summaryrefslogtreecommitdiff
path: root/lib/Target/ARM/ARMCodeEmitter.cpp
blob: 16b00417b35d3f5db84a3b7e66e33fafe3df4435 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "arm-emitter"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMInstrInfo.h"
#include "ARMRelocations.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;

STATISTIC(NumEmitted, "Number of machine instructions emitted");

namespace {
  class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
    const ARMInstrInfo  *II;
    const TargetData    *TD;
    TargetMachine       &TM;
    MachineCodeEmitter  &MCE;
  public:
    static char ID;
    explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
      : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm),
      MCE(mce) {}
    ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
            const ARMInstrInfo &ii, const TargetData &td)
      : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm),
      MCE(mce) {}

    bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const {
      return "ARM Machine Code Emitter";
    }

    void emitInstruction(const MachineInstr &MI);

  private:
    unsigned getAddrModeNoneInstrBinary(const MachineInstr &MI,
                                        const TargetInstrDesc &Desc,
                                        unsigned Binary) ;
    unsigned getAddrMode1InstrBinary(const MachineInstr &MI,
                                     const TargetInstrDesc &Desc,
                                     unsigned Binary);
    unsigned getAddrMode2InstrBinary(const MachineInstr &MI,
                                     const TargetInstrDesc &Desc,
                                     unsigned Binary);
    unsigned getAddrMode3InstrBinary(const MachineInstr &MI,
                                     const TargetInstrDesc &Desc,
                                     unsigned Binary);
    unsigned getAddrMode4InstrBinary(const MachineInstr &MI,
                                     const TargetInstrDesc &Desc,
                                     unsigned Binary);

    /// getInstrBinary - Return binary encoding for the specified
    /// machine instruction.
    unsigned getInstrBinary(const MachineInstr &MI);

    /// getBinaryCodeForInstr - This function, generated by the
    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
    /// machine instructions.
    ///
    unsigned getBinaryCodeForInstr(const MachineInstr &MI);

    /// getMachineOpValue - Return binary encoding of operand. If the machine
    /// operand requires relocation, record the relocation and return zero.
    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
      return getMachineOpValue(MI, MI.getOperand(OpIdx));
    }
    unsigned getMachineOpValue(const MachineInstr &MI,
                               const MachineOperand &MO);

    /// getBaseOpcodeFor - Return the opcode value.
    ///
    unsigned getBaseOpcodeFor(const TargetInstrDesc &TID) const {
      return (TID.TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
    }

    /// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
    ///
    unsigned getShiftOp(const MachineOperand &MO) const ;

    /// Routines that handle operands which add machine relocations which are
    /// fixed up by the JIT fixup stage.
    void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
                              int Disp = 0, unsigned PCAdj = 0 );
    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
                              unsigned PCAdj = 0);
    void emitGlobalConstant(const Constant *CV);
    void emitMachineBasicBlock(MachineBasicBlock *BB);
  };
  char ARMCodeEmitter::ID = 0;
}

/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
/// to the specified MCE object.
FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
                                             MachineCodeEmitter &MCE) {
  return new ARMCodeEmitter(TM, MCE);
}

bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
          MF.getTarget().getRelocationModel() != Reloc::Static) &&
         "JIT relocation model must be set to static or default!");
  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();

  do {
    MCE.startFunction(MF);
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
         MBB != E; ++MBB) {
      MCE.StartMachineBasicBlock(MBB);
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
           I != E; ++I)
        emitInstruction(*I);
    }
  } while (MCE.finishFunction(MF));

  return false;
}

/// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
///
unsigned ARMCodeEmitter::getShiftOp(const MachineOperand &MO) const {
  switch (ARM_AM::getAM2ShiftOpc(MO.getImm())) {
  default: assert(0 && "Unknown shift opc!");
  case ARM_AM::asr: return 2;
  case ARM_AM::lsl: return 0;
  case ARM_AM::lsr: return 1;
  case ARM_AM::ror:
  case ARM_AM::rrx: return 3;
  }
  return 0;
}

