summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/ScalarEvolutionExpressions.h
blob: af795377c2b95e39d1557042d829d36ae8b53817 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to represent and build scalar expressions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H

#include "llvm/Analysis/ScalarEvolution.h"

namespace llvm {
  class ConstantInt;
  class ConstantRange;
  class APInt;

  enum SCEVTypes {
    // These should be ordered in terms of increasing complexity to make the
    // folders simpler.
    scConstant, scTruncate, scZeroExtend, scAddExpr, scMulExpr, scSDivExpr,
    scAddRecExpr, scUnknown, scCouldNotCompute
  };

  //===--------------------------------------------------------------------===//
  /// SCEVConstant - This class represents a constant integer value.
  ///
  class SCEVConstant : public SCEV {
    ConstantInt *V;
    SCEVConstant(ConstantInt *v) : SCEV(scConstant), V(v) {}

    virtual ~SCEVConstant();
  public:
    /// get method - This just gets and returns a new SCEVConstant object.
    ///
    static SCEVHandle get(ConstantInt *V);

    ConstantInt *getValue() const { return V; }

    /// getValueRange - Return the tightest constant bounds that this value is
    /// known to have.  This method is only valid on integer SCEV objects.
    virtual ConstantRange getValueRange() const;

    virtual bool isLoopInvariant(const Loop *L) const {
      return true;
    }

    virtual bool hasComputableLoopEvolution(const Loop *L) const {
      return false;  // Not loop variant
    }

    virtual const Type *getType() const;

    SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
                                                 const SCEVHandle &Conc) const {
      return this;
    }

    virtual void print(std::ostream &OS) const;
    void print(std::ostream *OS) const { if (OS) print(*OS); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVConstant *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scConstant;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVTruncateExpr - This class represents a truncation of an integer value
  /// to a smaller integer value.
  ///
  class SCEVTruncateExpr : public SCEV {
    SCEVHandle Op;
    const Type *Ty;
    SCEVTruncateExpr(const SCEVHandle &op, const Type *ty);
    virtual ~SCEVTruncateExpr();
  public:
    /// get method - This just gets and returns a new SCEVTruncate object
    ///
    static SCEVHandle get(const SCEVHandle &Op, const Type *Ty);

    const SCEVHandle &getOperand() const { return Op; }
    virtual const Type *getType() const { return Ty; }

    virtual bool isLoopInvariant(const Loop *L) const {
      return Op->isLoopInvariant(L);
    }

    virtual bool hasComputableLoopEvolution(const Loop *L) const {
      return Op->hasComputableLoopEvolution(L);
    }

    SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
                                                 const SCEVHandle &Conc) const {
      SCEVHandle H = Op->replaceSymbolicValuesWithConcrete(Sym, Conc);
      if (H == Op)
        return this;
      return get(H, Ty);
    }

    /// getValueRange - Return the tightest constant bounds that this value is
    /// known to have.  This method is only valid on integer SCEV objects.
    virtual ConstantRange getValueRange() const;

    virtual void print(std::ostream &OS) const;
    void print(std::ostream *OS) const { if (OS) print(*OS); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVTruncateExpr *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scTruncate;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVZeroExtendExpr - This class represents a zero extension of a small
  /// integer value to a larger integer value.
  ///
  class SCEVZeroExtendExpr : public SCEV {
    SCEVHandle Op;
    const Type *Ty;
    SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty);
    virtual ~SCEVZeroExtendExpr();
  public:
    /// get method - This just gets and returns a new SCEVZeroExtend object
    ///
    static SCEVHandle get(const SCEVHandle &Op, const Type *Ty);

    const SCEVHandle &getOperand() const { return Op; }
    virtual const Type *getType() const { return Ty; }

    virtual bool isLoopInvariant(const Loop *L) const {
      return Op->isLoopInvariant(L);
    }

    virtual bool hasComputableLoopEvolution(const Loop *L) const {
      return Op->hasComputableLoopEvolution(L);
    }

