackagedLoops[HeaderData.LoopIndex].Members.push_back(Index);
+ DEBUG(dbgs() << " - loop = " << getBlockName(Header)
+ << ": member = " << getBlockName(Index) << "\n");
}
+}
-};
+template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
+ // Visit loops with the deepest first, and the top-level loops last.
+ for (auto L = PackagedLoops.rbegin(), LE = PackagedLoops.rend(); L != LE; ++L)
+ computeMassInLoop(L->Header);
+}
+
+template <class BT>
+void BlockFrequencyInfoImpl<BT>::computeMassInLoop(const BlockNode &LoopHead) {
+ // Compute mass in loop.
+ DEBUG(dbgs() << "compute-mass-in-loop: " << getBlockName(LoopHead) << "\n");
+ Working[LoopHead.Index].Mass = BlockMass::getFull();
+ propagateMassToSuccessors(LoopHead, LoopHead);
+
+ for (const BlockNode &M : getLoopPackage(LoopHead).Members)
+ propagateMassToSuccessors(LoopHead, M);
+
+ computeLoopScale(LoopHead);
+ packageLoop(LoopHead);
+}
+
+template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
+ // Compute mass in function.
+ DEBUG(dbgs() << "compute-mass-in-function\n");
+ assert(!Working.empty() && "no blocks in function");
+ assert(!Working[0].isLoopHeader() && "entry block is a loop header");
+
+ Working[0].Mass = BlockMass::getFull();
+ for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
+ // Check for nodes that have been packaged.
+ BlockNode Node = getNode(I);
+ if (Working[Node.Index].hasLoopHeader())
+ continue;
+
+ propagateMassToSuccessors(BlockNode(), Node);
+ }
+}
+
+template <class BT>
+void
+BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(const BlockNode &LoopHead,
+ const BlockNode &Node) {
+ DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
+ // Calculate probability for successors.
+ Distribution Dist;
+ if (Node != LoopHead && Working[Node.Index].isLoopHeader())
+ addLoopSuccessorsToDist(LoopHead, Node, Dist);
+ else {
+ const BlockT *BB = getBlock(Node);
+ for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
+ SI != SE; ++SI)
+ // Do not dereference SI, or getEdgeWeight() is linear in the number of
+ // successors.
+ addToDist(Dist, LoopHead, Node, getNode(*SI), BPI->getEdgeWeight(BB, SI));
+ }
+
+ // Distribute mass to successors, saving exit and backedge data in the
+ // loop header.
+ distributeMass(Node, LoopHead, Dist);
+}
+
+template <class BT>
+raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
+ if (!F)
+ return OS;
+ OS << "block-frequency-info: " << F->getName() << "\n";
+ for (const BlockT &BB : *F)
+ OS << " - " << bfi_detail::getBlockName(&BB)
+ << ": float = " << getFloatingBlockFreq(&BB)
+ << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
+
+ // Add an extra newline for readability.
+ OS << "\n";
+ return OS;
+}
}
#endif
diff --git a/lib/Analysis/BlockFrequencyInfo.cpp b/lib/Analysis/BlockFrequencyInfo.cpp
index 39aef9e140..13ab29a94d 100644
--- a/lib/Analysis/BlockFrequencyInfo.cpp
+++ b/lib/Analysis/BlockFrequencyInfo.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "block-freq"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
@@ -106,6 +107,7 @@ struct DOTGraphTraits<BlockFrequencyInfo*> : public DefaultDOTGraphTraits {
INITIALIZE_PASS_BEGIN(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
@@ -120,14 +122,16 @@ BlockFrequencyInfo::~BlockFrequencyInfo() {}
void BlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<BranchProbabilityInfo>();
+ AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool BlockFrequencyInfo::runOnFunction(Function &F) {
BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
+ LoopInfo &LI = getAnalysis<LoopInfo>();
if (!BFI)
BFI.reset(new ImplType);
- BFI->doFunction(&F, &BPI);
+ BFI->doFunction(&F, &BPI, &LI);
#ifndef NDEBUG
if (ViewBlockFreqPropagationDAG != GVDT_None)
view();
@@ -158,7 +162,7 @@ void BlockFrequencyInfo::view() const {
}
const Function *BlockFrequencyInfo::getFunction() const {
- return BFI ? BFI->Fn : nullptr;
+ return BFI ? BFI->getFunction() : nullptr;
}
raw_ostream &BlockFrequencyInfo::
diff --git a/lib/Analysis/BlockFrequencyInfoImpl.cpp b/lib/Analysis/BlockFrequencyInfoImpl.cpp
new file mode 100644
index 0000000000..e7424aebd7
--- /dev/null
+++ b/lib/Analysis/BlockFrequencyInfoImpl.cpp
@@ -0,0 +1,932 @@
+//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Loops should be simplified before this analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "block-freq"
+#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/Support/raw_ostream.h"
+#include <deque>
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+//
+// PositiveFloat implementation.
+//
+//===----------------------------------------------------------------------===//
+#ifndef _MSC_VER
+const int32_t PositiveFloatBase::MaxExponent;
+const int32_t PositiveFloatBase::MinExponent;
+#endif
+
+static void appendDigit(std::string &Str, unsigned D) {
+ assert(D < 10);
+ Str += '0' + D % 10;
+}
+
+static void appendNumber(std::string &Str, uint64_t N) {
+ while (N) {
+ appendDigit(Str, N % 10);
+ N /= 10;
+ }
+}
+
+static bool doesRoundUp(char Digit) {
+ switch (Digit) {
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ return true;
+ default:
+ return false;
+ }
+}
+
+static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
+ assert(E >= PositiveFloatBase::MinExponent);
+ assert(E <= PositiveFloatBase::MaxExponent);
+
+ // Find a new E, but don't let it increase past MaxExponent.
+ int LeadingZeros = PositiveFloatBase::countLeadingZeros64(D);
+ int NewE = std::min(PositiveFloatBase::MaxExponent, E + 63 - LeadingZeros);
+ int Shift = 63 - (NewE - E);
+ assert(Shift <= LeadingZeros);
+ assert(Shift == LeadingZeros || NewE == PositiveFloatBase::MaxExponent);
+ D <<= Shift;
+ E = NewE;
+
+ // Check for a denormal.
+ unsigned AdjustedE = E + 16383;
+ if (!(D >> 63)) {
+ assert(E == PositiveFloatBase::MaxExponent);
+ AdjustedE = 0;
+ }
+
+ // Build the float and print it.
+ uint64_t RawBits[2] = {D, AdjustedE};
+ APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
+ SmallVector<char, 24> Chars;
+ Float.toString(Chars, Precision, 0);
+ return std::string(Chars.begin(), Chars.end());
+}
+
+static std::string stripTrailingZeros(const std::string &Float) {
+ size_t NonZero = Float.find_last_not_of('0');
+ assert(NonZero != std::string::npos && "no . in floating point string");
+
+ if (Float[NonZero] == '.')
+ ++NonZero;
+
+ return Float.substr(0, NonZero + 1);
+}
+
+std::string PositiveFloatBase::toString(uint64_t D, int16_t E, int Width,
+ unsigned Precision) {
+ if (!D)
+ return "0.0";
+
+ // Canonicalize exponent and digits.
+ uint64_t Above0 = 0;
+ uint64_t Below0 = 0;
+ uint64_t Extra = 0;
+ int ExtraShift = 0;
+ if (E == 0) {
+ Above0 = D;
+ } else if (E > 0) {
+ if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
+ D <<= Shift;
+ E -= Shift;
+
+ if (!E)
+ Above0 = D;
+ }
+ } else if (E > -64) {
+ Above0 = D >> -E;
+ Below0 = D << (64 + E);
+ } else if (E > -120) {
+ Below0 = D >> (-E - 64);
+ Extra = D << (128 + E);
+ ExtraShift = -64 - E;
+ }
+
+ // Fall back on APFloat for very small and very large numbers.
+ if (!Above0 && !Below0)
+ return toStringAPFloat(D, E, Precision);
+
+ // Append the digits before the decimal.
+ std::string Str;
+ size_t DigitsOut = 0;
+ if (Above0) {
+ appendNumber(Str, Above0);
+ DigitsOut = Str.size();
+ } else
+ appendDigit(Str, 0);
+ std::reverse(Str.begin(), Str.end());
+
+ // Return early if there's nothing after the decimal.
