summaryrefslogtreecommitdiff
path: root/utils/TableGen/AsmMatcherEmitter.cpp
blob: cbe214d3f31a3e41b7c8643c558734518aa8d7f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures.
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
//   'addl' (immediate ...) (register ...)
//   'add' (immediate ...) (memory ...)
//   'call' '*' %epc 
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
//  - It may be ambiguous; many architectures can legally encode particular
//    variants of an instruction in different ways (for example, using a smaller
//    encoding for small immediates). Such ambiguities should never be
//    arbitrarily resolved by the assembler, the assembler is always responsible
//    for choosing the "best" available instruction.
//
//  - It may depend on the subtarget or the assembler context. Instructions
//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
//    an SSE instruction in a file being assembled for i486) should be accepted
//    and rejected by the assembler front end. However, if the proper encoding
//    for an instruction is dependent on the assembler context then the matcher
//    is responsible for selecting the correct machine instruction for the
//    current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
//   1. Classification: Each operand is mapped to the unique set which (a)
//      contains it, and (b) is the largest such subset for which a single
//      instruction could match all members.
//
//      For register classes, we can generate these subgroups automatically. For
//      arbitrary operands, we expect the user to define the classes and their
//      relations to one another (for example, 8-bit signed immediates as a
//      subset of 32-bit immediates).
//
//      By partitioning the operands in this way, we guarantee that for any
//      tuple of classes, any single instruction must match either all or none
//      of the sets of operands which could classify to that tuple.
//
//      In addition, the subset relation amongst classes induces a partial order
//      on such tuples, which we use to resolve ambiguities.
//
//      FIXME: What do we do if a crazy case shows up where this is the wrong
//      resolution?
//
//   2. The input can now be treated as a tuple of classes (static tokens are
//      simple singleton sets). Each such tuple should generally map to a single
//      instruction (we currently ignore cases where this isn't true, whee!!!),
//      which we can emit a simple matcher for.
//
//===----------------------------------------------------------------------===//

#include "AsmMatcherEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <list>
#include <map>
#include <set>
using namespace llvm;

namespace {
static cl::opt<std::string>
MatchPrefix("match-prefix", cl::init(""),
            cl::desc("Only match instructions with the given prefix"));
}

/// FlattenVariants - Flatten an .td file assembly string by selecting the
/// variant at index \arg N.
static std::string FlattenVariants(const std::string &AsmString,
                                   unsigned N) {
  StringRef Cur = AsmString;
  std::string Res = "";
  
  for (;;) {
    // Find the start of the next variant string.
    size_t VariantsStart = 0;
    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
      if (Cur[VariantsStart] == '{' && 
          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
                                  Cur[VariantsStart-1] != '\\')))
        break;

    // Add the prefix to the result.
    Res += Cur.slice(0, VariantsStart);
    if (VariantsStart == Cur.size())
      break;

    ++VariantsStart; // Skip the '{'.

    // Scan to the end of the variants string.
    size_t VariantsEnd = VariantsStart;
    unsigned NestedBraces = 1;
    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
        if (--NestedBraces == 0)
          break;
      } else if (Cur[VariantsEnd] == '{')
        ++NestedBraces;
    }

    // Select the Nth variant (or empty).
    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
    for (unsigned i = 0; i != N; ++i)
      Selection = Selection.split('|').second;
    Res += Selection.split('|').first;

    assert(VariantsEnd != Cur.size() && 
           "Unterminated variants in assembly string!");
    Cur = Cur.substr(VariantsEnd + 1);
  } 

  return Res;
}

/// TokenizeAsmString - Tokenize a simplified assembly string.
static void TokenizeAsmString(const StringRef &AsmString, 
                              SmallVectorImpl<StringRef> &Tokens) {
  unsigned Prev = 0;
  bool InTok = true;
  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
    switch (AsmString[i]) {
    case '[':
    case ']':
    case '*':
    case '!':
    case ' ':
    case '\t':
    case ',':
      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }
      if (!isspace(AsmString[i]) && AsmString[i] != ',')
        Tokens.push_back(AsmString.substr(i, 1));
      Prev = i + 1;
      break;
      
    case '\\':
      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }
      ++i;
      assert(i != AsmString.size() && "Invalid quoted character");
      Tokens.push_back(AsmString.substr(i, 1));
      Prev = i + 1;
      break;

    case '$': {
      // If this isn't "${", treat like a normal token.
      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
        if (InTok) {
          Tokens.push_back(AsmString.slice(Prev, i));
          InTok = false;
        }
        Prev = i;
        break;
      }

      if (InTok) {
        Tokens.push_back(AsmString.slice(Prev, i));
        InTok = false;
      }