    /// getValueRange - Return the tightest constant bounds that this value is
    /// known to have.  This method is only valid on integer SCEV objects.
    virtual ConstantRange getValueRange() const;

    SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
                                                 const SCEVHandle &Conc) const {
      SCEVHandle H = Op->replaceSymbolicValuesWithConcrete(Sym, Conc);
      if (H == Op)
        return this;
      return get(H, Ty);
    }

    virtual void print(std::ostream &OS) const;
    void print(std::ostream *OS) const { if (OS) print(*OS); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVZeroExtendExpr *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scZeroExtend;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
  /// operators.
  ///
  class SCEVCommutativeExpr : public SCEV {
    std::vector<SCEVHandle> Operands;

  protected:
    SCEVCommutativeExpr(enum SCEVTypes T, const std::vector<SCEVHandle> &ops)
      : SCEV(T) {
      Operands.reserve(ops.size());
      Operands.insert(Operands.end(), ops.begin(), ops.end());
    }
    ~SCEVCommutativeExpr();

  public:
    unsigned getNumOperands() const { return Operands.size(); }
    const SCEVHandle &getOperand(unsigned i) const {
      assert(i < Operands.size() && "Operand index out of range!");
      return Operands[i];
    }

    const std::vector<SCEVHandle> &getOperands() const { return Operands; }
    typedef std::vector<SCEVHandle>::const_iterator op_iterator;
    op_iterator op_begin() const { return Operands.begin(); }
    op_iterator op_end() const { return Operands.end(); }


    virtual bool isLoopInvariant(const Loop *L) const {
      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
        if (!getOperand(i)->isLoopInvariant(L)) return false;
      return true;
    }

    // hasComputableLoopEvolution - Commutative expressions have computable loop
    // evolutions iff they have at least one operand that varies with the loop,
    // but that all varying operands are computable.
    virtual bool hasComputableLoopEvolution(const Loop *L) const {
      bool HasVarying = false;
      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
        if (!getOperand(i)->isLoopInvariant(L))
          if (getOperand(i)->hasComputableLoopEvolution(L))
            HasVarying = true;
          else
            return false;
      return HasVarying;
    }

    SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
                                                 const SCEVHandle &Conc) const;

    virtual const char *getOperationStr() const = 0;

    virtual const Type *getType() const { return getOperand(0)->getType(); }
    virtual void print(std::ostream &OS) const;
    void print(std::ostream *OS) const { if (OS) print(*OS); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVCommutativeExpr *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr ||
             S->getSCEVType() == scMulExpr;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
  ///
  class SCEVAddExpr : public SCEVCommutativeExpr {
    SCEVAddExpr(const std::vector<SCEVHandle> &ops)
      : SCEVCommutativeExpr(scAddExpr, ops) {
    }

  public:
    static SCEVHandle get(std::vector<SCEVHandle> &Ops);

    static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
      std::vector<SCEVHandle> Ops;
      Ops.push_back(LHS);
      Ops.push_back(RHS);
      return get(Ops);
    }

    static SCEVHandle get(const SCEVHandle &Op0, const SCEVHandle &Op1,
                          const SCEVHandle &Op2) {
      std::vector<SCEVHandle> Ops;
      Ops.push_back(Op0);
      Ops.push_back(Op1);
      Ops.push_back(Op2);
      return get(Ops);
    }

    virtual const char *getOperationStr() const { return " + "; }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVAddExpr *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
  ///
  class SCEVMulExpr : public SCEVCommutativeExpr {
    SCEVMulExpr(const std::vector<SCEVHandle> &ops)
      : SCEVCommutativeExpr(scMulExpr, ops) {
    }

  public:
    static SCEVHandle get(std::vector<SCEVHandle> &Ops);

    static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
      std::vector<SCEVHandle> Ops;
      Ops.push_back(LHS);
      Ops.push_back(RHS);
      return get(Ops);
    }