/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
                                           const MachineOperand &MO) {
  if (MO.isRegister())
    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
  else if (MO.isImmediate())
    return static_cast<unsigned>(MO.getImm());
  else if (MO.isGlobalAddress())
    emitGlobalAddressForCall(MO.getGlobal(), false);
  else if (MO.isExternalSymbol())
    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
  else if (MO.isConstantPoolIndex())
    emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_relative);
  else if (MO.isJumpTableIndex())
    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
  else if (MO.isMachineBasicBlock())
    emitMachineBasicBlock(MO.getMBB());

  abort();
  return 0;
}

/// emitGlobalAddressForCall - Emit the specified address to the code stream
/// assuming this is part of a function call, which is PC relative.
///
void ARMCodeEmitter::emitGlobalAddressForCall(GlobalValue *GV,
                                              bool DoesntNeedStub) {
  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
                                             ARM::reloc_arm_branch, GV, 0,
                                             DoesntNeedStub));
}

/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
                                                 Reloc, ES));
}

/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
                                          int Disp /* = 0 */,
                                          unsigned PCAdj /* = 0 */) {
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
                                                    Reloc, CPI, PCAdj));
}

/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
                                          unsigned PCAdj /* = 0 */) {
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
                                                    Reloc, JTI, PCAdj));
}

/// emitMachineBasicBlock - Emit the specified address basic block.
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
                                             ARM::reloc_arm_branch, BB));
}

void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
  NumEmitted++;  // Keep track of the # of mi's emitted
  MCE.emitWordLE(getInstrBinary(MI));
}

unsigned ARMCodeEmitter::getAddrModeNoneInstrBinary(const MachineInstr &MI,
                                                    const TargetInstrDesc &Desc,
                                                    unsigned Binary) {
  switch (Desc.TSFlags & ARMII::FormMask) {
  default:
    assert(0 && "Unknown instruction subtype!");
    break;
  case ARMII::Branch: {
    // Set signed_immed_24 field
    Binary |= getMachineOpValue(MI, 0);

    // if it is a conditional branch, set cond field
    if (Desc.Opcode == ARM::Bcc) {
      Binary &= 0x0FFFFFFF;                      // clear conditional field
      Binary |= getMachineOpValue(MI, 1) << 28;  // set conditional field
    }
    break;
  }
  case ARMII::BranchMisc: {
    // Set bit[19:8] to 0xFFF
    Binary |= 0xfff << 8;
    if (Desc.Opcode == ARM::BX_RET)
      Binary |= 0xe; // the return register is LR
    else 
      // otherwise, set the return register
      Binary |= getMachineOpValue(MI, 0);
    break;
  }
  }

  return Binary;
}

unsigned ARMCodeEmitter::getAddrMode1InstrBinary(const MachineInstr &MI,
                                                 const TargetInstrDesc &Desc,
                                                 unsigned Binary) {
  // FIXME: Clean up.
  // Treat 3 special instructions: MOVsra_flag, MOVsrl_flag and MOVrx.
  unsigned Format = Desc.TSFlags & ARMII::FormMask;
  if (Format == ARMII::DPRdMisc) {
    Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    Binary |= getMachineOpValue(MI, 1);
    switch (Desc.Opcode) {
    case ARM::MOVsra_flag:
      Binary |= 0x1 << 6;
      Binary |= 0x1 << 7;
      break;
    case ARM::MOVsrl_flag:
      Binary |= 0x1 << 5;
      Binary |= 0x1 << 7;
      break;
    case ARM::MOVrx:
      Binary |= 0x3 << 5;
      break;
    }
    return Binary;
  }

  // FIXME: Clean up this part.
  // Data processing operand instructions has 3 possible encodings (for more
  // information, see ARM-ARM page A3-10):
  // 1. <instr> <Rd>,<shifter_operand>
  // 2. <instr> <Rn>,<shifter_operand>
  // 3. <instr> <Rd>,<Rn>,<shifter_operand>
  bool IsDataProcessing1 = Format == ARMII::DPRdIm    ||
                           Format == ARMII::DPRdReg   ||
                           Format == ARMII::DPRdSoReg;
  bool IsDataProcessing2 = Format == ARMII::DPRnIm    ||
                           Format == ARMII::DPRnReg   ||
                           Format == ARMII::DPRnSoReg;
  bool IsDataProcessing3 = false;

  if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS ||
      Format == ARMII::DPRSoRegS || IsDataProcessing2)
    IsDataProcessing3 = !IsDataProcessing2;

