summaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
blob: dadc38570c63a9ddeb97a42bca8064454521c336 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
//===-- ModuloScheduling.cpp - ModuloScheduling  ----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// 
//  This ModuloScheduling pass is based on the Swing Modulo Scheduling 
//  algorithm. 
// 
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "ModuloSched"

#include "ModuloScheduling.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CFG.h"
#include "llvm/Target/TargetSchedInfo.h"
#include "Support/Debug.h"
#include "Support/GraphWriter.h"
#include "Support/StringExtras.h"
#include <cmath>
#include <fstream>
#include <sstream>
#include <utility>
#include <vector>
#include "../../Target/SparcV9/MachineCodeForInstruction.h"
#include "../../Target/SparcV9/SparcV9TmpInstr.h"
#include "../../Target/SparcV9/SparcV9Internals.h"
#include "../../Target/SparcV9/SparcV9RegisterInfo.h"
using namespace llvm;

/// Create ModuloSchedulingPass
///
FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
  DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
  return new ModuloSchedulingPass(targ); 
}


//Graph Traits for printing out the dependence graph
template<typename GraphType>
static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
                             const GraphType &GT) {
  std::string Filename = GraphName + ".dot";
  O << "Writing '" << Filename << "'...";
  std::ofstream F(Filename.c_str());
  
  if (F.good())
    WriteGraph(F, GT);
  else
    O << "  error opening file for writing!";
  O << "\n";
};

//Graph Traits for printing out the dependence graph
namespace llvm {

  template<>
  struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
    static std::string getGraphName(MSchedGraph *F) {
      return "Dependence Graph";
    }
    
    static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
      if (Node->getInst()) {
	std::stringstream ss;
	ss << *(Node->getInst());
	return ss.str(); //((MachineInstr*)Node->getInst());
      }
      else
	return "No Inst";
    }
    static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
					  MSchedGraphNode::succ_iterator I) {
      //Label each edge with the type of dependence
      std::string edgelabel = "";
      switch (I.getEdge().getDepOrderType()) {
	
      case MSchedGraphEdge::TrueDep: 
	edgelabel = "True";
	break;
    
      case MSchedGraphEdge::AntiDep: 
	edgelabel =  "Anti";
	break;
	
      case MSchedGraphEdge::OutputDep: 
	edgelabel = "Output";
	break;
	
      default:
	edgelabel = "Unknown";
	break;
      }

      //FIXME
      int iteDiff = I.getEdge().getIteDiff();
      std::string intStr = "(IteDiff: ";
      intStr += itostr(iteDiff);

      intStr += ")";
      edgelabel += intStr;

      return edgelabel;
    }
  };
}

/// ModuloScheduling::runOnFunction - main transformation entry point
/// The Swing Modulo Schedule algorithm has three basic steps:
/// 1) Computation and Analysis of the dependence graph
/// 2) Ordering of the nodes
/// 3) Scheduling
/// 
bool ModuloSchedulingPass::runOnFunction(Function &F) {
  
  bool Changed = false;
  
  DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in" + F.getName() + "\n");
  
  //Get MachineFunction
  MachineFunction &MF = MachineFunction::get(&F);
  
  //Print out machine function
  DEBUG(MF.print(std::cerr));

  //Worklist
  std::vector<MachineBasicBlock*> Worklist;
  
  //Iterate over BasicBlocks and put them into our worklist if they are valid
  for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
    if(MachineBBisValid(BI)) 
      Worklist.push_back(&*BI);
  

  //Iterate over the worklist and perform scheduling
  for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),  
	BE = Worklist.end(); BI != BE; ++BI) {
    
    MSchedGraph *MSG = new MSchedGraph(*BI, target);
    
    //Write Graph out to file
    DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
    
    //Print out BB for debugging
    DEBUG((*BI)->print(std::cerr));
    
    //Calculate Resource II
    int ResMII = calculateResMII(*BI);
    
    //Calculate Recurrence II
    int RecMII = calculateRecMII(MSG, ResMII);
    
    //Our starting initiation interval is the maximum of RecMII and ResMII
    II = std::max(RecMII, ResMII);
    
    //Print out II, RecMII, and ResMII
    DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n");
    
    //Calculate Node Properties
    calculateNodeAttributes(MSG, ResMII);
    
    //Dump node properties if in debug mode
    DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I =  nodeToAttributesMap.begin(), 
		E = nodeToAttributesMap.end(); I !=E; ++I) {
      std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " 
		<< I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth 
		<< " Height: " << I->second.height << "\n";
    });
    
    //Put nodes in order to schedule them
    computePartialOrder();
    
    //Dump out partial order
    DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), 
		E = partialOrder.end(); I !=E; ++I) {
      std::cerr << "Start set in PO\n";
      for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
	std::cerr << "PO:" << **J << "\n";
    });
    
    //Place nodes in final order
    orderNodes();
    
    //Dump out order of nodes
    DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
	  std::cerr << "FO:" << **I << "\n";
    });
    
    //Finally schedule nodes
    computeSchedule();
    
    //Print out final schedule
    DEBUG(schedule.print(std::cerr));
    

    //Final scheduling step is to reconstruct the loop
    reconstructLoop(*BI);
    
    //Print out new loop
    
    
    //Clear out our maps for the next basic block that is processed
    nodeToAttributesMap.clear();
    partialOrder.clear();
    recurrenceList.clear();
    FinalNodeOrder.clear();
    schedule.clear();
    
    //Clean up. Nuke old MachineBB and llvmBB
    //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
    //Function *parent = (Function*) llvmBB->getParent();
    //Should't std::find work??
    //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
    //parent->getBasicBlockList().erase(llvmBB);
    
    //delete(llvmBB);
    //delete(*BI);
  }
  
 
  return Changed;
}


/// This function checks if a Machine Basic Block is valid for modulo
/// scheduling. This means that it has no control flow (if/else or
/// calls) in the block.  Currently ModuloScheduling only works on
/// single basic block loops.
bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {

  bool isLoop = false;
  