      StringRef::iterator End =
        std::find(AsmString.begin() + i, AsmString.end(), '}');
      assert(End != AsmString.end() && "Missing brace in operand reference!");
      size_t EndPos = End - AsmString.begin();
      Tokens.push_back(AsmString.slice(i, EndPos+1));
      Prev = EndPos + 1;
      i = EndPos;
      break;
    }

    default:
      InTok = true;
    }
  }
  if (InTok && Prev != AsmString.size())
    Tokens.push_back(AsmString.substr(Prev));
}

static bool IsAssemblerInstruction(const StringRef &Name,
                                   const CodeGenInstruction &CGI, 
                                   const SmallVectorImpl<StringRef> &Tokens) {
  // Ignore psuedo ops.
  //
  // FIXME: This is a hack.
  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
    if (Form->getValue()->getAsString() == "Pseudo")
      return false;
  
  // Ignore "PHI" node.
  //
  // FIXME: This is also a hack.
  if (Name == "PHI")
    return false;

  // Ignore instructions with no .s string.
  //
  // FIXME: What are these?
  if (CGI.AsmString.empty())
    return false;

  // FIXME: Hack; ignore any instructions with a newline in them.
  if (std::find(CGI.AsmString.begin(), 
                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
    return false;
  
  // Ignore instructions with attributes, these are always fake instructions for
  // simplifying codegen.
  //
  // FIXME: Is this true?
  //
  // Also, we ignore instructions which reference the operand multiple times;
  // this implies a constraint we would not currently honor. These are
  // currently always fake instructions for simplifying codegen.
  //
  // FIXME: Encode this assumption in the .td, so we can error out here.
  std::set<std::string> OperandNames;
  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
    if (Tokens[i][0] == '$' && 
        std::find(Tokens[i].begin(), 
                  Tokens[i].end(), ':') != Tokens[i].end()) {
      DEBUG({
          errs() << "warning: '" << Name << "': "
                 << "ignoring instruction; operand with attribute '" 
                 << Tokens[i] << "', \n";
        });
      return false;
    }

    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
      DEBUG({
          errs() << "warning: '" << Name << "': "
                 << "ignoring instruction; tied operand '" 
                 << Tokens[i] << "', \n";
        });
      return false;
    }
  }

  return true;
}

namespace {

/// ClassInfo - Helper class for storing the information about a particular
/// class of operands which can be matched.
struct ClassInfo {
  enum ClassInfoKind {
    Invalid = 0, ///< Invalid kind, for use as a sentinel value.
    Token,       ///< The class for a particular token.
    Register,    ///< A register class.
    UserClass0   ///< The (first) user defined class, subsequent user defined
                 /// classes are UserClass0+1, and so on.
  };

  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
  /// N) for the Nth user defined class.
  unsigned Kind;

  /// Name - The full class name, suitable for use in an enum.
  std::string Name;

  /// ClassName - The unadorned generic name for this class (e.g., Token).
  std::string ClassName;

  /// ValueName - The name of the value this class represents; for a token this
  /// is the literal token string, for an operand it is the TableGen class (or
  /// empty if this is a derived class).
  std::string ValueName;

  /// PredicateMethod - The name of the operand method to test whether the
  /// operand matches this class; this is not valid for Token kinds.
  std::string PredicateMethod;

  /// RenderMethod - The name of the operand method to add this operand to an
  /// MCInst; this is not valid for Token kinds.
  std::string RenderMethod;