+ if (!Below0)
+ return Str + ".0";
+
+ // Append the decimal and beyond.
+ Str += '.';
+ uint64_t Error = UINT64_C(1) << (64 - Width);
+
+ // We need to shift Below0 to the right to make space for calculating
+ // digits. Save the precision we're losing in Extra.
+ Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
+ Below0 >>= 4;
+ size_t SinceDot = 0;
+ size_t AfterDot = Str.size();
+ do {
+ if (ExtraShift) {
+ --ExtraShift;
+ Error *= 5;
+ } else
+ Error *= 10;
+
+ Below0 *= 10;
+ Extra *= 10;
+ Below0 += (Extra >> 60);
+ Extra = Extra & (UINT64_MAX >> 4);
+ appendDigit(Str, Below0 >> 60);
+ Below0 = Below0 & (UINT64_MAX >> 4);
+ if (DigitsOut || Str.back() != '0')
+ ++DigitsOut;
+ ++SinceDot;
+ } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
+ (!Precision || DigitsOut <= Precision || SinceDot < 2));
+
+ // Return early for maximum precision.
+ if (!Precision || DigitsOut <= Precision)
+ return stripTrailingZeros(Str);
+
+ // Find where to truncate.
+ size_t Truncate =
+ std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
+
+ // Check if there's anything to truncate.
+ if (Truncate >= Str.size())
+ return stripTrailingZeros(Str);
+
+ bool Carry = doesRoundUp(Str[Truncate]);
+ if (!Carry)
+ return stripTrailingZeros(Str.substr(0, Truncate));
+
+ // Round with the first truncated digit.
+ for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
+ I != E; ++I) {
+ if (*I == '.')
+ continue;
+ if (*I == '9') {
+ *I = '0';
+ continue;
+ }
+
+ ++*I;
+ Carry = false;
+ break;
+ }
+
+ // Add "1" in front if we still need to carry.
+ return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
+}
+
+raw_ostream &PositiveFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
+ int Width, unsigned Precision) {
+ return OS << toString(D, E, Width, Precision);
+}
+
+void PositiveFloatBase::dump(uint64_t D, int16_t E, int Width) {
+ print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
+ << "]";
+}
+
+static std::pair<uint64_t, int16_t>
+getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
+ if (ShouldRound)
+ if (!++N)
+ // Rounding caused an overflow.
+ return std::make_pair(UINT64_C(1), Shift + 64);
+ return std::make_pair(N, Shift);
+}
+
+std::pair<uint64_t, int16_t> PositiveFloatBase::divide64(uint64_t Dividend,
+ uint64_t Divisor) {
+ // Input should be sanitized.
+ assert(Divisor);
+ assert(Dividend);
+
+ // Minimize size of divisor.
+ int16_t Shift = 0;
+ if (int Zeros = countTrailingZeros(Divisor)) {
+ Shift -= Zeros;
+ Divisor >>= Zeros;
+ }
+
+ // Check for powers of two.
+ if (Divisor == 1)
+ return std::make_pair(Dividend, Shift);
+
+ // Maximize size of dividend.
+ if (int Zeros = countLeadingZeros64(Dividend)) {
+ Shift -= Zeros;
+ Dividend <<= Zeros;
+ }
+
+ // Start with the result of a divide.
+ uint64_t Quotient = Dividend / Divisor;
+ Dividend %= Divisor;
+
+ // Continue building the quotient with long division.
+ //
+ // TODO: continue with largers digits.
+ while (!(Quotient >> 63) && Dividend) {
+ // Shift Dividend, and check for overflow.
+ bool IsOverflow = Dividend >> 63;
+ Dividend <<= 1;
+ --Shift;
+
+ // Divide.
+ bool DoesDivide = IsOverflow || Divisor <= Dividend;
+ Quotient = (Quotient << 1) | uint64_t(DoesDivide);
+ Dividend -= DoesDivide ? Divisor : 0;
+ }
+
+ // Round.
+ if (Dividend >= getHalf(Divisor))
+ if (!++Quotient)
+ // Rounding caused an overflow in Quotient.
+ return std::make_pair(UINT64_C(1), Shift + 64);
+
+ return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
+}
+
+std::pair<uint64_t, int16_t> PositiveFloatBase::multiply64(uint64_t L,
+ uint64_t R) {
+ // Separate into two 32-bit digits (U.L).
+ uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
+
+ // Compute cross products.
+ uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
+
+ // Sum into two 64-bit digits.
+ uint64_t Upper = P1, Lower = P4;
+ auto addWithCarry = [&](uint64_t N) {
+ uint64_t NewLower = Lower + (N << 32);
+ Upper += (N >> 32) + (NewLower < Lower);
+ Lower = NewLower;
+ };
+ addWithCarry(P2);
+ addWithCarry(P3);
+
+ // Check whether the upper digit is empty.
+ if (!Upper)
+ return std::make_pair(Lower, 0);
+
+ // Shift as little as possible to maximize precision.
+ unsigned LeadingZeros = countLeadingZeros64(Upper);
+ int16_t Shift = 64 - LeadingZeros;
+ if (LeadingZeros)
+ Upper = Upper << LeadingZeros | Lower >> Shift;
+ bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
+ return getRoundedFloat(Upper, ShouldRound, Shift);
+}
+
+//===----------------------------------------------------------------------===//
+//
+// BlockMass implementation.
+//
+//===----------------------------------------------------------------------===//
+BlockMass &BlockMass::operator*=(const BranchProbability &P) {
+ uint32_t N = P.getNumerator(), D = P.getDenominator();
+ assert(D && "divide by 0");
+ assert(N <= D && "fraction greater than 1");
+
+ // Fast path for multiplying by 1.0.
+ if (!Mass || N == D)
+ return *this;
+
+ // Get as much precision as we can.
+ int Shift = countLeadingZeros(Mass);
+ uint64_t ShiftedQuotient = (Mass << Shift) / D;
+ uint64_t Product = ShiftedQuotient * N >> Shift;
+
+ // Now check for what's lost.
+ uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
+ uint64_t Lost = Mass - Product - Left;
+
+ // TODO: prove this assertion.
+ assert(Lost <= UINT32_MAX);
+
+ // Take the product plus a portion of the spoils.
+ Mass = Product + Lost * N / D;
+ return *this;
+}
+
+PositiveFloat<uint64_t> BlockMass::toFloat() const {
+ if (isFull())
+ return PositiveFloat<uint64_t>(1, 0);
+ return PositiveFloat<uint64_t>(getMass() + 1, -64);
+}
+
+void BlockMass::dump() const { print(dbgs()); }
+
+static char getHexDigit(int N) {
+ assert(N < 16);
+ if (N < 10)
+ return '0' + N;
+ return 'a' + N - 10;
+}
+raw_ostream &BlockMass::print(raw_ostream &OS) const {
+ for (int Digits = 0; Digits < 16; ++Digits)
+ OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
+ return OS;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// BlockFrequencyInfoImpl implementation.
+//
+//===----------------------------------------------------------------------===//
+namespace {
+
+typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
+typedef BlockFrequencyInfoImplBase::Distribution Distribution;
+typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
+typedef BlockFrequencyInfoImplBase::Float Float;
+typedef BlockFrequencyInfoImplBase::PackagedLoopData PackagedLoopData;
+typedef BlockFrequencyInfoImplBase::Weight Weight;
+typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
+
+/// \brief Dithering mass distributer.
+///
+/// This class splits up a single mass into portions by weight, dithering to
+/// spread out error. No mass is lost. The dithering precision depends on the
+/// precision of the product of \a BlockMass and \a BranchProbability.
+///
+/// The distribution algorithm follows.
+///
+/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
+/// mass to distribute in \a RemMass.
+///
+/// 2. For each portion:
+///
+/// 1. Construct a branch probability, P, as the portion's weight divided
+/// by the current value of \a RemWeight.
+/// 2. Calculate the portion's mass as \a RemMass times P.
+/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
+/// the current portion's weight and mass.
+///
+/// Mass is distributed in two ways: full distribution and forward
+/// distribution. The latter ignores backedges, and uses the parallel fields
+/// \a RemForwardWeight and \a RemForwardMass.