  //Check first if its a valid loop
  for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), 
	E = succ_end(BI->getBasicBlock()); I != E; ++I) {
    if (*I == BI->getBasicBlock())    // has single block loop
      isLoop = true;
  }
  
  if(!isLoop)
    return false;
    
  //Get Target machine instruction info
  const TargetInstrInfo *TMI = target.getInstrInfo();
    
  //Check each instruction and look for calls
  for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
    //Get opcode to check instruction type
    MachineOpCode OC = I->getOpcode();
    if(TMI->isCall(OC))
      return false;
 
  }
  return true;

}

//ResMII is calculated by determining the usage count for each resource
//and using the maximum.
//FIXME: In future there should be a way to get alternative resources
//for each instruction
int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
  
  const TargetInstrInfo *mii = target.getInstrInfo();
  const TargetSchedInfo *msi = target.getSchedInfo();

  int ResMII = 0;
  
  //Map to keep track of usage count of each resource
  std::map<unsigned, unsigned> resourceUsageCount;

  for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {

    //Get resource usage for this instruction
    InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
    std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;

    //Loop over resources in each cycle and increments their usage count
    for(unsigned i=0; i < resources.size(); ++i)
      for(unsigned j=0; j < resources[i].size(); ++j) {
	if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
	  resourceUsageCount[resources[i][j]] = 1;
	}
	else {
	  resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
	}
      }
  }

  //Find maximum usage count
  
  //Get max number of instructions that can be issued at once. (FIXME)
  int issueSlots = msi->maxNumIssueTotal;

  for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
    
    //Get the total number of the resources in our cpu
    int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
    
    //Get total usage count for this resources
    unsigned usageCount = RB->second;
    
    //Divide the usage count by either the max number we can issue or the number of
    //resources (whichever is its upper bound)
    double finalUsageCount;
    if( resourceNum <= issueSlots)
      finalUsageCount = ceil(1.0 * usageCount / resourceNum);
    else
      finalUsageCount = ceil(1.0 * usageCount / issueSlots);
    
    
    //Only keep track of the max
    ResMII = std::max( (int) finalUsageCount, ResMII);

  }

  return ResMII;

}

/// calculateRecMII - Calculates the value of the highest recurrence
/// By value we mean the total latency
int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
  std::vector<MSchedGraphNode*> vNodes;
  //Loop over all nodes in the graph
  for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
    findAllReccurrences(I->second, vNodes, MII);
    vNodes.clear();
  }

  int RecMII = 0;
  
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
    DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
      std::cerr << **N << "\n";
    });
    RecMII = std::max(RecMII, I->first);
  }
    
  return MII;
}

/// calculateNodeAttributes - The following properties are calculated for
/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
/// MOB.
void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {

  //Loop over the nodes and add them to the map
  for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
    //Assert if its already in the map
    assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
    
    //Put into the map with default attribute values
    nodeToAttributesMap[I->second] = MSNodeAttributes();
  }

  //Create set to deal with reccurrences
  std::set<MSchedGraphNode*> visitedNodes;
  
  //Now Loop over map and calculate the node attributes
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
    calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
    visitedNodes.clear();
  }
  
  int maxASAP = findMaxASAP();
  //Calculate ALAP which depends on ASAP being totally calculated
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
    calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
    visitedNodes.clear();
  }

  //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
    (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
   
    DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
    calculateDepth(I->first, (MSchedGraphNode*) 0);
    calculateHeight(I->first, (MSchedGraphNode*) 0);
  }


}

/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
  if(destNode == 0 || srcNode ==0)
    return false;
  
  bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
  
  return findEdge;
}


/// calculateASAP - Calculates the 
int  ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
    
  DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");

  //Get current node attributes
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;

  if(attributes.ASAP != -1)
    return attributes.ASAP;
  
  int maxPredValue = 0;
  
  //Iterate over all of the predecessors and find max
  for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
    
    //Only process if we are not ignoring the edge
    if(!ignoreEdge(*P, node)) {
      int predASAP = -1;
      predASAP = calculateASAP(*P, MII, node);
    
      assert(predASAP != -1 && "ASAP has not been calculated");
      int iteDiff = node->getInEdge(*P).getIteDiff();
      
      int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
      DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
      maxPredValue = std::max(maxPredValue, currentPredValue);
    }
  }
  
  attributes.ASAP = maxPredValue;

  DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
  
  return maxPredValue;
}


int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, 
					int maxASAP, MSchedGraphNode *srcNode) {
  
  DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
  
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 
  if(attributes.ALAP != -1)
    return attributes.ALAP;
 
  if(node->hasSuccessors()) {
    
    //Trying to deal with the issue where the node has successors, but
    //we are ignoring all of the edges to them. So this is my hack for
    //now.. there is probably a more elegant way of doing this (FIXME)
    bool processedOneEdge = false;

    //FIXME, set to something high to start
    int minSuccValue = 9999999;
    
    //Iterate over all of the predecessors and fine max
    for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
	  E = node->succ_end(); P != E; ++P) {
      
      //Only process if we are not ignoring the edge
      if(!ignoreEdge(node, *P)) {
	processedOneEdge = true;
	int succALAP = -1;
	succALAP = calculateALAP(*P, MII, maxASAP, node);
	
	assert(succALAP != -1 && "Successors ALAP should have been caclulated");
	
	int iteDiff = P.getEdge().getIteDiff();
	
	int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
	
	DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");

	minSuccValue = std::min(minSuccValue, currentSuccValue);
      }
    }
    
    if(processedOneEdge)
    	attributes.ALAP = minSuccValue;
    
    else
      attributes.ALAP = maxASAP;
  }
  else
    attributes.ALAP = maxASAP;

  DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");

  if(attributes.ALAP < 0)
    attributes.ALAP = 0;

  return attributes.ALAP;
}

int ModuloSchedulingPass::findMaxASAP() {
  int maxASAP = 0;

  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
	E = nodeToAttributesMap.end(); I != E; ++I)
    maxASAP = std::max(maxASAP, I->second.ASAP);
  return maxASAP;
}


int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
  
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;

  if(attributes.height != -1)
    return attributes.height;

  int maxHeight = 0;
    
  //Iterate over all of the predecessors and find max
  for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
	E = node->succ_end(); P != E; ++P) {
    
    
    if(!ignoreEdge(node, *P)) {
      int succHeight = calculateHeight(*P, node);

      assert(succHeight != -1 && "Successors Height should have been caclulated");

      int currentHeight = succHeight + node->getLatency();
      maxHeight = std::max(maxHeight, currentHeight);
    }
  }
  attributes.height = maxHeight;
  DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
  return maxHeight;
}


int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, 
					  MSchedGraphNode *destNode) {

  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;

  if(attributes.depth != -1)
    return attributes.depth;

  int maxDepth = 0;
      
  //Iterate over all of the predecessors and fine max
  for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {

    if(!ignoreEdge(*P, node)) {
      int predDepth = -1;
      predDepth = calculateDepth(*P, node);
      
      assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");

      int currentDepth = predDepth + (*P)->getLatency();
      maxDepth = std::max(maxDepth, currentDepth);
    }
  }
  attributes.depth = maxDepth;
  
  DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
  return maxDepth;
}



void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
  //Check to make sure that this recurrence is unique
  bool same = false;


  //Loop over all recurrences already in our list
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
    
    bool all_same = true;
     //First compare size
    if(R->second.size() == recurrence.size()) {
      
      for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
	if(find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
	  all_same = all_same && false;
	  break;
	}
	else
	  all_same = all_same && true;
      }
      if(all_same) {
	same = true;
	break;
      }
    }
  }
  
  if(!same) {
    srcBENode = recurrence.back();
    destBENode = recurrence.front();
    
    //FIXME
    if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
      //DEBUG(std::cerr << "NOT A BACKEDGE\n");
      //find actual backedge HACK HACK 
      for(unsigned i=0; i< recurrence.size()-1; ++i) {
	if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
	  srcBENode = recurrence[i];
	  destBENode = recurrence[i+1];
	  break;
	}
	  
      }
      
    }
    DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
    edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
    recurrenceList.insert(std::make_pair(II, recurrence));
  }
  
}

void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, 
					       std::vector<MSchedGraphNode*> &visitedNodes,
					       int II) {

  if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
    std::vector<MSchedGraphNode*> recurrence;
    bool first = true;
    int delay = 0;
    int distance = 0;
    int RecMII = II; //Starting value
    MSchedGraphNode *last = node;
    MSchedGraphNode *srcBackEdge = 0;
    MSchedGraphNode *destBackEdge = 0;
    


    for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
	I !=E; ++I) {

      if(*I == node) 
	first = false;
      if(first)
	continue;

      delay = delay + (*I)->getLatency();

      if(*I != node) {
	int diff = (*I)->getInEdge(last).getIteDiff();
	distance += diff;
	if(diff > 0) {
	  srcBackEdge = last;
	  destBackEdge = *I;
	}
      }

      recurrence.push_back(*I);
      last = *I;
    }


      
    //Get final distance calc
    distance += node->getInEdge(last).getIteDiff();
   

    //Adjust II until we get close to the inequality delay - II*distance <= 0
    
    int value = delay-(RecMII * distance);
    int lastII = II;
    while(value <= 0) {
      
      lastII = RecMII;
      RecMII--;
      value = delay-(RecMII * distance);
    }
    
    
    DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
    addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
    assert(distance != 0 && "Recurrence distance should not be zero");
    return;
  }

  for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
    visitedNodes.push_back(node);
    findAllReccurrences(*I, visitedNodes, II);
    visitedNodes.pop_back();
  }
}





void ModuloSchedulingPass::computePartialOrder() {
  
  
  //Loop over all recurrences and add to our partial order
  //be sure to remove nodes that are already in the partial order in
  //a different recurrence and don't add empty recurrences.
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
    
    //Add nodes that connect this recurrence to the previous recurrence
    
    //If this is the first recurrence in the partial order, add all predecessors
    for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {

    }


    std::vector<MSchedGraphNode*> new_recurrence;
    //Loop through recurrence and remove any nodes already in the partial order
    for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
      bool found = false;
      for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
	if(find(PO->begin(), PO->end(), *N) != PO->end())
	  found = true;
      }
      if(!found) {
	new_recurrence.push_back(*N);
	 
	if(partialOrder.size() == 0)
	  //For each predecessors, add it to this recurrence ONLY if it is not already in it
	  for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), 
		PE = (*N)->pred_end(); P != PE; ++P) {
	    
	    //Check if we are supposed to ignore this edge or not
	    if(!ignoreEdge(*P, *N))
	      //Check if already in this recurrence
	      if(find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
		//Also need to check if in partial order
		bool predFound = false;
		for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
		  if(find(PO->begin(), PO->end(), *P) != PO->end())
		    predFound = true;
		}
		
		if(!predFound)
		  if(find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end())
		     new_recurrence.push_back(*P);
		
	      }
	  }
      }
    }

        
    if(new_recurrence.size() > 0)
      partialOrder.push_back(new_recurrence);
  }
  
  //Add any nodes that are not already in the partial order
  std::vector<MSchedGraphNode*> lastNodes;
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
    bool found = false;
    //Check if its already in our partial order, if not add it to the final vector
    for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
      if(find(PO->begin(), PO->end(), I->first) != PO->end())
	found = true;
    }
    if(!found)
      lastNodes.push_back(I->first);
  }

  if(lastNodes.size() > 0)
    partialOrder.push_back(lastNodes);
  