  /// operator< - Compare two classes.
  bool operator<(const ClassInfo &RHS) const {
    // Incompatible kinds are comparable.
    if (Kind != RHS.Kind)
      return Kind < RHS.Kind;

    switch (Kind) {
    case Invalid:
      assert(0 && "Invalid kind!");
    case Token:
      // Tokens are always comparable.
      //
      // FIXME: Compare by enum value.
      return ValueName < RHS.ValueName;

    case Register:
      // FIXME: Compare by subset relation.
      return false;

    default:
      // FIXME: Allow user defined relation.
      return false;
    }
  }
};

/// InstructionInfo - Helper class for storing the necessary information for an
/// instruction which is capable of being matched.
struct InstructionInfo {
  struct Operand {
    /// The unique class instance this operand should match.
    ClassInfo *Class;

    /// The original operand this corresponds to, if any.
    const CodeGenInstruction::OperandInfo *OperandInfo;
  };

  /// InstrName - The target name for this instruction.
  std::string InstrName;

  /// Instr - The instruction this matches.
  const CodeGenInstruction *Instr;

  /// AsmString - The assembly string for this instruction (with variants
  /// removed).
  std::string AsmString;

  /// Tokens - The tokenized assembly pattern that this instruction matches.
  SmallVector<StringRef, 4> Tokens;

  /// Operands - The operands that this instruction matches.
  SmallVector<Operand, 4> Operands;

  /// ConversionFnKind - The enum value which is passed to the generated
  /// ConvertToMCInst to convert parsed operands into an MCInst for this
  /// function.
  std::string ConversionFnKind;

  /// operator< - Compare two instructions.
  bool operator<(const InstructionInfo &RHS) const {
    // Order first by the number of operands (which is unambiguous).
    if (Operands.size() != RHS.Operands.size())
      return Operands.size() < RHS.Operands.size();
    
    // Otherwise, order by lexicographic comparison of tokens and operand kinds
    // (these can never be ambiguous).
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
          Operands[i].Class->Kind == ClassInfo::Token)
        if (*Operands[i].Class < *RHS.Operands[i].Class)
          return true;
    
    // Finally, order by the component wise comparison of operand classes. We
    // don't want to rely on the lexigraphic ordering of elements, so we define
    // only define the ordering when it is unambiguous. That is, when some pair
    // compares less than and no pair compares greater than.

    // Check that no pair compares greater than.
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (*RHS.Operands[i].Class < *Operands[i].Class)
        return false;

    // Otherwise, return true if some pair compares less than.
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (*Operands[i].Class < *RHS.Operands[i].Class)
        return true;

    return false;
  }

public:
  void dump();
};

class AsmMatcherInfo {
public:
  /// The classes which are needed for matching.
  std::vector<ClassInfo*> Classes;
  
  /// The information on the instruction to match.
  std::vector<InstructionInfo*> Instructions;

private:
  /// Map of token to class information which has already been constructed.
  std::map<std::string, ClassInfo*> TokenClasses;

  /// Map of operand name to class information which has already been
  /// constructed.
  std::map<std::string, ClassInfo*> OperandClasses;

  /// Map of user class names to kind value.
  std::map<std::string, unsigned> UserClasses;

private:
  /// getTokenClass - Lookup or create the class for the given token.
  ClassInfo *getTokenClass(const StringRef &Token);

  /// getUserClassKind - Lookup or create the kind value for the given class
  /// name.
  unsigned getUserClassKind(const StringRef &Name);

  /// getOperandClass - Lookup or create the class for the given operand.
  ClassInfo *getOperandClass(const StringRef &Token,
                             const CodeGenInstruction::OperandInfo &OI);

public:
  /// BuildInfo - Construct the various tables used during matching.
  void BuildInfo(CodeGenTarget &Target);
};

}

void InstructionInfo::dump() {
  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
         << ", tokens:[";
  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
    errs() << Tokens[i];
    if (i + 1 != e)
      errs() << ", ";
  }
  errs() << "]\n";

  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    Operand &Op = Operands[i];
    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    if (Op.Class->Kind == ClassInfo::Token) {
      errs() << '\"' << Tokens[i] << "\"\n";
      continue;
    }