+struct DitheringDistributer {
+ uint32_t RemWeight;
+ uint32_t RemForwardWeight;
+
+ BlockMass RemMass;
+ BlockMass RemForwardMass;
+
+ DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
+
+ BlockMass takeLocalMass(uint32_t Weight) {
+ (void)takeMass(Weight);
+ return takeForwardMass(Weight);
+ }
+ BlockMass takeExitMass(uint32_t Weight) {
+ (void)takeForwardMass(Weight);
+ return takeMass(Weight);
+ }
+ BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); }
+
+private:
+ BlockMass takeForwardMass(uint32_t Weight);
+ BlockMass takeMass(uint32_t Weight);
+};
+}
+
+DitheringDistributer::DitheringDistributer(Distribution &Dist,
+ const BlockMass &Mass) {
+ Dist.normalize();
+ RemWeight = Dist.Total;
+ RemForwardWeight = Dist.ForwardTotal;
+ RemMass = Mass;
+ RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass();
+}
+
+BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) {
+ // Compute the amount of mass to take.
+ assert(Weight && "invalid weight");
+ assert(Weight <= RemForwardWeight);
+ BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight);
+
+ // Decrement totals (dither).
+ RemForwardWeight -= Weight;
+ RemForwardMass -= Mass;
+ return Mass;
+}
+BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
+ assert(Weight && "invalid weight");
+ assert(Weight <= RemWeight);
+ BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
+
+ // Decrement totals (dither).
+ RemWeight -= Weight;
+ RemMass -= Mass;
+ return Mass;
+}
+
+void Distribution::add(const BlockNode &Node, uint64_t Amount,
+ Weight::DistType Type) {
+ assert(Amount && "invalid weight of 0");
+ uint64_t NewTotal = Total + Amount;
+
+ // Check for overflow. It should be impossible to overflow twice.
+ bool IsOverflow = NewTotal < Total;
+ assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
+ DidOverflow |= IsOverflow;
+
+ // Update the total.
+ Total = NewTotal;
+
+ // Save the weight.
+ Weight W;
+ W.TargetNode = Node;
+ W.Amount = Amount;
+ W.Type = Type;
+ Weights.push_back(W);
+
+ if (Type == Weight::Backedge)
+ return;
+
+ // Update forward total. Don't worry about overflow here, since then Total
+ // will exceed 32-bits and they'll both be recomputed in normalize().
+ ForwardTotal += Amount;
+}
+
+static void combineWeight(Weight &W, const Weight &OtherW) {
+ assert(OtherW.TargetNode.isValid());
+ if (!W.Amount) {
+ W = OtherW;
+ return;
+ }
+ assert(W.Type == OtherW.Type);
+ assert(W.TargetNode == OtherW.TargetNode);
+ assert(W.Amount < W.Amount + OtherW.Amount);
+ W.Amount += OtherW.Amount;
+}
+static void combineWeightsBySorting(WeightList &Weights) {
+ // Sort so edges to the same node are adjacent.
+ std::sort(Weights.begin(), Weights.end(),
+ [](const Weight &L,
+ const Weight &R) { return L.TargetNode < R.TargetNode; });
+
+ // Combine adjacent edges.
+ WeightList::iterator O = Weights.begin();
+ for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
+ ++O, (I = L)) {
+ *O = *I;
+
+ // Find the adjacent weights to the same node.
+ for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
+ combineWeight(*O, *L);
+ }
+
+ // Erase extra entries.
+ Weights.erase(O, Weights.end());
+ return;
+}
+static void combineWeightsByHashing(WeightList &Weights) {
+ // Collect weights into a DenseMap.
+ typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
+ HashTable Combined(NextPowerOf2(2 * Weights.size()));
+ for (const Weight &W : Weights)
+ combineWeight(Combined[W.TargetNode.Index], W);
+
+ // Check whether anything changed.
+ if (Weights.size() == Combined.size())
+ return;
+
+ // Fill in the new weights.
+ Weights.clear();
+ Weights.reserve(Combined.size());
+ for (const auto &I : Combined)
+ Weights.push_back(I.second);
+}
+static void combineWeights(WeightList &Weights) {
+ // Use a hash table for many successors to keep this linear.
+ if (Weights.size() > 128) {
+ combineWeightsByHashing(Weights);
+ return;
+ }
+
+ combineWeightsBySorting(Weights);
+}
+static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
+ assert(Shift >= 0);
+ assert(Shift < 64);
+ if (!Shift)
+ return N;
+ return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
+}
+void Distribution::normalize() {
+ // Early exit for termination nodes.
+ if (Weights.empty())
+ return;
+
+ // Only bother if there are multiple successors.
+ if (Weights.size() > 1)
+ combineWeights(Weights);
+
+ // Early exit when combined into a single successor.
+ if (Weights.size() == 1) {
+ Total = 1;
+ ForwardTotal = Weights.front().Type != Weight::Backedge;
+ Weights.front().Amount = 1;
+ return;
+ }
+
+ // Determine how much to shift right so that the total fits into 32-bits.
+ //
+ // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
+ // for each weight can cause a 32-bit overflow.
+ int Shift = 0;
+ if (DidOverflow)
+ Shift = 33;
+ else if (Total > UINT32_MAX)
+ Shift = 33 - countLeadingZeros(Total);
+
+ // Early exit if nothing needs to be scaled.
+ if (!Shift)
+ return;
+
+ // Recompute the total through accumulation (rather than shifting it) so that
+ // it's accurate after shifting. ForwardTotal is dirty here anyway.
+ Total = 0;
+ ForwardTotal = 0;
+
+ // Sum the weights to each node and shift right if necessary.
+ for (Weight &W : Weights) {
+ // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
+ // can round here without concern about overflow.
+ assert(W.TargetNode.isValid());
+ W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
+ assert(W.Amount <= UINT32_MAX);
+
+ // Update the total.
+ Total += W.Amount;
+ if (W.Type == Weight::Backedge)
+ continue;
+
+ // Update the forward total.
+ ForwardTotal += W.Amount;
+ }
+ assert(Total <= UINT32_MAX);
+}
+
+void BlockFrequencyInfoImplBase::clear() {
+ *this = BlockFrequencyInfoImplBase();
+}
+
+/// \brief Clear all memory not needed downstream.
+///
+/// Releases all memory not used downstream. In particular, saves Freqs.
+static void cleanup(BlockFrequencyInfoImplBase &BFI) {
+ std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
+ BFI.clear();
+ BFI.Freqs = std::move(SavedFreqs);
+}
+
+/// \brief Get a possibly packaged node.
+///
+/// Get the node currently representing Node, which could be a containing
+/// loop.
+///
+/// This function should only be called when distributing mass. As long as
+/// there are no irreducilbe edges to Node, then it will have complexity O(1)
+/// in this context.
+///
+/// In general, the complexity is O(L), where L is the number of loop headers
+/// Node has been packaged into. Since this method is called in the context
+/// of distributing mass, L will be the number of loop headers an early exit
+/// edge jumps out of.
+static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI,
+ const BlockNode &Node) {
+ assert(Node.isValid());
+ if (!BFI.Working[Node.Index].IsPackaged)
+ return Node;
+ if (!BFI.Working[Node.Index].ContainingLoop.isValid())
+ return Node;
+ return getPackagedNode(BFI, BFI.Working[Node.Index].ContainingLoop);
+}
+
+/// \brief Get the appropriate mass for a possible pseudo-node loop package.
+///
+/// Get appropriate mass for Node. If Node is a loop-header (whose loop has
+/// been packaged), returns the mass of its pseudo-node. If it's a node inside
+/// a packaged loop, it returns the loop's pseudo-node.
+static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI,
+ const BlockNode &Node) {
+ assert(Node.isValid());
+ assert(!BFI.Working[Node.Index].IsPackaged);
+ if (!BFI.Working[Node.Index].IsAPackage)
+ return BFI.Working[Node.Index].Mass;
+
+ return BFI.getLoopPackage(Node).Mass;
+}
+
+void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
+ const BlockNode &LoopHead,
+ const BlockNode &Pred,
+ const BlockNode &Succ,
+ uint64_t Weight) {
+ if (!Weight)
+ Weight = 1;
+
+#ifndef NDEBUG
+ auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) {
+ dbgs() << " =>"
+ << " [" << Type << "] weight = " << Weight;
+ if (Succ != LoopHead)
+ dbgs() << ", succ = " << getBlockName(Succ);
+ if (Resolved != Succ)
+ dbgs() << ", resolved = " << getBlockName(Resolved);
+ dbgs() << "\n";
+ };
+ (void)debugSuccessor;
+#endif
+
+ if (Succ == LoopHead) {
+ DEBUG(debugSuccessor("backedge", Succ));
+ Dist.addBackedge(LoopHead, Weight);
+ return;
+ }
+ BlockNode Resolved = getPackagedNode(*this, Succ);
+ assert(Resolved != LoopHead);
+
+ if (Working[Resolved.Index].ContainingLoop != LoopHead) {
+ DEBUG(debugSuccessor(" exit ", Resolved));
+ Dist.addExit(Resolved, Weight);
+ return;
+ }
+
+ if (!LoopHead.isValid() && Resolved < Pred) {
+ // Irreducible backedge. Skip this edge in the distribution.