    virtual const char *getOperationStr() const { return " * "; }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVMulExpr *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scMulExpr;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVSDivExpr - This class represents a binary signed division operation.
  ///
  class SCEVSDivExpr : public SCEV {
    SCEVHandle LHS, RHS;
    SCEVSDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs)
      : SCEV(scSDivExpr), LHS(lhs), RHS(rhs) {}

    virtual ~SCEVSDivExpr();
  public:
    /// get method - This just gets and returns a new SCEVSDiv object.
    ///
    static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS);

    const SCEVHandle &getLHS() const { return LHS; }
    const SCEVHandle &getRHS() const { return RHS; }

    virtual bool isLoopInvariant(const Loop *L) const {
      return LHS->isLoopInvariant(L) && RHS->isLoopInvariant(L);
    }

    virtual bool hasComputableLoopEvolution(const Loop *L) const {
      return LHS->hasComputableLoopEvolution(L) &&
             RHS->hasComputableLoopEvolution(L);
    }

    SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
                                                 const SCEVHandle &Conc) const {
      SCEVHandle L = LHS->replaceSymbolicValuesWithConcrete(Sym, Conc);
      SCEVHandle R = RHS->replaceSymbolicValuesWithConcrete(Sym, Conc);
      if (L == LHS && R == RHS)
        return this;
      else
        return get(L, R);
    }


    virtual const Type *getType() const;

    void print(std::ostream &OS) const;
    void print(std::ostream *OS) const { if (OS) print(*OS); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVSDivExpr *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scSDivExpr;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
  /// count of the specified loop.
  ///
  /// All operands of an AddRec are required to be loop invariant.
  ///
  class SCEVAddRecExpr : public SCEV {
    std::vector<SCEVHandle> Operands;
    const Loop *L;

    SCEVAddRecExpr(const std::vector<SCEVHandle> &ops, const Loop *l)
      : SCEV(scAddRecExpr), Operands(ops), L(l) {
      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
        assert(Operands[i]->isLoopInvariant(l) &&
               "Operands of AddRec must be loop-invariant!");
    }
    ~SCEVAddRecExpr();
  public:
    static SCEVHandle get(const SCEVHandle &Start, const SCEVHandle &Step,
                          const Loop *);
    static SCEVHandle get(std::vector<SCEVHandle> &Operands,
                          const Loop *);
    static SCEVHandle get(const std::vector<SCEVHandle> &Operands,
                          const Loop *L) {
      std::vector<SCEVHandle> NewOp(Operands);
      return get(NewOp, L);
    }

    typedef std::vector<SCEVHandle>::const_iterator op_iterator;
    op_iterator op_begin() const { return Operands.begin(); }
    op_iterator op_end() const { return Operands.end(); }

    unsigned getNumOperands() const { return Operands.size(); }
    const SCEVHandle &getOperand(unsigned i) const { return Operands[i]; }
    const SCEVHandle &getStart() const { return Operands[0]; }
    const Loop *getLoop() const { return L; }


    /// getStepRecurrence - This method constructs and returns the recurrence
    /// indicating how much this expression steps by.  If this is a polynomial
    /// of degree N, it returns a chrec of degree N-1.
    SCEVHandle getStepRecurrence() const {
      if (getNumOperands() == 2) return getOperand(1);
      return SCEVAddRecExpr::get(std::vector<SCEVHandle>(op_begin()+1,op_end()),
                                 getLoop());
    }

    virtual bool hasComputableLoopEvolution(const Loop *QL) const {
      if (L == QL) return true;
      return false;
    }

    virtual bool isLoopInvariant(const Loop *QueryLoop) const;

    virtual const Type *getType() const { return Operands[0]->getType(); }

    /// isAffine - Return true if this is an affine AddRec (i.e., it represents
    /// an expressions A+B*x where A and B are loop invariant values.
    bool isAffine() const {
      // We know that the start value is invariant.  This expression is thus
      // affine iff the step is also invariant.
      return getNumOperands() == 2;
    }