  IsDataProcessing3 = Format == ARMII::DPRIm     ||
                      Format == ARMII::DPRReg    ||
                      Format == ARMII::DPRSoReg  ||
                      IsDataProcessing3;

  // Set first operand
  if (IsDataProcessing1 || IsDataProcessing3) {
    Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
  } else if (IsDataProcessing2) {
    Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
  }

  // Set second operand of data processing #3 instructions
  if (IsDataProcessing3)
    Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;

  unsigned OpIdx = IsDataProcessing3 ? 2 : 1;
  switch (Format) {
  default:
    assert(false && "Unknown operand type!");
    break;
  case ARMII::DPRdIm: case ARMII::DPRnIm:
  case ARMII::DPRIm:  case ARMII::DPRImS: {
    // Set bit I(25) to identify this is the immediate form of <shifter_op>
    Binary |= 1 << ARMII::I_BitShift;
    // Set immed_8 field
    const MachineOperand &MO = MI.getOperand(OpIdx);
    Binary |= ARM_AM::getSOImmVal(MO.getImm());
    break;
  }
  case ARMII::DPRdReg: case ARMII::DPRnReg:
  case ARMII::DPRReg:  case ARMII::DPRRegS: {
    // Set last operand (register Rm)
    Binary |= getMachineOpValue(MI, OpIdx);
    break;
  }
  case ARMII::DPRdSoReg: case ARMII::DPRnSoReg:
  case ARMII::DPRSoReg:  case ARMII::DPRSoRegS: {
    // Set last operand (register Rm)
    Binary |= getMachineOpValue(MI, OpIdx);

    const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
    const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);

    // Identify it the instr is in immed or register shifts encoding
    bool IsShiftByRegister = MO1.getReg() > 0;
    // Set shift operand (bit[6:4]).
    // ASR - 101 if it is in register shifts encoding; 100, otherwise.
    // LSL - 001 if it is in register shifts encoding; 000, otherwise.
    // LSR - 011 if it is in register shifts encoding; 010, otherwise.
    // ROR - 111 if it is in register shifts encoding; 110, otherwise.
    // RRX - 110 and bit[11:7] clear.
    switch (ARM_AM::getSORegShOp(MO2.getImm())) {
    default: assert(0 && "Unknown shift opc!");
    case ARM_AM::asr:
      if (IsShiftByRegister)
        Binary |= 0x5 << 4;
      else
        Binary |= 0x1 << 6;
      break;
    case ARM_AM::lsl:
      if (IsShiftByRegister)
        Binary |= 0x1 << 4;
      break;
    case ARM_AM::lsr:
      if (IsShiftByRegister)
        Binary |= 0x3 << 4;
      else
        Binary |= 0x1 << 5;
      break;
    case ARM_AM::ror:
      if (IsShiftByRegister)
        Binary |= 0x7 << 4;
      else
        Binary |= 0x3 << 5;
      break;
    case ARM_AM::rrx:
      Binary |= 0x3 << 5;
      break;
    }

    // Set the field related to shift operations (except rrx).
    if (ARM_AM::getSORegShOp(MO2.getImm()) != ARM_AM::rrx) {
      if (IsShiftByRegister) {
        // Set the value of bit[11:8] (register Rs).
        assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
        Binary |= (ARMRegisterInfo::getRegisterNumbering(MO1.getReg()) <<
                   ARMII::RegRsShift);
      } else
        // Set the value of bit [11:7] (shift_immed field).
        Binary |= ARM_AM::getSORegOffset(MO2.getImm()) << 7;
    }
    break;
  }
  }

  return Binary;
}

unsigned ARMCodeEmitter::getAddrMode2InstrBinary(const MachineInstr &MI,
                                                 const TargetInstrDesc &Desc,
                                                 unsigned Binary) {
  // Set first operand
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;