    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
    errs() << OI.Name << " " << OI.Rec->getName()
           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
  }
}

static std::string getEnumNameForToken(const StringRef &Str) {
  std::string Res;
  
  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    switch (*it) {
    case '*': Res += "_STAR_"; break;
    case '%': Res += "_PCT_"; break;
    case ':': Res += "_COLON_"; break;

    default:
      if (isalnum(*it))  {
        Res += *it;
      } else {
        Res += "_" + utostr((unsigned) *it) + "_";
      }
    }
  }

  return Res;
}

ClassInfo *AsmMatcherInfo::getTokenClass(const StringRef &Token) {
  ClassInfo *&Entry = TokenClasses[Token];
  
  if (!Entry) {
    Entry = new ClassInfo();
    Entry->Kind = ClassInfo::Token;
    Entry->ClassName = "Token";
    Entry->Name = "MCK_" + getEnumNameForToken(Token);
    Entry->ValueName = Token;
    Entry->PredicateMethod = "<invalid>";
    Entry->RenderMethod = "<invalid>";
    Classes.push_back(Entry);
  }

  return Entry;
}

unsigned AsmMatcherInfo::getUserClassKind(const StringRef &Name) {
  unsigned &Entry = UserClasses[Name];
  
  if (!Entry)
    Entry = ClassInfo::UserClass0 + UserClasses.size() - 1;

  return Entry;
}

ClassInfo *
AsmMatcherInfo::getOperandClass(const StringRef &Token,
                                const CodeGenInstruction::OperandInfo &OI) {
  std::string ClassName;
  if (OI.Rec->isSubClassOf("RegisterClass")) {
    ClassName = "Reg";
  } else {
    try {
      ClassName = OI.Rec->getValueAsString("ParserMatchClass");
      assert(ClassName != "Reg" && "'Reg' class name is reserved!");
    } catch(...) {
      PrintError(OI.Rec->getLoc(), "operand has no match class!");
      ClassName = "Invalid";
    }
  }

  ClassInfo *&Entry = OperandClasses[ClassName];
  
  if (!Entry) {
    Entry = new ClassInfo();
    // FIXME: Hack.
    if (ClassName == "Reg") {
      Entry->Kind = ClassInfo::Register;
    } else {
      Entry->Kind = getUserClassKind(ClassName);
    }
    Entry->ClassName = ClassName;
    Entry->Name = "MCK_" + ClassName;
    Entry->ValueName = OI.Rec->getName();
    Entry->PredicateMethod = "is" + ClassName;
    Entry->RenderMethod = "add" + ClassName + "Operands";
    Classes.push_back(Entry);
  }
  
  return Entry;
}

void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
  for (std::map<std::string, CodeGenInstruction>::const_iterator 
         it = Target.getInstructions().begin(), 
         ie = Target.getInstructions().end(); 
       it != ie; ++it) {
    const CodeGenInstruction &CGI = it->second;

    if (!StringRef(it->first).startswith(MatchPrefix))
      continue;

    OwningPtr<InstructionInfo> II(new InstructionInfo);
    
    II->InstrName = it->first;
    II->Instr = &it->second;
    II->AsmString = FlattenVariants(CGI.AsmString, 0);

    TokenizeAsmString(II->AsmString, II->Tokens);

    // Ignore instructions which shouldn't be matched.
    if (!IsAssemblerInstruction(it->first, CGI, II->Tokens))
      continue;

    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
      StringRef Token = II->Tokens[i];

      // Check for simple tokens.
      if (Token[0] != '$') {
        InstructionInfo::Operand Op;
        Op.Class = getTokenClass(Token);
        Op.OperandInfo = 0;
        II->Operands.push_back(Op);
        continue;
      }

      // Otherwise this is an operand reference.
      StringRef OperandName;
      if (Token[1] == '{')
        OperandName = Token.substr(2, Token.size() - 3);
      else
        OperandName = Token.substr(1);