}


void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
  
  //Sort CurrentSet so we can use lowerbound
  sort(CurrentSet.begin(), CurrentSet.end());
  
  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
    for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), 
	  E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
   
      //Check if we are supposed to ignore this edge or not
      if(ignoreEdge(*P,FinalNodeOrder[j]))
	continue;
	 
      if(find(CurrentSet.begin(), 
		     CurrentSet.end(), *P) != CurrentSet.end())
	if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
	  IntersectResult.push_back(*P);
    }
  } 
}

void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {

  //Sort CurrentSet so we can use lowerbound
  sort(CurrentSet.begin(), CurrentSet.end());
  
  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
    for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), 
	  E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {

      //Check if we are supposed to ignore this edge or not
      if(ignoreEdge(FinalNodeOrder[j],*P))
	continue;

      if(find(CurrentSet.begin(), 
		     CurrentSet.end(), *P) != CurrentSet.end())
	if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
	  IntersectResult.push_back(*P);
    }
  }
}

void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) {
  std::cerr << "Intersection (";
  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
    std::cerr << **I << ", ";
  std::cerr << ")\n";
}



void ModuloSchedulingPass::orderNodes() {
  
  int BOTTOM_UP = 0;
  int TOP_DOWN = 1;

  //Set default order
  int order = BOTTOM_UP;


  //Loop over all the sets and place them in the final node order
  for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {

    DEBUG(std::cerr << "Processing set in S\n");
    DEBUG(dumpIntersection(*CurrentSet));

    //Result of intersection
    std::vector<MSchedGraphNode*> IntersectCurrent;

    predIntersect(*CurrentSet, IntersectCurrent);

    //If the intersection of predecessor and current set is not empty
    //sort nodes bottom up
    if(IntersectCurrent.size() != 0) {
      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
      order = BOTTOM_UP;
    }
    //If empty, use successors
    else {
      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");

      succIntersect(*CurrentSet, IntersectCurrent);

      //sort top-down
      if(IntersectCurrent.size() != 0) {
	 DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
	order = TOP_DOWN;
      }
      else {
	DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
	//Find node with max ASAP in current Set
	MSchedGraphNode *node;
	int maxASAP = 0;
	DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
	for(unsigned j=0; j < CurrentSet->size(); ++j) {
	  //Get node attributes
	  MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second;
	  //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
	  DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n");
	  if(maxASAP < nodeAttr.ASAP) {
	    maxASAP = nodeAttr.ASAP;
	    node = (*CurrentSet)[j];
	  }
	}
	assert(node != 0 && "In node ordering node should not be null");
	IntersectCurrent.push_back(node);
	order = BOTTOM_UP;
      }
    }
      
    //Repeat until all nodes are put into the final order from current set
    while(IntersectCurrent.size() > 0) {

      if(order == TOP_DOWN) {
	DEBUG(std::cerr << "Order is TOP DOWN\n");

	while(IntersectCurrent.size() > 0) {
	  DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
	  
	  int MOB = 0;
	  int height = 0;
	  MSchedGraphNode *highestHeightNode = IntersectCurrent[0];
	  	  
	  //Find node in intersection with highest heigh and lowest MOB
	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
		E = IntersectCurrent.end(); I != E; ++I) {
	    
	    //Get current nodes properties
	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;

	    if(height < nodeAttr.height) {
	      highestHeightNode = *I;
	      height = nodeAttr.height;
	      MOB = nodeAttr.MOB;
	    }
	    else if(height ==  nodeAttr.height) {
	      if(MOB > nodeAttr.height) {
		highestHeightNode = *I;
		height =  nodeAttr.height;
		MOB = nodeAttr.MOB;
	      }
	    }
	  }
	  
	  //Append our node with greatest height to the NodeOrder
	  if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
	    DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
	    FinalNodeOrder.push_back(highestHeightNode);
	  }

	  //Remove V from IntersectOrder
	  IntersectCurrent.erase(find(IntersectCurrent.begin(), 
				      IntersectCurrent.end(), highestHeightNode));


	  //Intersect V's successors with CurrentSet
	  for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
		E = highestHeightNode->succ_end(); P != E; ++P) {
	    //if(lower_bound(CurrentSet->begin(), 
	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
	    if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {  
	      if(ignoreEdge(highestHeightNode, *P))
		continue;
	      //If not already in Intersect, add
	      if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
		IntersectCurrent.push_back(*P);
	    }
	  }
     	} //End while loop over Intersect Size

	//Change direction
	order = BOTTOM_UP;

	//Reset Intersect to reflect changes in OrderNodes
	IntersectCurrent.clear();
	predIntersect(*CurrentSet, IntersectCurrent);
	
      } //End If TOP_DOWN
	
	//Begin if BOTTOM_UP
      else {
	DEBUG(std::cerr << "Order is BOTTOM UP\n");
	while(IntersectCurrent.size() > 0) {
	  DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");

	  //dump intersection
	  DEBUG(dumpIntersection(IntersectCurrent));
	  //Get node with highest depth, if a tie, use one with lowest
	  //MOB
	  int MOB = 0;
	  int depth = 0;
	  MSchedGraphNode *highestDepthNode = IntersectCurrent[0];
	  
	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
		E = IntersectCurrent.end(); I != E; ++I) {
	    //Find node attribute in graph
	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
	    
	    if(depth < nodeAttr.depth) {
	      highestDepthNode = *I;
	      depth = nodeAttr.depth;
	      MOB = nodeAttr.MOB;
	    }
	    else if(depth == nodeAttr.depth) {
	      if(MOB > nodeAttr.MOB) {
		highestDepthNode = *I;
		depth = nodeAttr.depth;
		MOB = nodeAttr.MOB;
	      }
	    }
	  }
	  
	  

	  //Append highest depth node to the NodeOrder
	   if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
	     DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
	     FinalNodeOrder.push_back(highestDepthNode);
	   }
	  //Remove heightestDepthNode from IntersectOrder
	  IntersectCurrent.erase(find(IntersectCurrent.begin(), 
				      IntersectCurrent.end(),highestDepthNode));
	  