+ DEBUG(debugSuccessor("skipped ", Resolved));
+ return;
+ }
+
+ DEBUG(debugSuccessor(" local ", Resolved));
+ Dist.addLocal(Resolved, Weight);
+}
+
+void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
+ const BlockNode &LoopHead, const BlockNode &LocalLoopHead,
+ Distribution &Dist) {
+ PackagedLoopData &LoopPackage = getLoopPackage(LocalLoopHead);
+ const PackagedLoopData::ExitMap &Exits = LoopPackage.Exits;
+
+ // Copy the exit map into Dist.
+ for (const auto &I : Exits)
+ addToDist(Dist, LoopHead, LocalLoopHead, I.first, I.second.getMass());
+
+ // We don't need this map any more. Clear it to prevent quadratic memory
+ // usage in deeply nested loops with irreducible control flow.
+ LoopPackage.Exits.clear();
+}
+
+/// \brief Get the maximum allowed loop scale.
+///
+/// Gives the maximum number of estimated iterations allowed for a loop.
+/// Downstream users have trouble with very large numbers (even within
+/// 64-bits). Perhaps they can be changed to use PositiveFloat.
+///
+/// TODO: change downstream users so that this can be increased or removed.
+static Float getMaxLoopScale() { return Float(1, 12); }
+
+/// \brief Compute the loop scale for a loop.
+void BlockFrequencyInfoImplBase::computeLoopScale(const BlockNode &LoopHead) {
+ // Compute loop scale.
+ DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(LoopHead) << "\n");
+
+ // LoopScale == 1 / ExitMass
+ // ExitMass == HeadMass - BackedgeMass
+ PackagedLoopData &LoopPackage = getLoopPackage(LoopHead);
+ BlockMass ExitMass = BlockMass::getFull() - LoopPackage.BackedgeMass;
+
+ // Block scale stores the inverse of the scale.
+ LoopPackage.Scale = ExitMass.toFloat().inverse();
+
+ DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
+ << " - " << LoopPackage.BackedgeMass << ")\n"
+ << " - scale = " << LoopPackage.Scale << "\n");
+
+ if (LoopPackage.Scale > getMaxLoopScale()) {
+ LoopPackage.Scale = getMaxLoopScale();
+ DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
+ }
+}
+
+/// \brief Package up a loop.
+void BlockFrequencyInfoImplBase::packageLoop(const BlockNode &LoopHead) {
+ DEBUG(dbgs() << "packaging-loop: " << getBlockName(LoopHead) << "\n");
+ Working[LoopHead.Index].IsAPackage = true;
+ for (const BlockNode &M : getLoopPackage(LoopHead).Members) {
+ DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
+ Working[M.Index].IsPackaged = true;
+ }
+}
+
+void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
+ const BlockNode &LoopHead,
+ Distribution &Dist) {
+ BlockMass Mass = getPackageMass(*this, Source);
+ DEBUG(dbgs() << " => mass: " << Mass
+ << " ( general | forward )\n");
+
+ // Distribute mass to successors as laid out in Dist.
+ DitheringDistributer D(Dist, Mass);
+
+#ifndef NDEBUG
+ auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
+ const char *Desc) {
+ dbgs() << " => assign " << M << " (" << D.RemMass << "|"
+ << D.RemForwardMass << ")";
+ if (Desc)
+ dbgs() << " [" << Desc << "]";
+ if (T.isValid())
+ dbgs() << " to " << getBlockName(T);
+ dbgs() << "\n";
+ };
+ (void)debugAssign;
+#endif
+
+ PackagedLoopData *LoopPackage = 0;
+ if (LoopHead.isValid())
+ LoopPackage = &getLoopPackage(LoopHead);
+ for (const Weight &W : Dist.Weights) {
+ // Check for a local edge (forward and non-exit).
+ if (W.Type == Weight::Local) {
+ BlockMass Local = D.takeLocalMass(W.Amount);
+ getPackageMass(*this, W.TargetNode) += Local;
+ DEBUG(debugAssign(W.TargetNode, Local, nullptr));
+ continue;
+ }
+
+ // Backedges and exits only make sense if we're processing a loop.
+ assert(LoopPackage && "backedge or exit outside of loop");
+
+ // Check for a backedge.
+ if (W.Type == Weight::Backedge) {
+ BlockMass Back = D.takeBackedgeMass(W.Amount);
+ LoopPackage->BackedgeMass += Back;
+ DEBUG(debugAssign(BlockNode(), Back, "back"));
+ continue;
+ }
+
+ // This must be an exit.
+ assert(W.Type == Weight::Exit);
+ BlockMass Exit = D.takeExitMass(W.Amount);
+ LoopPackage->Exits.push_back(std::make_pair(W.TargetNode, Exit));
+ DEBUG(debugAssign(W.TargetNode, Exit, "exit"));
+ }
+}
+
+static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
+ const Float &Min, const Float &Max) {
+ // Scale the Factor to a size that creates integers. Ideally, integers would
+ // be scaled so that Max == UINT64_MAX so that they can be best
+ // differentiated. However, the register allocator currently deals poorly
+ // with large numbers. Instead, push Min up a little from 1 to give some
+ // room to differentiate small, unequal numbers.
+ //
+ // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
+ Float ScalingFactor = Min.inverse();
+ if ((Max / Min).lg() < 60)
+ ScalingFactor <<= 3;
+
+ // Translate the floats to integers.
+ DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
+ << ", factor = " << ScalingFactor << "\n");
+ for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
+ Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
+ BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
+ DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
+ << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
+ << ", int = " << BFI.Freqs[Index].Integer << "\n");
+ }
+}
+
+static void scaleBlockData(BlockFrequencyInfoImplBase &BFI,
+ const BlockNode &Node,
+ const PackagedLoopData &Loop) {
+ Float F = Loop.Mass.toFloat() * Loop.Scale;
+
+ Float &Current = BFI.Freqs[Node.Index].Floating;
+ Float Updated = Current * F;
+
+ DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => "
+ << Updated << "\n");
+
+ Current = Updated;
+}
+
+/// \brief Unwrap a loop package.
+///
+/// Visits all the members of a loop, adjusting their BlockData according to
+/// the loop's pseudo-node.
+static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI,
+ const BlockNode &Head) {
+ assert(Head.isValid());
+
+ PackagedLoopData &LoopPackage = BFI.getLoopPackage(Head);
+ DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head)
+ << ": mass = " << LoopPackage.Mass
+ << ", scale = " << LoopPackage.Scale << "\n");
+ scaleBlockData(BFI, Head, LoopPackage);
+
+ // Propagate the head scale through the loop. Since members are visited in
+ // RPO, the head scale will be updated by the loop scale first, and then the
+ // final head scale will be used for updated the rest of the members.
+ for (const BlockNode &M : LoopPackage.Members) {
+ const FrequencyData &HeadData = BFI.Freqs[Head.Index];
+ FrequencyData &Freqs = BFI.Freqs[M.Index];
+ Float NewFreq = Freqs.Floating * HeadData.Floating;
+ DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating
+ << " => " << NewFreq << "\n");
+ Freqs.Floating = NewFreq;
+ }
+}
+
+void BlockFrequencyInfoImplBase::finalizeMetrics() {
+ // Set initial frequencies from loop-local masses.
+ for (size_t Index = 0; Index < Working.size(); ++Index)
+ Freqs[Index].Floating = Working[Index].Mass.toFloat();
+
+ // Unwrap loop packages in reverse post-order, tracking min and max
+ // frequencies.