      // Map this token to an operand. FIXME: Move elsewhere.
      unsigned Idx;
      try {
        Idx = CGI.getOperandNamed(OperandName);
      } catch(...) {
        errs() << "error: unable to find operand: '" << OperandName << "'!\n";
        break;
      }

      const CodeGenInstruction::OperandInfo &OI = CGI.OperandList[Idx];      
      InstructionInfo::Operand Op;
      Op.Class = getOperandClass(Token, OI);
      Op.OperandInfo = &OI;
      II->Operands.push_back(Op);
    }

    // If we broke out, ignore the instruction.
    if (II->Operands.size() != II->Tokens.size())
      continue;

    Instructions.push_back(II.take());
  }
}

static void EmitConvertToMCInst(CodeGenTarget &Target,
                                std::vector<InstructionInfo*> &Infos,
                                raw_ostream &OS) {
  // Write the convert function to a separate stream, so we can drop it after
  // the enum.
  std::string ConvertFnBody;
  raw_string_ostream CvtOS(ConvertFnBody);

  // Function we have already generated.
  std::set<std::string> GeneratedFns;

  // Start the unified conversion function.

  CvtOS << "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
        << "unsigned Opcode,\n"
        << "                            SmallVectorImpl<"
        << Target.getName() << "Operand> &Operands) {\n";
  CvtOS << "  Inst.setOpcode(Opcode);\n";
  CvtOS << "  switch (Kind) {\n";
  CvtOS << "  default:\n";

  // Start the enum, which we will generate inline.

  OS << "// Unified function for converting operants to MCInst instances.\n\n";
  OS << "enum ConversionKind {\n";
  
  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
         ie = Infos.end(); it != ie; ++it) {
    InstructionInfo &II = **it;

    // Order the (class) operands by the order to convert them into an MCInst.
    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[i];
      if (Op.OperandInfo)
        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
    }
    std::sort(MIOperandList.begin(), MIOperandList.end());

    // Compute the total number of operands.
    unsigned NumMIOperands = 0;
    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
      NumMIOperands = std::max(NumMIOperands, 
                               OI.MIOperandNo + OI.MINumOperands);
    }

    // Build the conversion function signature.
    std::string Signature = "Convert";
    unsigned CurIndex = 0;
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
             "Duplicate match for instruction operand!");
      
      Signature += "_";

      // Skip operands which weren't matched by anything, this occurs when the
      // .td file encodes "implicit" operands as explicit ones.
      //
      // FIXME: This should be removed from the MCInst structure.
      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
        Signature += "Imp";

      Signature += Op.Class->ClassName;
      Signature += utostr(Op.OperandInfo->MINumOperands);
      Signature += "_" + utostr(MIOperandList[i].second);

      CurIndex += Op.OperandInfo->MINumOperands;
    }

    // Add any trailing implicit operands.
    for (; CurIndex != NumMIOperands; ++CurIndex)
      Signature += "Imp";

    II.ConversionFnKind = Signature;

    // Check if we have already generated this signature.
    if (!GeneratedFns.insert(Signature).second)
      continue;

    // If not, emit it now.

    // Add to the enum list.
    OS << "  " << Signature << ",\n";

    // And to the convert function.
    CvtOS << "  case " << Signature << ":\n";
    CurIndex = 0;
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];

      // Add the implicit operands.
      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";

      CvtOS << "    Operands[" << MIOperandList[i].second 
         << "]." << Op.Class->RenderMethod 
         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
      CurIndex += Op.OperandInfo->MINumOperands;
    }
    
    // And add trailing implicit operands.
    for (; CurIndex != NumMIOperands; ++CurIndex)
      CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
    CvtOS << "    break;\n";
  }

  // Finish the convert function.

  CvtOS << "  }\n";
  CvtOS << "  return false;\n";
  CvtOS << "}\n\n";

  // Finish the enum, and drop the convert function after it.