	  //Intersect heightDepthNode's pred with CurrentSet
	  for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), 
		E = highestDepthNode->pred_end(); P != E; ++P) {
	    //if(lower_bound(CurrentSet->begin(), 
	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
	    if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
	    
	      if(ignoreEdge(*P, highestDepthNode))
		continue;
	    
	    //If not already in Intersect, add
	    if(find(IntersectCurrent.begin(), 
		      IntersectCurrent.end(), *P) == IntersectCurrent.end())
		IntersectCurrent.push_back(*P);
	    }
	  }
	  
	} //End while loop over Intersect Size
	
	  //Change order
	order = TOP_DOWN;
	
	//Reset IntersectCurrent to reflect changes in OrderNodes
	IntersectCurrent.clear();
	succIntersect(*CurrentSet, IntersectCurrent);
	} //End if BOTTOM_DOWN
	
    }
    //End Wrapping while loop
      
  }//End for over all sets of nodes
   
  //Return final Order
  //return FinalNodeOrder;
}

void ModuloSchedulingPass::computeSchedule() {

  bool success = false;
  
  while(!success) {
    
    //Loop over the final node order and process each node
    for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), 
	  E = FinalNodeOrder.end(); I != E; ++I) {
      
      //CalculateEarly and Late start
      int EarlyStart = -1;
      int LateStart = 99999; //Set to something higher then we would ever expect (FIXME)
      bool hasSucc = false;
      bool hasPred = false;
      
      if(!(*I)->isBranch()) {
	//Loop over nodes in the schedule and determine if they are predecessors
	//or successors of the node we are trying to schedule
	for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); 
	    nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
	  
	  //For this cycle, get the vector of nodes schedule and loop over it
	  for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
	    
	    if((*I)->isPredecessor(*schedNode)) {
	      if(!ignoreEdge(*schedNode, *I)) {
		int diff = (*I)->getInEdge(*schedNode).getIteDiff();
		int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
		DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
		DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
		EarlyStart = std::max(EarlyStart, ES_Temp);
		hasPred = true;
	      }
	    }
	    if((*I)->isSuccessor(*schedNode)) {
	      if(!ignoreEdge(*I,*schedNode)) {
		int diff = (*schedNode)->getInEdge(*I).getIteDiff();
		int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
		DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
		DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
		LateStart = std::min(LateStart, LS_Temp);
		hasSucc = true;
	      }
	    }
	  }
	}
      }
      else {
	//WARNING: HACK! FIXME!!!!
	EarlyStart = II-1;
	LateStart = II-1;
	hasPred = 1;
	hasSucc = 1;
      }
 
      
      DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
      DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");

      //Check if the node has no pred or successors and set Early Start to its ASAP
      if(!hasSucc && !hasPred)
	EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
      
      //Now, try to schedule this node depending upon its pred and successor in the schedule
      //already
      if(!hasSucc && hasPred)
	success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
      else if(!hasPred && hasSucc)
	success = scheduleNode(*I, LateStart, (LateStart - II +1));
      else if(hasPred && hasSucc)
	success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
      else
	success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
      
      if(!success) {
	++II; 
	schedule.clear();
	break;
      }
     
    }

    DEBUG(std::cerr << "Constructing Kernel\n");
    success = schedule.constructKernel(II);
    if(!success) {
      ++II;
      schedule.clear();
    }
  } 
}


bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, 
				      int start, int end) {
  bool success = false;

  DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");

  //Make sure start and end are not negative
  if(start < 0)
    start = 0;
  if(end < 0)
    end = 0;

  bool forward = true;
  if(start > end)
    forward = false;

  bool increaseSC = true;
  int cycle = start ;


  while(increaseSC) {
    
    increaseSC = false;

    increaseSC = schedule.insert(node, cycle);
    
    if(!increaseSC) 
      return true;

    //Increment cycle to try again
    if(forward) {
      ++cycle;
      DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
      if(cycle > end)
	return false;
    }
    else {
      --cycle;
      DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
      if(cycle < end)
	return false;
    }
  }

  return success;
}

void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {

  //Keep a map to easily know whats in the kernel
  std::map<int, std::set<const MachineInstr*> > inKernel;
  int maxStageCount = 0;

  MSchedGraphNode *branch = 0;

  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
    maxStageCount = std::max(maxStageCount, I->second);
    
    //Ignore the branch, we will handle this separately
    if(I->first->isBranch()) {
      branch = I->first;
      continue;
    }

    //Put int the map so we know what instructions in each stage are in the kernel
    DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
    inKernel[I->second].insert(I->first->getInst());
  }

  //Get target information to look at machine operands
  const TargetInstrInfo *mii = target.getInstrInfo();

 //Now write the prologues
  for(int i = 0; i < maxStageCount; ++i) {
    BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
    MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
  
    DEBUG(std::cerr << "i=" << i << "\n");
    for(int j = 0; j <= i; ++j) {
      for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
	if(inKernel[j].count(&*MI)) {
	  machineBB->push_back(MI->clone());
	  
	  Instruction *tmp;

	  //After cloning, we may need to save the value that this instruction defines
	  for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
	    //get machine operand
	    const MachineOperand &mOp = MI->getOperand(opNum);
	    if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {


	      //Check if this is a value we should save
	      if(valuesToSave.count(mOp.getVRegValue())) {
		//Save copy in tmpInstruction
		tmp = new TmpInstruction(mOp.getVRegValue());
		
		DEBUG(std::cerr << "Value: " << mOp.getVRegValue() << " New Value: " << tmp << " Stage: " << i << "\n");
		newValues[mOp.getVRegValue()][i].push_back(tmp);
		newValLocation[tmp] = machineBB;