+ auto Min = Float::getLargest();
+ auto Max = Float::getZero();
+ for (size_t Index = 0; Index < Working.size(); ++Index) {
+ if (Working[Index].isLoopHeader())
+ unwrapLoopPackage(*this, BlockNode(Index));
+
+ // Update max scale.
+ Min = std::min(Min, Freqs[Index].Floating);
+ Max = std::max(Max, Freqs[Index].Floating);
+ }
+
+ // Convert to integers.
+ convertFloatingToInteger(*this, Min, Max);
+
+ // Clean up data structures.
+ cleanup(*this);
+
+ // Print out the final stats.
+ DEBUG(dump());
+}
+
+BlockFrequency
+BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
+ if (!Node.isValid())
+ return 0;
+ return Freqs[Node.Index].Integer;
+}
+Float
+BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
+ if (!Node.isValid())
+ return Float::getZero();
+ return Freqs[Node.Index].Floating;
+}
+
+std::string
+BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
+ return std::string();
+}
+
+raw_ostream &
+BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
+ const BlockNode &Node) const {
+ return OS << getFloatingBlockFreq(Node);
+}
+
+raw_ostream &
+BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
+ const BlockFrequency &Freq) const {
+ Float Block(Freq.getFrequency(), 0);
+ Float Entry(getEntryFreq(), 0);
+
+ return OS << Block / Entry;
+}
diff --git a/lib/Analysis/CMakeLists.txt b/lib/Analysis/CMakeLists.txt
index c6d4573885..0b0b2f92ea 100644
--- a/lib/Analysis/CMakeLists.txt
+++ b/lib/Analysis/CMakeLists.txt
@@ -7,6 +7,7 @@ add_llvm_library(LLVMAnalysis
Analysis.cpp
BasicAliasAnalysis.cpp
BlockFrequencyInfo.cpp
+ BlockFrequencyInfoImpl.cpp
BranchProbabilityInfo.cpp
CFG.cpp
CFGPrinter.cpp
diff --git a/lib/CodeGen/MachineBlockFrequencyInfo.cpp b/lib/CodeGen/MachineBlockFrequencyInfo.cpp
index 70efa307d5..d3ac0c0437 100644
--- a/lib/CodeGen/MachineBlockFrequencyInfo.cpp
+++ b/lib/CodeGen/MachineBlockFrequencyInfo.cpp
@@ -11,9 +11,12 @@
//
//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "block-freq"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
@@ -112,6 +115,7 @@ struct DOTGraphTraits<MachineBlockFrequencyInfo*> :
INITIALIZE_PASS_BEGIN(MachineBlockFrequencyInfo, "machine-block-freq",
"Machine Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineBlockFrequencyInfo, "machine-block-freq",
"Machine Block Frequency Analysis", true, true)
@@ -127,16 +131,18 @@ MachineBlockFrequencyInfo::~MachineBlockFrequencyInfo() {}
void MachineBlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<MachineLoopInfo>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool MachineBlockFrequencyInfo::runOnMachineFunction(MachineFunction &F) {
MachineBranchProbabilityInfo &MBPI =
- getAnalysis<MachineBranchProbabilityInfo>();
+ getAnalysis<MachineBranchProbabilityInfo>();
+ MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
if (!MBFI)
MBFI.reset(new ImplType);
- MBFI->doFunction(&F, &MBPI);
+ MBFI->doFunction(&F, &MBPI, &MLI);
#ifndef NDEBUG
if (ViewMachineBlockFreqPropagationDAG != GVDT_None) {
view();
@@ -166,7 +172,7 @@ getBlockFreq(const MachineBasicBlock *MBB) const {
}
const MachineFunction *MachineBlockFrequencyInfo::getFunction() const {
- return MBFI ? MBFI->Fn : nullptr;
+ return MBFI ? MBFI->getFunction() : nullptr;
}
raw_ostream &
diff --git a/test/Analysis/BlockFrequencyInfo/bad_input.ll b/test/Analysis/BlockFrequencyInfo/bad_input.ll
new file mode 100644
index 0000000000..bcdc1e6f0b
--- /dev/null
+++ b/test/Analysis/BlockFrequencyInfo/bad_input.ll
@@ -0,0 +1,50 @@
+; RUN: opt < %s -analyze -block-freq | FileCheck %s
+
+declare void @g(i32 %x)
+
+; CHECK-LABEL: Printing analysis {{.*}} for function 'branch_weight_0':
+; CHECK-NEXT: block-frequency-info: branch_weight_0
+define void @branch_weight_0(i32 %a) {
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ br label %for.body
+
+; Check that we get 1,4 instead of 0,3.
+; CHECK-NEXT: for.body: float = 4.0,
+for.body:
+ %i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
+ call void @g(i32 %i)
+ %inc = add i32 %i, 1
+ %cmp = icmp ugt i32 %inc, %a
+ br i1 %cmp, label %for.end, label %for.body, !prof !0
+
+; CHECK-NEXT: for.end: float = 1.0, int = [[ENTRY]]
+for.end:
+ ret void
+}
+
+!0 = metadata !{metadata !"branch_weights", i32 0, i32 3}
+
+; CHECK-LABEL: Printing analysis {{.*}} for function 'infinite_loop'
+; CHECK-NEXT: block-frequency-info: infinite_loop
+define void @infinite_loop(i1 %x) {
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ br i1 %x, label %for.body, label %for.end, !prof !1
+
+; Check that the loop scale maxes out at 4096, giving 2048 here.
+; CHECK-NEXT: for.body: float = 2048.0,
+for.body:
+ %i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
+ call void @g(i32 %i)
+ %inc = add i32 %i, 1
+ br label %for.body
+
+; Check that the exit weight is half of entry, since half is lost in the
+; infinite loop above.
+; CHECK-NEXT: for.end: float = 0.5,
+for.end:
+ ret void
+}
+
+!1 = metadata !{metadata !"branch_weights", i32 1, i32 1}
diff --git a/test/Analysis/BlockFrequencyInfo/basic.ll b/test/Analysis/BlockFrequencyInfo/basic.ll
index ce29fb5ce1..006e6ab4d7 100644
--- a/test/Analysis/BlockFrequencyInfo/basic.ll
+++ b/test/Analysis/BlockFrequencyInfo/basic.ll
@@ -1,13 +1,14 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
define i32 @test1(i32 %i, i32* %a) {
-; CHECK: Printing analysis {{.*}} for function 'test1'
-; CHECK: entry = 1.0
+; CHECK-LABEL: Printing analysis {{.*}} for function 'test1':
+; CHECK-NEXT: block-frequency-info: test1
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %body
; Loop backedges are weighted and thus their bodies have a greater frequency.
-; CHECK: body = 32.0
+; CHECK-NEXT: body: float = 32.0,
body:
%iv = phi i32 [ 0, %entry ], [ %next, %body ]
%base = phi i32 [ 0, %entry ], [ %sum, %body ]
@@ -18,29 +19,29 @@ body:
%exitcond = icmp eq i32 %next, %i
br i1 %exitcond, label %exit, label %body
-; CHECK: exit = 1.0
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
ret i32 %sum
}
define i32 @test2(i32 %i, i32 %a, i32 %b) {
-; CHECK: Printing analysis {{.*}} for function 'test2'
-; CHECK: entry = 1.0
+; CHECK-LABEL: Printing analysis {{.*}} for function 'test2':
+; CHECK-NEXT: block-frequency-info: test2
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
%cond = icmp ult i32 %i, 42
br i1 %cond, label %then, label %else, !prof !0
; The 'then' branch is predicted more likely via branch weight metadata.
-; CHECK: then = 0.94116
+; CHECK-NEXT: then: float = 0.9411{{[0-9]*}},
then:
br label %exit
-; CHECK: else = 0.05877
+; CHECK-NEXT: else: float = 0.05882{{[0-9]*}},
else:
br label %exit
-; FIXME: It may be a bug that we don't sum back to 1.0.
-; CHECK: exit = 0.99993
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
%result = phi i32 [ %a, %then ], [ %b, %else ]
ret i32 %result
@@ -49,37 +50,37 @@ exit:
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}
define i32 @test3(i32 %i, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
-; CHECK: Printing analysis {{.*}} for function 'test3'
-; CHECK: entry = 1.0
+; CHECK-LABEL: Printing analysis {{.*}} for function 'test3':
+; CHECK-NEXT: block-frequency-info: test3
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
switch i32 %i, label %case_a [ i32 1, label %case_b
i32 2, label %case_c
i32 3, label %case_d
i32 4, label %case_e ], !prof !1
-; CHECK: case_a = 0.04998
+; CHECK-NEXT: case_a: float = 0.05,
case_a:
br label %exit
-; CHECK: case_b = 0.04998
+; CHECK-NEXT: case_b: float = 0.05,
case_b:
br label %exit
; The 'case_c' branch is predicted more likely via branch weight metadata.