  OS << "  NumConversionVariants\n";
  OS << "};\n\n";
  
  OS << CvtOS.str();
}

/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
                                      std::vector<ClassInfo*> &Infos,
                                      raw_ostream &OS) {
  OS << "namespace {\n\n";

  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
     << "/// instruction matching.\n";
  OS << "enum MatchClassKind {\n";
  OS << "  InvalidMatchClass = 0,\n";
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
         ie = Infos.end(); it != ie; ++it) {
    ClassInfo &CI = **it;
    OS << "  " << CI.Name << ", // ";
    if (CI.Kind == ClassInfo::Token) {
      OS << "'" << CI.ValueName << "'\n";
    } else if (CI.Kind == ClassInfo::Register) {
      if (!CI.ValueName.empty())
        OS << "register class '" << CI.ValueName << "'\n";
      else
        OS << "derived register class\n";
    } else {
      OS << "user defined class '" << CI.ValueName << "'\n";
    }
  }
  OS << "  NumMatchClassKinds\n";
  OS << "};\n\n";

  OS << "}\n\n";
}

/// EmitClassifyOperand - Emit the function to classify an operand.
static void EmitClassifyOperand(CodeGenTarget &Target,
                                std::vector<ClassInfo*> &Infos,
                                raw_ostream &OS) {
  OS << "static MatchClassKind ClassifyOperand("
     << Target.getName() << "Operand &Operand) {\n";
  OS << "  if (Operand.isToken())\n";
  OS << "    return MatchTokenString(Operand.getToken());\n\n";
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
         ie = Infos.end(); it != ie; ++it) {
    ClassInfo &CI = **it;

    if (CI.Kind != ClassInfo::Token) {
      OS << "  if (Operand." << CI.PredicateMethod << "())\n";
      OS << "    return " << CI.Name << ";\n\n";
    }
  }
  OS << "  return InvalidMatchClass;\n";
  OS << "}\n\n";
}

typedef std::pair<std::string, std::string> StringPair;

/// FindFirstNonCommonLetter - Find the first character in the keys of the
/// string pairs that is not shared across the whole set of strings.  All
/// strings are assumed to have the same length.
static unsigned 
FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
  assert(!Matches.empty());
  for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
    // Check to see if letter i is the same across the set.
    char Letter = Matches[0]->first[i];
    
    for (unsigned str = 0, e = Matches.size(); str != e; ++str)
      if (Matches[str]->first[i] != Letter)
        return i;
  }
  
  return Matches[0]->first.size();
}

/// EmitStringMatcherForChar - Given a set of strings that are known to be the
/// same length and whose characters leading up to CharNo are the same, emit
/// code to verify that CharNo and later are the same.
///
/// \return - True if control can leave the emitted code fragment.
static bool EmitStringMatcherForChar(const std::string &StrVariableName,
                                  const std::vector<const StringPair*> &Matches,
                                     unsigned CharNo, unsigned IndentCount,
                                     raw_ostream &OS) {
  assert(!Matches.empty() && "Must have at least one string to match!");
  std::string Indent(IndentCount*2+4, ' ');

  // If we have verified that the entire string matches, we're done: output the
  // matching code.
  if (CharNo == Matches[0]->first.size()) {
    assert(Matches.size() == 1 && "Had duplicate keys to match on");
    
    // FIXME: If Matches[0].first has embeded \n, this will be bad.
    OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
       << "\"\n";
    return false;
  }
  
  // Bucket the matches by the character we are comparing.
  std::map<char, std::vector<const StringPair*> > MatchesByLetter;
  
  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
    MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
  

  // If we have exactly one bucket to match, see how many characters are common
  // across the whole set and match all of them at once.
  if (MatchesByLetter.size() == 1) {
    unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
    unsigned NumChars = FirstNonCommonLetter-CharNo;
    
    // Emit code to break out if the prefix doesn't match.
    if (NumChars == 1) {
      // Do the comparison with if (Str[1] != 'f')
      // FIXME: Need to escape general characters.
      OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
         << Matches[0]->first[CharNo] << "')\n";
      OS << Indent << "  break;\n";
    } else {
      // Do the comparison with if (Str.substr(1,3) != "foo").    
      // FIXME: Need to escape general strings.
      OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
         << NumChars << ") != \"";
      OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
      OS << Indent << "  break;\n";
    }
    
    return EmitStringMatcherForChar(StrVariableName, Matches, 
                                    FirstNonCommonLetter, IndentCount, OS);
  }
  