  // Set second operand
  Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;

  const MachineOperand &MO2 = MI.getOperand(2);
  const MachineOperand &MO3 = MI.getOperand(3);

  // Set bit U(23) according to signal of immed value (positive or negative).
  Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
            ARMII::U_BitShift);
  if (!MO2.getReg()) { // is immediate
    if (ARM_AM::getAM2Offset(MO3.getImm()))
      // Set the value of offset_12 field
      Binary |= ARM_AM::getAM2Offset(MO3.getImm());
    return Binary;
  }

  // Set bit I(25), because this is not in immediate enconding.
  Binary |= 1 << ARMII::I_BitShift;
  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
  // Set bit[3:0] to the corresponding Rm register
  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());

  // if this instr is in scaled register offset/index instruction, set
  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
  if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
    Binary |= getShiftOp(MO3) << 5;  // shift
    Binary |= ShImm           << 7;  // shift_immed
  }

  return Binary;
}

unsigned ARMCodeEmitter::getAddrMode3InstrBinary(const MachineInstr &MI,
                                                 const TargetInstrDesc &Desc,
                                                 unsigned Binary) {
  // Set first operand
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;

  // Set second operand
  Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;

  const MachineOperand &MO2 = MI.getOperand(2);
  const MachineOperand &MO3 = MI.getOperand(3);

  // Set bit U(23) according to signal of immed value (positive or negative)
  Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
             ARMII::U_BitShift);

  // If this instr is in register offset/index encoding, set bit[3:0]
  // to the corresponding Rm register.
  if (MO2.getReg()) {
    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
    return Binary;
  }

  // if this instr is in immediate offset/index encoding, set bit 22 to 1
  if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
    Binary |= 1 << 22;
    // Set operands
    Binary |= (ImmOffs >> 4) << 8;  // immedH
    Binary |= (ImmOffs & ~0xF);     // immedL
  }

  return Binary;
}

unsigned ARMCodeEmitter::getAddrMode4InstrBinary(const MachineInstr &MI,
                                                 const TargetInstrDesc &Desc,
                                                 unsigned Binary) {
  // Set first operand
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;

  // Set addressing mode by modifying bits U(23) and P(24)
  // IA - Increment after  - bit U = 1 and bit P = 0
  // IB - Increment before - bit U = 1 and bit P = 1
  // DA - Decrement after  - bit U = 0 and bit P = 0
  // DB - Decrement before - bit U = 0 and bit P = 1
  const MachineOperand &MO = MI.getOperand(1);
  ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
  switch (Mode) {
  default: assert(0 && "Unknown addressing sub-mode!");
  case ARM_AM::da:                      break;
  case ARM_AM::db: Binary |= 0x1 << 24; break;
  case ARM_AM::ia: Binary |= 0x1 << 23; break;
  case ARM_AM::ib: Binary |= 0x3 << 23; break;
  }

  // Set bit W(21)
  if (ARM_AM::getAM4WBFlag(MO.getImm()))
    Binary |= 0x1 << 21;

  // Set registers
  for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (MO.isRegister() && MO.isImplicit())
      continue;
    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
           RegNum < 16);
    Binary |= 0x1 << RegNum;
  }

  return Binary;
}

/// getInstrBinary - Return binary encoding for the specified
/// machine instruction.
unsigned ARMCodeEmitter::getInstrBinary(const MachineInstr &MI) {
  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  const TargetInstrDesc &Desc = MI.getDesc();
  switch (Desc.TSFlags & ARMII::AddrModeMask) {
  case ARMII::AddrModeNone:
    return getAddrModeNoneInstrBinary(MI, Desc, Binary);
  case ARMII::AddrMode1:
    return getAddrMode1InstrBinary(MI, Desc, Binary);
  case ARMII::AddrMode2:
    return getAddrMode2InstrBinary(MI, Desc, Binary);
  case ARMII::AddrMode3:
    return getAddrMode3InstrBinary(MI, Desc, Binary);
  case ARMII::AddrMode4:
    return getAddrMode4InstrBinary(MI, Desc, Binary);
  }

  abort();
  return 0;
}

#include "ARMGenCodeEmitter.inc"