		DEBUG(std::cerr << "Machine Instr Operands: " << mOp.getVRegValue() << ", 0, " << tmp << "\n");
		
		//Create machine instruction and put int machineBB
		MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
		
		DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
	      }
	    }
	  }
	}
      }
    }


    //Stick in branch at the end
    machineBB->push_back(branch->getInst()->clone());

  (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);  
    prologues.push_back(machineBB);
    llvm_prologues.push_back(llvmBB);
  }
}

void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation ) {
  
  std::map<int, std::set<const MachineInstr*> > inKernel;
  int maxStageCount = 0;
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
    maxStageCount = std::max(maxStageCount, I->second);
    
    //Ignore the branch, we will handle this separately
    if(I->first->isBranch())
      continue;

    //Put int the map so we know what instructions in each stage are in the kernel
    inKernel[I->second].insert(I->first->getInst());
  }

  std::map<Value*, Value*> valPHIs;

  //Now write the epilogues
  for(int i = maxStageCount-1; i >= 0; --i) {
    BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
    MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
   
    DEBUG(std::cerr << " i: " << i << "\n");

    //Spit out phi nodes
    for(std::map<Value*, std::map<int, std::vector<Value*> > >::iterator V = newValues.begin(), E = newValues.end();
	V != E; ++V) {

      DEBUG(std::cerr << "Writing phi for" << *(V->first));
      for(std::map<int, std::vector<Value*> >::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) {
	if(I->first == i) {
	  DEBUG(std::cerr << "BLAH " << i << "\n");
	  
	  //Vector must have two elements in it:
	  assert(I->second.size() == 2 && "Vector size should be two\n");
	  
	  Instruction *tmp = new TmpInstruction(I->second[0]);
	  MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(I->second[0]).addReg(I->second[1]).addRegDef(tmp);
	  valPHIs[V->first] = tmp;
	}
      }
      
    }

    for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
      for(int j=maxStageCount; j > i; --j) {
	if(inKernel[j].count(&*MI)) {
	  DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
	  MachineInstr *clone = MI->clone();
	  
	  //Update operands that need to use the result from the phi
	  for(unsigned i=0; i < clone->getNumOperands(); ++i) {
	    //get machine operand
	    const MachineOperand &mOp = clone->getOperand(i);
	    if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
	      if(valPHIs.count(mOp.getVRegValue())) {
		//Update the operand in the cloned instruction
		clone->getOperand(i).setValueReg(valPHIs[mOp.getVRegValue()]); 
	      }
	    }
	  }
	  machineBB->push_back(clone);
	}
      }
    }

    (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
    epilogues.push_back(machineBB);
    llvm_epilogues.push_back(llvmBB);
  }
}

void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
  
  //Keep track of operands that are read and saved from a previous iteration. The new clone
  //instruction will use the result of the phi instead.
  std::map<Value*, Value*> finalPHIValue;
  std::map<Value*, Value*> kernelValue;

    //Create TmpInstructions for the final phis
 for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {

   //Clone instruction
   const MachineInstr *inst = I->first->getInst();
   MachineInstr *instClone = inst->clone();
   
   //If this instruction is from a previous iteration, update its operands
   if(I->second > 0) {
     //Loop over Machine Operands
     const MachineInstr *inst = I->first->getInst();
     for(unsigned i=0; i < inst->getNumOperands(); ++i) {
       //get machine operand
       const MachineOperand &mOp = inst->getOperand(i);

       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
	 //If its in the value saved, we need to create a temp instruction and use that instead
	 if(valuesToSave.count(mOp.getVRegValue())) {
	   TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
	   
	   //Update the operand in the cloned instruction
	   instClone->getOperand(i).setValueReg(tmp);
	   
	   //save this as our final phi
	   finalPHIValue[mOp.getVRegValue()] = tmp;
	   newValLocation[tmp] = machineBB;
	 }
       }

     }
     //Insert into machine basic block
     machineBB->push_back(instClone);

   }
   //Otherwise we just check if we need to save a value or not
   else {
     //Insert into machine basic block
     machineBB->push_back(instClone);

     //Loop over Machine Operands
     const MachineInstr *inst = I->first->getInst();
     for(unsigned i=0; i < inst->getNumOperands(); ++i) {
       //get machine operand
       const MachineOperand &mOp = inst->getOperand(i);

       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
	 if(valuesToSave.count(mOp.getVRegValue())) {
	   
	   TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
	   
	   //Create new machine instr and put in MBB
	   MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
	   
	   //Save for future cleanup
	   kernelValue[mOp.getVRegValue()] = tmp;
	   newValLocation[tmp] = machineBB;
	 }
       }
     }
   }
 }

 //Clean up by writing phis
 for(std::map<Value*, std::map<int, std::vector<Value*> > >::iterator V = newValues.begin(), E = newValues.end();
     V != E; ++V) {

   DEBUG(std::cerr << "Writing phi for" << *(V->first));
  
   //FIXME
   int maxStage = 1;

   //Last phi
   Instruction *lastPHI = 0;

   for(std::map<int, std::vector<Value*> >::iterator I = V->second.begin(), IE = V->second.end();
       I != IE; ++I) {
     
     int stage = I->first;

     DEBUG(std::cerr << "Stage: " << I->first << " vector size: " << I->second.size() << "\n");

     //Assert if this vector is ever greater then 1. This should not happen
     //FIXME: Get rid of vector if we convince ourselves this won't happn
     assert(I->second.size() == 1 && "Vector of values should be of size \n");