  // Otherwise, we have multiple possible things, emit a switch on the
  // character.
  OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
  OS << Indent << "default: break;\n";
  
  for (std::map<char, std::vector<const StringPair*> >::iterator LI = 
       MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
    // TODO: escape hard stuff (like \n) if we ever care about it.
    OS << Indent << "case '" << LI->first << "':\t // "
       << LI->second.size() << " strings to match.\n";
    if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
                                 IndentCount+1, OS))
      OS << Indent << "  break;\n";
  }
  
  OS << Indent << "}\n";
  return true;
}


/// EmitStringMatcher - Given a list of strings and code to execute when they
/// match, output a simple switch tree to classify the input string.
/// 
/// If a match is found, the code in Vals[i].second is executed; control must
/// not exit this code fragment.  If nothing matches, execution falls through.
///
/// \param StrVariableName - The name of the variable to test.
static void EmitStringMatcher(const std::string &StrVariableName,
                              const std::vector<StringPair> &Matches,
                              raw_ostream &OS) {
  // First level categorization: group strings by length.
  std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
  
  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
    MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
  
  // Output a switch statement on length and categorize the elements within each
  // bin.
  OS << "  switch (" << StrVariableName << ".size()) {\n";
  OS << "  default: break;\n";
  
  for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
       MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
    OS << "  case " << LI->first << ":\t // " << LI->second.size()
       << " strings to match.\n";
    if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
      OS << "    break;\n";
  }
  
  OS << "  }\n";
}


/// EmitMatchTokenString - Emit the function to match a token string to the
/// appropriate match class value.
static void EmitMatchTokenString(CodeGenTarget &Target,
                                 std::vector<ClassInfo*> &Infos,
                                 raw_ostream &OS) {
  // Construct the match list.
  std::vector<StringPair> Matches;
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
         ie = Infos.end(); it != ie; ++it) {
    ClassInfo &CI = **it;

    if (CI.Kind == ClassInfo::Token)
      Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
  }

  OS << "static MatchClassKind MatchTokenString(const StringRef &Name) {\n";

  EmitStringMatcher("Name", Matches, OS);

  OS << "  return InvalidMatchClass;\n";
  OS << "}\n\n";
}

/// EmitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
                                  raw_ostream &OS) {
  // Construct the match list.
  std::vector<StringPair> Matches;
  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
    const CodeGenRegister &Reg = Target.getRegisters()[i];
    if (Reg.TheDef->getValueAsString("AsmName").empty())
      continue;

    Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
                                 "return " + utostr(i + 1) + ";"));
  }
  
  OS << "unsigned " << Target.getName() 
     << AsmParser->getValueAsString("AsmParserClassName")
     << "::MatchRegisterName(const StringRef &Name) {\n";

  EmitStringMatcher("Name", Matches, OS);
  
  OS << "  return 0;\n";
  OS << "}\n\n";
}

void AsmMatcherEmitter::run(raw_ostream &OS) {
  CodeGenTarget Target;
  Record *AsmParser = Target.getAsmParser();
  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");

  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);

  // Emit the function to match a register name to number.
  EmitMatchRegisterName(Target, AsmParser, OS);

  // Compute the information on the instructions to match.
  AsmMatcherInfo Info;
  Info.BuildInfo(Target);

  // Sort the instruction table using the partial order on classes.
  std::sort(Info.Instructions.begin(), Info.Instructions.end(),
            less_ptr<InstructionInfo>());
  
  DEBUG_WITH_TYPE("instruction_info", {
      for (std::vector<InstructionInfo*>::iterator 
             it = Info.Instructions.begin(), ie = Info.Instructions.end(); 
           it != ie; ++it)
        (*it)->dump();
    });

  // Check for ambiguous instructions.
  unsigned NumAmbiguous = 0;
  for (std::vector<InstructionInfo*>::const_iterator it =
         Info.Instructions.begin(), ie = Info.Instructions.end() - 1;
       it != ie;) {
    InstructionInfo &II = **it;
    ++it;