-; CHECK: case_c = 0.79998
+; CHECK-NEXT: case_c: float = 0.8,
case_c:
br label %exit
-; CHECK: case_d = 0.04998
+; CHECK-NEXT: case_d: float = 0.05,
case_d:
br label %exit
-; CHECK: case_e = 0.04998
+; CHECK-NEXT: case_e: float = 0.05,
case_e:
br label %exit
-; FIXME: It may be a bug that we don't sum back to 1.0.
-; CHECK: exit = 0.99993
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
%result = phi i32 [ %a, %case_a ],
[ %b, %case_b ],
@@ -91,44 +92,50 @@ exit:
!1 = metadata !{metadata !"branch_weights", i32 4, i32 4, i32 64, i32 4, i32 4}
-; CHECK: Printing analysis {{.*}} for function 'nested_loops'
-; CHECK: entry = 1.0
-; This test doesn't seem to be assigning sensible frequencies to nested loops.
define void @nested_loops(i32 %a) {
+; CHECK-LABEL: Printing analysis {{.*}} for function 'nested_loops':
+; CHECK-NEXT: block-frequency-info: nested_loops
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %for.cond1.preheader
+; CHECK-NEXT: for.cond1.preheader: float = 4001.0,
for.cond1.preheader:
%x.024 = phi i32 [ 0, %entry ], [ %inc12, %for.inc11 ]
br label %for.cond4.preheader
+; CHECK-NEXT: for.cond4.preheader: float = 16008001.0,
for.cond4.preheader:
%y.023 = phi i32 [ 0, %for.cond1.preheader ], [ %inc9, %for.inc8 ]
%add = add i32 %y.023, %x.024
br label %for.body6
+; CHECK-NEXT: for.body6: float = 64048012001.0,
for.body6:
%z.022 = phi i32 [ 0, %for.cond4.preheader ], [ %inc, %for.body6 ]
%add7 = add i32 %add, %z.022
- tail call void @g(i32 %add7) #2
+ tail call void @g(i32 %add7)
%inc = add i32 %z.022, 1
%cmp5 = icmp ugt i32 %inc, %a
br i1 %cmp5, label %for.inc8, label %for.body6, !prof !2
+; CHECK-NEXT: for.inc8: float = 16008001.0,
for.inc8:
%inc9 = add i32 %y.023, 1
%cmp2 = icmp ugt i32 %inc9, %a
br i1 %cmp2, label %for.inc11, label %for.cond4.preheader, !prof !2
+; CHECK-NEXT: for.inc11: float = 4001.0,
for.inc11:
%inc12 = add i32 %x.024, 1
%cmp = icmp ugt i32 %inc12, %a
br i1 %cmp, label %for.end13, label %for.cond1.preheader, !prof !2
+; CHECK-NEXT: for.end13: float = 1.0, int = [[ENTRY]]
for.end13:
ret void
}
-declare void @g(i32) #1
+declare void @g(i32)
!2 = metadata !{metadata !"branch_weights", i32 1, i32 4000}
diff --git a/test/Analysis/BlockFrequencyInfo/double_exit.ll b/test/Analysis/BlockFrequencyInfo/double_exit.ll
new file mode 100644
index 0000000000..2fe617c9f5
--- /dev/null
+++ b/test/Analysis/BlockFrequencyInfo/double_exit.ll
@@ -0,0 +1,165 @@
+; RUN: opt < %s -analyze -block-freq | FileCheck %s
+
+; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit':
+; CHECK-NEXT: block-frequency-info: double_exit
+define i32 @double_exit(i32 %N) {
+; Mass = 1
+; Frequency = 1
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ br label %outer
+
+; Mass = 1
+; Backedge mass = 1/3, exit mass = 2/3
+; Loop scale = 3/2
+; Psuedo-edges = exit
+; Psuedo-mass = 1
+; Frequency = 1*3/2*1 = 3/2
+; CHECK-NEXT: outer: float = 1.5,
+outer:
+ %I.0 = phi i32 [ 0, %entry ], [ %inc6, %outer.inc ]
+ %Return.0 = phi i32 [ 0, %entry ], [ %Return.1, %outer.inc ]
+ %cmp = icmp slt i32 %I.0, %N
+ br i1 %cmp, label %inner, label %exit, !prof !2 ; 2:1
+
+; Mass = 1
+; Backedge mass = 3/5, exit mass = 2/5
+; Loop scale = 5/2
+; Pseudo-edges = outer.inc @ 1/5, exit @ 1/5
+; Pseudo-mass = 2/3
+; Frequency = 3/2*1*5/2*2/3 = 5/2
+; CHECK-NEXT: inner: float = 2.5,
+inner:
+ %Return.1 = phi i32 [ %Return.0, %outer ], [ %call4, %inner.inc ]
+ %J.0 = phi i32 [ %I.0, %outer ], [ %inc, %inner.inc ]
+ %cmp2 = icmp slt i32 %J.0, %N
+ br i1 %cmp2, label %inner.body, label %outer.inc, !prof !1 ; 4:1
+
+; Mass = 4/5
+; Frequency = 5/2*4/5 = 2
+; CHECK-NEXT: inner.body: float = 2.0,
+inner.body:
+ %call = call i32 @c2(i32 %I.0, i32 %J.0)
+ %tobool = icmp ne i32 %call, 0
+ br i1 %tobool, label %exit, label %inner.inc, !prof !0 ; 3:1
+
+; Mass = 3/5
+; Frequency = 5/2*3/5 = 3/2
+; CHECK-NEXT: inner.inc: float = 1.5,
+inner.inc:
+ %call4 = call i32 @logic2(i32 %Return.1, i32 %I.0, i32 %J.0)
+ %inc = add nsw i32 %J.0, 1
+ br label %inner
+
+; Mass = 1/3
+; Frequency = 3/2*1/3 = 1/2
+; CHECK-NEXT: outer.inc: float = 0.5,
+outer.inc:
+ %inc6 = add nsw i32 %I.0, 1
+ br label %outer
+
+; Mass = 1
+; Frequency = 1
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+exit:
+ %Return.2 = phi i32 [ %Return.1, %inner.body ], [ %Return.0, %outer ]
+ ret i32 %Return.2
+}
+
+!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
+!1 = metadata !{metadata !"branch_weights", i32 4, i32 1}
+!2 = metadata !{metadata !"branch_weights", i32 2, i32 1}
+
+declare i32 @c2(i32, i32)
+declare i32 @logic2(i32, i32, i32)
+
+; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit_in_loop':
+; CHECK-NEXT: block-frequency-info: double_exit_in_loop
+define i32 @double_exit_in_loop(i32 %N) {
+; Mass = 1
+; Frequency = 1
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ br label %outer
+
+; Mass = 1
+; Backedge mass = 1/2, exit mass = 1/2
+; Loop scale = 2
+; Pseudo-edges = exit
+; Psuedo-mass = 1
+; Frequency = 1*2*1 = 2
+; CHECK-NEXT: outer: float = 2.0,
+outer:
+ %I.0 = phi i32 [ 0, %entry ], [ %inc12, %outer.inc ]
+ %Return.0 = phi i32 [ 0, %entry ], [ %Return.3, %outer.inc ]
+ %cmp = icmp slt i32 %I.0, %N
+ br i1 %cmp, label %middle, label %exit, !prof !3 ; 1:1
+
+; Mass = 1
+; Backedge mass = 1/3, exit mass = 2/3
+; Loop scale = 3/2
+; Psuedo-edges = outer.inc
+; Psuedo-mass = 1/2
+; Frequency = 2*1*3/2*1/2 = 3/2
+; CHECK-NEXT: middle: float = 1.5,
+middle:
+ %J.0 = phi i32 [ %I.0, %outer ], [ %inc9, %middle.inc ]
+ %Return.1 = phi i32 [ %Return.0, %outer ], [ %Return.2, %middle.inc ]
+ %cmp2 = icmp slt i32 %J.0, %N
+ br i1 %cmp2, label %inner, label %outer.inc, !prof !2 ; 2:1
+
+; Mass = 1
+; Backedge mass = 3/5, exit mass = 2/5
+; Loop scale = 5/2
+; Pseudo-edges = middle.inc @ 1/5, outer.inc @ 1/5
+; Pseudo-mass = 2/3
+; Frequency = 3/2*1*5/2*2/3 = 5/2
+; CHECK-NEXT: inner: float = 2.5,
+inner:
+ %Return.2 = phi i32 [ %Return.1, %middle ], [ %call7, %inner.inc ]
+ %K.0 = phi i32 [ %J.0, %middle ], [ %inc, %inner.inc ]
+ %cmp5 = icmp slt i32 %K.0, %N
+ br i1 %cmp5, label %inner.body, label %middle.inc, !prof !1 ; 4:1
+
+; Mass = 4/5