     //We must handle the first and last phi specially
     if(stage == maxStage) {
       //The resulting value must be the Value* we created earlier
       assert(lastPHI != 0 && "Last phi is NULL!\n");
       MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(finalPHIValue[V->first]);
       I->second.push_back(finalPHIValue[V->first]);
     }
     else if(stage == 0) {
       lastPHI = new TmpInstruction(I->second[0]);
       MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second[0]).addRegDef(lastPHI);
       I->second.push_back(lastPHI);
       newValLocation[lastPHI] = machineBB;
     }
     else {
        Instruction *tmp = new TmpInstruction(I->second[0]);
	MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(tmp);
	lastPHI = tmp;
	I->second.push_back(lastPHI);
       newValLocation[tmp] = machineBB;
     }
   }
 }
}

void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {

  //Worklist to delete things
  std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
  
  const TargetInstrInfo *TMI = target.getInstrInfo();

  //Start with the kernel and for each phi insert a copy for the phi def and for each arg
  for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) {
    //Get op code and check if its a phi
     if(I->getOpcode() == V9::PHI) {
       Instruction *tmp = 0;
       for(unsigned i = 0; i < I->getNumOperands(); ++i) {
	 //Get Operand
	 const MachineOperand &mOp = I->getOperand(i);
	 assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
	 
	 if(!tmp) {
	   tmp = new TmpInstruction(mOp.getVRegValue());
	 }

      	 //Now for all our arguments we read, OR to the new TmpInstruction that we created
	 if(mOp.isUse()) {
	   DEBUG(std::cerr << "Use: " << mOp << "\n");
	   //Place a copy at the end of its BB but before the branches
	   assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
	   //Reverse iterate to find the branches, we can safely assume no instructions have been
	   //put in the nop positions
	   for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
	     MachineOpCode opc = inst->getOpcode();
	     if(TMI->isBranch(opc) || TMI->isNop(opc))
	       continue;
	     else {
	       BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
	       break;
	     }
	       
	   }

	 }
	 else {
	   //Remove the phi and replace it with an OR
	   DEBUG(std::cerr << "Def: " << mOp << "\n");
	   BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
	   worklist.push_back(std::make_pair(kernelBB, I));
	 }

       }
     }
       
  }

  //Remove phis from epilogue
  for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) {
    for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) {
      //Get op code and check if its a phi
      if(I->getOpcode() == V9::PHI) {
	Instruction *tmp = 0;
	for(unsigned i = 0; i < I->getNumOperands(); ++i) {
	  //Get Operand
	  const MachineOperand &mOp = I->getOperand(i);
	  assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
	  
	  if(!tmp) {
	    tmp = new TmpInstruction(mOp.getVRegValue());
	  }
	  
	  //Now for all our arguments we read, OR to the new TmpInstruction that we created
	  if(mOp.isUse()) {
	    DEBUG(std::cerr << "Use: " << mOp << "\n");
	    //Place a copy at the end of its BB but before the branches
	    assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
	    //Reverse iterate to find the branches, we can safely assume no instructions have been
	    //put in the nop positions
	    for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
	      MachineOpCode opc = inst->getOpcode();
	      if(TMI->isBranch(opc) || TMI->isNop(opc))
		continue;
	      else {
		BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
		break;
	      }
	      
	    }
	    
	  }
	  else {
	    //Remove the phi and replace it with an OR
	    DEBUG(std::cerr << "Def: " << mOp << "\n");
	    BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
	    worklist.push_back(std::make_pair(*MB,I));
	  }
	  
	}
      }
    }
  }

    //Delete the phis
  for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I =  worklist.begin(), E = worklist.end(); I != E; ++I) {
    I->first->erase(I->second);
		    
  }

}


void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {

  //First find the value *'s that we need to "save"
  std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave;

  //Loop over kernel and only look at instructions from a stage > 0
  //Look at its operands and save values *'s that are read
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {

    if(I->second > 0) {
      //For this instruction, get the Value*'s that it reads and put them into the set.
      //Assert if there is an operand of another type that we need to save
      const MachineInstr *inst = I->first->getInst();
      for(unsigned i=0; i < inst->getNumOperands(); ++i) {
	//get machine operand
	const MachineOperand &mOp = inst->getOperand(i);
	
	if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
	  //find the value in the map
	  if (const Value* srcI = mOp.getVRegValue())
	    valuesToSave[srcI] = std::make_pair(I->first, i);
	  
	}
	
	if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
	  assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
	}
      }
    }
  }

  //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.

  //Map to keep track of old to new values
  std::map<Value*, std::map<int, std::vector<Value*> > > newValues;
 
  //Another map to keep track of what machine basic blocks these new value*s are in since
  //they have no llvm instruction equivalent
  std::map<Value*, MachineBasicBlock*> newValLocation;

  std::vector<MachineBasicBlock*> prologues;
  std::vector<BasicBlock*> llvm_prologues;


  //Write prologue
  writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation);

  BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
  MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
  
  writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation);
  (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
 
  std::vector<MachineBasicBlock*> epilogues;
  std::vector<BasicBlock*> llvm_epilogues;

  //Write epilogues
  writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation);


  const TargetInstrInfo *TMI = target.getInstrInfo();

  //Fix up machineBB and llvmBB branches
  for(unsigned I = 0; I <  prologues.size(); ++I) {
   
    MachineInstr *branch = 0;
    
    //Find terminator since getFirstTerminator does not work!
    for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) {
      MachineOpCode OC = mInst->getOpcode();
      if(TMI->isBranch(OC)) {
	branch = &*mInst;
	DEBUG(std::cerr << *mInst << "\n");
	break;
      }
    }

   
 
    //Update branch
    for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
      MachineOperand &mOp = branch->getOperand(opNum);
      if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
	mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]);
      }
    }

    //Update llvm basic block with our new branch instr
    DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n");
    const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
    TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition());
    if(I == prologues.size()-1) {
      TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
						 llvm_epilogues[(llvm_epilogues.size()-1-I)], 
						 tmp, 
						 llvm_prologues[I]);
    }
    else
      TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1],
						 llvm_epilogues[(llvm_epilogues.size()-1-I)], 
						 tmp, 
						 llvm_prologues[I]);

    assert(branch != 0 && "There must be a terminator for this machine basic block!\n");
  