    InstructionInfo &Next = **it;
    
    if (!(II < Next)){
      DEBUG_WITH_TYPE("ambiguous_instrs", {
          errs() << "warning: ambiguous instruction match:\n";
          II.dump();
          errs() << "\nis incomparable with:\n";
          Next.dump();
          errs() << "\n\n";
        });
      ++NumAmbiguous;
    }
  }
  if (NumAmbiguous)
    DEBUG_WITH_TYPE("ambiguous_instrs", {
        errs() << "warning: " << NumAmbiguous 
               << " ambiguous instructions!\n";
      });

  // Generate the unified function to convert operands into an MCInst.
  EmitConvertToMCInst(Target, Info.Instructions, OS);

  // Emit the enumeration for classes which participate in matching.
  EmitMatchClassEnumeration(Target, Info.Classes, OS);

  // Emit the routine to match token strings to their match class.
  EmitMatchTokenString(Target, Info.Classes, OS);

  // Emit the routine to classify an operand.
  EmitClassifyOperand(Target, Info.Classes, OS);

  // Finally, build the match function.

  size_t MaxNumOperands = 0;
  for (std::vector<InstructionInfo*>::const_iterator it =
         Info.Instructions.begin(), ie = Info.Instructions.end();
       it != ie; ++it)
    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
  
  OS << "bool " << Target.getName() << ClassName
     << "::MatchInstruction(" 
     << "SmallVectorImpl<" << Target.getName() << "Operand> &Operands, "
     << "MCInst &Inst) {\n";

  // Emit the static match table; unused classes get initalized to 0 which is
  // guaranteed to be InvalidMatchClass.
  //
  // FIXME: We can reduce the size of this table very easily. First, we change
  // it so that store the kinds in separate bit-fields for each index, which
  // only needs to be the max width used for classes at that index (we also need
  // to reject based on this during classification). If we then make sure to
  // order the match kinds appropriately (putting mnemonics last), then we
  // should only end up using a few bits for each class, especially the ones
  // following the mnemonic.
  OS << "  static const struct MatchEntry {\n";
  OS << "    unsigned Opcode;\n";
  OS << "    ConversionKind ConvertFn;\n";
  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
  OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";

  for (std::vector<InstructionInfo*>::const_iterator it =
         Info.Instructions.begin(), ie = Info.Instructions.end();
       it != ie; ++it) {
    InstructionInfo &II = **it;

    OS << "    { " << Target.getName() << "::" << II.InstrName
       << ", " << II.ConversionFnKind << ", { ";
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
      InstructionInfo::Operand &Op = II.Operands[i];
      
      if (i) OS << ", ";
      OS << Op.Class->Name;
    }
    OS << " } },\n";
  }

  OS << "  };\n\n";

  // Emit code to compute the class list for this operand vector.
  OS << "  // Eliminate obvious mismatches.\n";
  OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
  OS << "    return true;\n\n";

  OS << "  // Compute the class list for this operand vector.\n";
  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
  OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
  OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";

  OS << "    // Check for invalid operands before matching.\n";
  OS << "    if (Classes[i] == InvalidMatchClass)\n";
  OS << "      return true;\n";
  OS << "  }\n\n";

  OS << "  // Mark unused classes.\n";
  OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
     << "i != e; ++i)\n";
  OS << "    Classes[i] = InvalidMatchClass;\n\n";

  // Emit code to search the table.
  OS << "  // Search the table.\n";
  OS << "  for (const MatchEntry *it = MatchTable, "
     << "*ie = MatchTable + " << Info.Instructions.size()
     << "; it != ie; ++it) {\n";
  for (unsigned i = 0; i != MaxNumOperands; ++i) {
    OS << "    if (Classes[" << i << "] != it->Classes[" << i << "])\n";
    OS << "      continue;\n";
  }
  OS << "\n";
  OS << "    return ConvertToMCInst(it->ConvertFn, Inst, "
     << "it->Opcode, Operands);\n";
  OS << "  }\n\n";

  OS << "  return true;\n";
  OS << "}\n\n";
}