+; Frequency = 5/2*4/5 = 2
+; CHECK-NEXT: inner.body: float = 2.0,
+inner.body:
+ %call = call i32 @c3(i32 %I.0, i32 %J.0, i32 %K.0)
+ %tobool = icmp ne i32 %call, 0
+ br i1 %tobool, label %outer.inc, label %inner.inc, !prof !0 ; 3:1
+
+; Mass = 3/5
+; Frequency = 5/2*3/5 = 3/2
+; CHECK-NEXT: inner.inc: float = 1.5,
+inner.inc:
+ %call7 = call i32 @logic3(i32 %Return.2, i32 %I.0, i32 %J.0, i32 %K.0)
+ %inc = add nsw i32 %K.0, 1
+ br label %inner
+
+; Mass = 1/3
+; Frequency = 3/2*1/3 = 1/2
+; CHECK-NEXT: middle.inc: float = 0.5,
+middle.inc:
+ %inc9 = add nsw i32 %J.0, 1
+ br label %middle
+
+; Mass = 1/2
+; Frequency = 2*1/2 = 1
+; CHECK-NEXT: outer.inc: float = 1.0,
+outer.inc:
+ %Return.3 = phi i32 [ %Return.2, %inner.body ], [ %Return.1, %middle ]
+ %inc12 = add nsw i32 %I.0, 1
+ br label %outer
+
+; Mass = 1
+; Frequency = 1
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+exit:
+ ret i32 %Return.0
+}
+
+!3 = metadata !{metadata !"branch_weights", i32 1, i32 1}
+
+declare i32 @c3(i32, i32, i32)
+declare i32 @logic3(i32, i32, i32, i32)
diff --git a/test/Analysis/BlockFrequencyInfo/irreducible.ll b/test/Analysis/BlockFrequencyInfo/irreducible.ll
new file mode 100644
index 0000000000..46a2958700
--- /dev/null
+++ b/test/Analysis/BlockFrequencyInfo/irreducible.ll
@@ -0,0 +1,197 @@
+; RUN: opt < %s -analyze -block-freq | FileCheck %s
+
+; A loop with multiple exits should be handled correctly.
+;
+; CHECK-LABEL: Printing analysis {{.*}} for function 'multiexit':
+; CHECK-NEXT: block-frequency-info: multiexit
+define void @multiexit(i32 %a) {
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ br label %loop.1
+
+; CHECK-NEXT: loop.1: float = 1.333{{3*}},
+loop.1:
+ %i = phi i32 [ 0, %entry ], [ %inc.2, %loop.2 ]
+ call void @f(i32 %i)
+ %inc.1 = add i32 %i, 1
+ %cmp.1 = icmp ugt i32 %inc.1, %a
+ br i1 %cmp.1, label %exit.1, label %loop.2, !prof !0
+
+; CHECK-NEXT: loop.2: float = 0.666{{6*7}},
+loop.2:
+ call void @g(i32 %inc.1)
+ %inc.2 = add i32 %inc.1, 1
+ %cmp.2 = icmp ugt i32 %inc.2, %a
+ br i1 %cmp.2, label %exit.2, label %loop.1, !prof !1
+
+; CHECK-NEXT: exit.1: float = 0.666{{6*7}},
+exit.1:
+ call void @h(i32 %inc.1)
+ br label %return
+
+; CHECK-NEXT: exit.2: float = 0.333{{3*}},
+exit.2:
+ call void @i(i32 %inc.2)
+ br label %return
+
+; CHECK-NEXT: return: float = 1.0, int = [[ENTRY]]
+return:
+ ret void
+}
+
+declare void @f(i32 %x)
+declare void @g(i32 %x)
+declare void @h(i32 %x)
+declare void @i(i32 %x)
+
+!0 = metadata !{metadata !"branch_weights", i32 3, i32 3}
+!1 = metadata !{metadata !"branch_weights", i32 5, i32 5}
+
+; The current BlockFrequencyInfo algorithm doesn't handle multiple entrances
+; into a loop very well. The frequencies assigned to blocks in the loop are
+; predictable (and not absurd), but also not correct and therefore not worth
+; testing.
+;
+; There are two testcases below.
+;
+; For each testcase, I use a CHECK-NEXT/NOT combo like an XFAIL with the
+; granularity of a single check. If/when this behaviour is fixed, we'll know
+; about it, and the test should be updated.
+;
+; Testcase #1
+; ===========
+;
+; In this case c1 and c2 should have frequencies of 15/7 and 13/7,
+; respectively. To calculate this, consider assigning 1.0 to entry, and
+; distributing frequency iteratively (to infinity). At the first iteration,
+; entry gives 3/4 to c1 and 1/4 to c2. At every step after, c1 and c2 give 3/4
+; of what they have to each other. Somehow, all of it comes out to exit.
+;
+; c1 = 3/4 + 1/4*3/4 + 3/4*3^2/4^2 + 1/4*3^3/4^3 + 3/4*3^3/4^3 + ...
+; c2 = 1/4 + 3/4*3/4 + 1/4*3^2/4^2 + 3/4*3^3/4^3 + 1/4*3^3/4^3 + ...
+;
+; Simplify by splitting up the odd and even terms of the series and taking out
+; factors so that the infite series matches:
+;
+; c1 = 3/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
+; + 3/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
+; c2 = 1/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
+; + 9/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
+;
+; c1 = 15/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
+; c2 = 13/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
+;
+; Since this geometric series sums to 16/7:
+;
+; c1 = 15/7
+; c2 = 13/7
+;
+; If we treat c1 and c2 as members of the same loop, the exit frequency of the
+; loop as a whole is 1/4, so the loop scale should be 4. Summing c1 and c2
+; gives 28/7, or 4.0, which is nice confirmation of the math above.
+;
+; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
+; returns 3/4 and 13/16, respectively. LoopInfo ignores edges between loops
+; (and doesn't see any loops here at all), and -block-freq ignores the
+; irreducible edge from c2 to c1.
+;
+; CHECK-LABEL: Printing analysis {{.*}} for function 'multientry':
+; CHECK-NEXT: block-frequency-info: multientry
+define void @multientry(i32 %a) {
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ %choose = call i32 @choose(i32 %a)
+ %compare = icmp ugt i32 %choose, %a
+ br i1 %compare, label %c1, label %c2, !prof !2
+
+; This is like a single-line XFAIL (see above).
+; CHECK-NEXT: c1:
+; CHECK-NOT: float = 2.142857{{[0-9]*}},
+c1:
+ %i1 = phi i32 [ %a, %entry ], [ %i2.inc, %c2 ]
+ %i1.inc = add i32 %i1, 1
+ %choose1 = call i32 @choose(i32 %i1)
+ %compare1 = icmp ugt i32 %choose1, %a
+ br i1 %compare1, label %c2, label %exit, !prof !2
+
+; This is like a single-line XFAIL (see above).
+; CHECK-NEXT: c2:
+; CHECK-NOT: float = 1.857142{{[0-9]*}},
+c2:
+ %i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ]
+ %i2.inc = add i32 %i2, 1
+ %choose2 = call i32 @choose(i32 %i2)
+ %compare2 = icmp ugt i32 %choose2, %a
+ br i1 %compare2, label %c1, label %exit, !prof !2
+
+; We still shouldn't lose any frequency.
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+exit:
+ ret void
+}
+
+; Testcase #2
+; ===========
+;
+; In this case c1 and c2 should be treated as equals in a single loop. The
+; exit frequency is 1/3, so the scaling factor for the loop should be 3.0. The
+; loop is entered 2/3 of the time, and c1 and c2 split the total loop frequency
+; evenly (1/2), so they should each have frequencies of 1.0 (3.0*2/3*1/2).