    /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
    /// represents an expressions A+B*x+C*x^2 where A, B and C are loop
    /// invariant values.  This corresponds to an addrec of the form {L,+,M,+,N}
    bool isQuadratic() const {
      return getNumOperands() == 3;
    }

    /// evaluateAtIteration - Return the value of this chain of recurrences at
    /// the specified iteration number.
    SCEVHandle evaluateAtIteration(SCEVHandle It) const;

    /// getNumIterationsInRange - Return the number of iterations of this loop
    /// that produce values in the specified constant range.  Another way of
    /// looking at this is that it returns the first iteration number where the
    /// value is not in the condition, thus computing the exit count.  If the
    /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
    /// returned. The isSigned parameter indicates whether the ConstantRange
    /// should be treated as signed or unsigned.
    SCEVHandle getNumIterationsInRange(ConstantRange Range, 
                                       bool isSigned) const;

    SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
                                                 const SCEVHandle &Conc) const;

    virtual void print(std::ostream &OS) const;
    void print(std::ostream *OS) const { if (OS) print(*OS); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVAddRecExpr *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddRecExpr;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
  /// value, and only represent it as it's LLVM Value.  This is the "bottom"
  /// value for the analysis.
  ///
  class SCEVUnknown : public SCEV {
    Value *V;
    SCEVUnknown(Value *v) : SCEV(scUnknown), V(v) {}

  protected:
    ~SCEVUnknown();
  public:
    /// get method - For SCEVUnknown, this just gets and returns a new
    /// SCEVUnknown.
    static SCEVHandle get(Value *V);

    /// getIntegerSCEV - Given an integer or FP type, create a constant for the
    /// specified signed integer value and return a SCEV for the constant.
    static SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
    static SCEVHandle getIntegerSCEV(const APInt& Val);

    Value *getValue() const { return V; }

    virtual bool isLoopInvariant(const Loop *L) const;
    virtual bool hasComputableLoopEvolution(const Loop *QL) const {
      return false; // not computable
    }

    SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
                                                 const SCEVHandle &Conc) const {
      if (&*Sym == this) return Conc;
      return this;
    }

    virtual const Type *getType() const;

    virtual void print(std::ostream &OS) const;
    void print(std::ostream *OS) const { if (OS) print(*OS); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVUnknown *S) { return true; }
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scUnknown;
    }
  };

  /// SCEVVisitor - This class defines a simple visitor class that may be used
  /// for various SCEV analysis purposes.
  template<typename SC, typename RetVal=void>
  struct SCEVVisitor {
    RetVal visit(SCEV *S) {
      switch (S->getSCEVType()) {
      case scConstant:
        return ((SC*)this)->visitConstant((SCEVConstant*)S);
      case scTruncate:
        return ((SC*)this)->visitTruncateExpr((SCEVTruncateExpr*)S);
      case scZeroExtend:
        return ((SC*)this)->visitZeroExtendExpr((SCEVZeroExtendExpr*)S);
      case scAddExpr:
        return ((SC*)this)->visitAddExpr((SCEVAddExpr*)S);
      case scMulExpr:
        return ((SC*)this)->visitMulExpr((SCEVMulExpr*)S);
      case scSDivExpr:
        return ((SC*)this)->visitSDivExpr((SCEVSDivExpr*)S);
      case scAddRecExpr:
        return ((SC*)this)->visitAddRecExpr((SCEVAddRecExpr*)S);
      case scUnknown:
        return ((SC*)this)->visitUnknown((SCEVUnknown*)S);
      case scCouldNotCompute:
        return ((SC*)this)->visitCouldNotCompute((SCEVCouldNotCompute*)S);
      default:
        assert(0 && "Unknown SCEV type!");
        abort();
      }
    }

    RetVal visitCouldNotCompute(SCEVCouldNotCompute *S) {
      assert(0 && "Invalid use of SCEVCouldNotCompute!");
      abort();
      return RetVal();
    }
  };
}

#endif