    //Push nop onto end of machine basic block
    BuildMI(prologues[I], V9::NOP, 0);
    
    //Now since I don't trust fall throughs, add a unconditional branch to the next prologue
    if(I != prologues.size()-1)
      BuildMI(prologues[I], V9::BA, 1).addReg(llvm_prologues[I+1]);
    else
      BuildMI(prologues[I], V9::BA, 1).addReg(llvmKernelBB);

    //Add one more nop!
    BuildMI(prologues[I], V9::NOP, 0);
  }

  //Fix up kernel machine branches
  MachineInstr *branch = 0;
  for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) {
    MachineOpCode OC = mInst->getOpcode();
    if(TMI->isBranch(OC)) {
      branch = &*mInst;
      DEBUG(std::cerr << *mInst << "\n");
      break;
    }
  }

  assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n");
   
  //Update kernel self loop branch
  for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
    MachineOperand &mOp = branch->getOperand(opNum);
    
    if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
      mOp.setValueReg(llvmKernelBB);
    }
  }
  
  //Update kernelLLVM branches
  const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
  TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
					     llvm_epilogues[0], 
					     new TmpInstruction(branchVal->getCondition()), 
					     llvmKernelBB);

  //Add kernel noop
   BuildMI(machineKernelBB, V9::NOP, 0);

   //Add unconditional branch to first epilogue
   BuildMI(machineKernelBB, V9::BA, 1).addReg(llvm_epilogues[0]);

   //Add kernel noop
   BuildMI(machineKernelBB, V9::NOP, 0);

   //Lastly add unconditional branches for the epilogues
   for(unsigned I = 0; I <  epilogues.size(); ++I) {
     
    //Now since I don't trust fall throughs, add a unconditional branch to the next prologue
     if(I != epilogues.size()-1) {
       BuildMI(epilogues[I], V9::BA, 1).addReg(llvm_epilogues[I+1]);
       //Add unconditional branch to end of epilogue
       TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], 
						  llvm_epilogues[I]);

     }
    else {
      MachineBasicBlock *origBlock = (MachineBasicBlock*) BB;
      for(MachineBasicBlock::reverse_iterator inst = origBlock->rbegin(), instEnd = origBlock->rend(); inst != instEnd; ++inst) {
	MachineOpCode OC = inst->getOpcode();
	if(TMI->isBranch(OC)) {
	  branch = &*inst;
	  DEBUG(std::cerr << *inst << "\n");
	  break;
	
	}
	
	for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
	  MachineOperand &mOp = branch->getOperand(opNum);
	  
	  if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
	    BuildMI(epilogues[I], V9::BA, 1).addReg(mOp.getVRegValue());
	    break;
	  }
	}
	
      }
      
      //Update last epilogue exit branch
      BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
      //Find where we are supposed to branch to
      BasicBlock *nextBlock = 0;
      for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) {
	if(branchVal->getSuccessor(j) != BB->getBasicBlock())
	  nextBlock = branchVal->getSuccessor(j);
      }
	TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]);
    }
    //Add one more nop!
    BuildMI(epilogues[I], V9::NOP, 0);

   }

   //FIX UP Machine BB entry!!
   //We are looking at the predecesor of our loop basic block and we want to change its ba instruction
   

   //Find all llvm basic blocks that branch to the loop entry and change to our first prologue.
   const BasicBlock *llvmBB = BB->getBasicBlock();

   for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) {
     if(*P == llvmBB)
       continue;
     else {
       DEBUG(std::cerr << "Found our entry BB\n");
       //Get the Terminator instruction for this basic block and print it out
       DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
       //Update the terminator
       TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
       for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
	 if(term->getSuccessor(i) == llvmBB) {
	   DEBUG(std::cerr << "Replacing successor bb\n");
	   if(llvm_prologues.size() > 0) {
	     term->setSuccessor(i, llvm_prologues[0]);
	     //Also update its corresponding machine instruction
	     MachineCodeForInstruction & tempMvec =
	       MachineCodeForInstruction::get(term);
	     for (unsigned j = 0; j < tempMvec.size(); j++) {
	       MachineInstr *temp = tempMvec[j];
	       MachineOpCode opc = temp->getOpcode();
	       if(TMI->isBranch(opc)) {
		 DEBUG(std::cerr << *temp << "\n");
		 //Update branch
		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
		   MachineOperand &mOp = temp->getOperand(opNum);
		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
		     mOp.setValueReg(llvm_prologues[0]);
		   }
		 }
	       }
	     }        
	   }
	   else {
	     term->setSuccessor(i, llvmKernelBB);
	   //Also update its corresponding machine instruction
	     MachineCodeForInstruction & tempMvec =
	       MachineCodeForInstruction::get(term);
	     for (unsigned j = 0; j < tempMvec.size(); j++) {
	       MachineInstr *temp = tempMvec[j];
	       MachineOpCode opc = temp->getOpcode();
	       if(TMI->isBranch(opc)) {
		 DEBUG(std::cerr << *temp << "\n");
		 //Update branch
		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
		   MachineOperand &mOp = temp->getOperand(opNum);
		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
		     mOp.setValueReg(llvmKernelBB);
		   }
		 }
	       }
	     }
	   }
	 }
       }
       break;
     }
   }
   
   removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation);


    
  //Print out epilogues and prologue
  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); 
      I != E; ++I) {
    std::cerr << "PROLOGUE\n";
    (*I)->print(std::cerr);
  });
  
  DEBUG(std::cerr << "KERNEL\n");
  DEBUG(machineKernelBB->print(std::cerr));

  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); 
      I != E; ++I) {
    std::cerr << "EPILOGUE\n";
    (*I)->print(std::cerr);
  });


  DEBUG(std::cerr << "New Machine Function" << "\n");
  DEBUG(std::cerr << BB->getParent() << "\n");

  BB->getParent()->getBasicBlockList().erase(BB);

}