+; Another way of computing this result is by assigning 1.0 to entry and showing
+; that c1 and c2 should accumulate frequencies of:
+;
+; 1/3 + 2/9 + 4/27 + 8/81 + ...
+; 2^0/3^1 + 2^1/3^2 + 2^2/3^3 + 2^3/3^4 + ...
+;
+; At the first step, c1 and c2 each get 1/3 of the entry. At each subsequent
+; step, c1 and c2 each get 1/3 of what's left in c1 and c2 combined. This
+; infinite series sums to 1.
+;
+; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
+; returns 1/2 and 3/4, respectively. LoopInfo ignores edges between loops (and
+; treats c1 and c2 as self-loops only), and -block-freq ignores the irreducible
+; edge from c2 to c1.
+;
+; Below I use a CHECK-NEXT/NOT combo like an XFAIL with the granularity of a
+; single check. If/when this behaviour is fixed, we'll know about it, and the
+; test should be updated.
+;
+; CHECK-LABEL: Printing analysis {{.*}} for function 'crossloops':
+; CHECK-NEXT: block-frequency-info: crossloops
+define void @crossloops(i32 %a) {
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ %choose = call i32 @choose(i32 %a)
+ switch i32 %choose, label %exit [ i32 1, label %c1
+ i32 2, label %c2 ], !prof !3
+
+; This is like a single-line XFAIL (see above).
+; CHECK-NEXT: c1:
+; CHECK-NOT: float = 1.0,
+c1:
+ %i1 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
+ %i1.inc = add i32 %i1, 1
+ %choose1 = call i32 @choose(i32 %i1)
+ switch i32 %choose1, label %exit [ i32 1, label %c1
+ i32 2, label %c2 ], !prof !3
+
+; This is like a single-line XFAIL (see above).
+; CHECK-NEXT: c2:
+; CHECK-NOT: float = 1.0,
+c2:
+ %i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
+ %i2.inc = add i32 %i2, 1
+ %choose2 = call i32 @choose(i32 %i2)
+ switch i32 %choose2, label %exit [ i32 1, label %c1
+ i32 2, label %c2 ], !prof !3
+
+; We still shouldn't lose any frequency.
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+exit:
+ ret void
+}
+
+declare i32 @choose(i32)
+
+!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
+!3 = metadata !{metadata !"branch_weights", i32 2, i32 2, i32 2}
diff --git a/test/Analysis/BlockFrequencyInfo/loop_with_branch.ll b/test/Analysis/BlockFrequencyInfo/loop_with_branch.ll
new file mode 100644
index 0000000000..9d27b6bf0f
--- /dev/null
+++ b/test/Analysis/BlockFrequencyInfo/loop_with_branch.ll
@@ -0,0 +1,44 @@
+; RUN: opt < %s -analyze -block-freq | FileCheck %s
+
+; CHECK-LABEL: Printing analysis {{.*}} for function 'loop_with_branch':
+; CHECK-NEXT: block-frequency-info: loop_with_branch
+define void @loop_with_branch(i32 %a) {
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ %skip_loop = call i1 @foo0(i32 %a)
+ br i1 %skip_loop, label %skip, label %header, !prof !0
+
+; CHECK-NEXT: skip: float = 0.25,
+skip:
+ br label %exit
+
+; CHECK-NEXT: header: float = 4.5,
+header:
+ %i = phi i32 [ 0, %entry ], [ %i.next, %back ]
+ %i.next = add i32 %i, 1
+ %choose = call i2 @foo1(i32 %i)
+ switch i2 %choose, label %exit [ i2 0, label %left
+ i2 1, label %right ], !prof !1
+
+; CHECK-NEXT: left: float = 1.5,
+left:
+ br label %back
+
+; CHECK-NEXT: right: float = 2.25,
+right:
+ br label %back
+
+; CHECK-NEXT: back: float = 3.75,
+back:
+ br label %header
+
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+exit:
+ ret void
+}
+
+declare i1 @foo0(i32)
+declare i2 @foo1(i32)
+
+!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
+!1 = metadata !{metadata !"branch_weights", i32 1, i32 2, i32 3}
diff --git a/test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll b/test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll
new file mode 100644
index 0000000000..d93ffceb5f
--- /dev/null
+++ b/test/Analysis/BlockFrequencyInfo/nested_loop_with_branches.ll
@@ -0,0 +1,59 @@
+; RUN: opt < %s -analyze -block-freq | FileCheck %s
+
+; CHECK-LABEL: Printing analysis {{.*}} for function 'nested_loop_with_branches'
+; CHECK-NEXT: block-frequency-info: nested_loop_with_branches
+define void @nested_loop_with_branches(i32 %a) {
+; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
+entry:
+ %v0 = call i1 @foo0(i32 %a)
+ br i1 %v0, label %exit, label %outer, !prof !0
+
+; CHECK-NEXT: outer: float = 12.0,
+outer:
+ %i = phi i32 [ 0, %entry ], [ %i.next, %inner.end ], [ %i.next, %no_inner ]
+ %i.next = add i32 %i, 1
+ %do_inner = call i1 @foo1(i32 %i)
+ br i1 %do_inner, label %no_inner, label %inner, !prof !0
+
+; CHECK-NEXT: inner: float = 36.0,
+inner:
+ %j = phi i32 [ 0, %outer ], [ %j.next, %inner.end ]
+ %side = call i1 @foo3(i32 %j)
+ br i1 %side, label %left, label %right, !prof !0
+
+; CHECK-NEXT: left: float = 9.0,
+left:
+ %v4 = call i1 @foo4(i32 %j)
+ br label %inner.end
+
+; CHECK-NEXT: right: float = 27.0,
+right:
+ %v5 = call i1 @foo5(i32 %j)
+ br label %inner.end
+
+; CHECK-NEXT: inner.end: float = 36.0,
+inner.end:
+ %stay_inner = phi i1 [ %v4, %left ], [ %v5, %right ]
+ %j.next = add i32 %j, 1
+ br i1 %stay_inner, label %inner, label %outer, !prof !1
+
+; CHECK-NEXT: no_inner: float = 3.0,
+no_inner:
+ %continue = call i1 @foo6(i32 %i)
+ br i1 %continue, label %outer, label %exit, !prof !1
+
+; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
+exit:
+ ret void
+}
+
+declare i1 @foo0(i32)
+declare i1 @foo1(i32)
+declare i1 @foo2(i32)
+declare i1 @foo3(i32)
+declare i1 @foo4(i32)
+declare i1 @foo5(i32)
+declare i1 @foo6(i32)
+
+!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
+!1 = metadata !{metadata !"branch_weights", i32 3, i32 1}
diff --git a/test/CodeGen/XCore/llvm-intrinsics.ll b/test/CodeGen/XCore/llvm-intrinsics.ll
index e0acd66e4a..b436282615 100644
--- a/test/CodeGen/XCore/llvm-intrinsics.ll
+++ b/test/CodeGen/XCore/llvm-intrinsics.ll
@@ -287,9 +287,8 @@ define void @Unwind1() {
; CHECKFP: .LBB{{[0-9_]+}}
; CHECKFP-NEXT: ldc r2, 40
; CHECKFP-NEXT: add r2, r10, r2
-; CHECKFP-NEXT: add r0, r2, r0
+; CHECKFP-NEXT: add r2, r2, r0
; CHECKFP-NEXT: mov r3, r1
-; CHECKFP-NEXT: mov r2, r0
; CHECKFP-NEXT: ldw r9, r10[4]
; CHECKFP-NEXT: ldw r8, r10[5]
; CHECKFP-NEXT: ldw r7, r10[6]
@@ -337,9 +336,8 @@ define void @Unwind1() {
; CHECK-NEXT: ldc r2, 36
; CHECK-NEXT: ldaw r3, sp[0]
; CHECK-NEXT: add r2, r3, r2
-; CHECK-NEXT: add r0, r2, r0
+; CHECK-NEXT: add r2, r2, r0
; CHECK-NEXT: mov r3, r1
-; CHECK-NEXT: mov r2, r0
; CHECK-NEXT: ldw r10, sp[2]
; CHECK-NEXT: ldw r9, sp[3]
; CHECK-NEXT: ldw r8, sp[4]