summaryrefslogtreecommitdiff
path: root/include/llvm/Target
diff options
context:
space:
mode:
authorRafael Espindola <rafael.espindola@gmail.com>2014-03-07 05:32:03 +0000
committerRafael Espindola <rafael.espindola@gmail.com>2014-03-07 05:32:03 +0000
commitec7ab535706e9a205c1cb84a86b33edc56117900 (patch)
tree01d28ac477336bc683fc60a17ce014a74968eb38 /include/llvm/Target
parent49dd5e831bc4ec55b91f0ffd293ecf2a56cb1568 (diff)
downloadllvm-ec7ab535706e9a205c1cb84a86b33edc56117900.tar.gz
llvm-ec7ab535706e9a205c1cb84a86b33edc56117900.tar.bz2
llvm-ec7ab535706e9a205c1cb84a86b33edc56117900.tar.xz
clang-format a bit of code to make the next patch easier to read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203203 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include/llvm/Target')
-rw-r--r--include/llvm/Target/TargetOpcodes.h168
1 files changed, 84 insertions, 84 deletions
diff --git a/include/llvm/Target/TargetOpcodes.h b/include/llvm/Target/TargetOpcodes.h
index bd74cb9c0f..d6225a4bc0 100644
--- a/include/llvm/Target/TargetOpcodes.h
+++ b/include/llvm/Target/TargetOpcodes.h
@@ -22,90 +22,90 @@ namespace llvm {
/// must be the same as in CodeGenTarget.cpp.
///
namespace TargetOpcode {
- enum {
- PHI = 0,
- INLINEASM = 1,
- PROLOG_LABEL = 2,
- EH_LABEL = 3,
- GC_LABEL = 4,
-
- /// KILL - This instruction is a noop that is used only to adjust the
- /// liveness of registers. This can be useful when dealing with
- /// sub-registers.
- KILL = 5,
-
- /// EXTRACT_SUBREG - This instruction takes two operands: a register
- /// that has subregisters, and a subregister index. It returns the
- /// extracted subregister value. This is commonly used to implement
- /// truncation operations on target architectures which support it.
- EXTRACT_SUBREG = 6,
-
- /// INSERT_SUBREG - This instruction takes three operands: a register that
- /// has subregisters, a register providing an insert value, and a
- /// subregister index. It returns the value of the first register with the
- /// value of the second register inserted. The first register is often
- /// defined by an IMPLICIT_DEF, because it is commonly used to implement
- /// anyext operations on target architectures which support it.
- INSERT_SUBREG = 7,
-
- /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
- IMPLICIT_DEF = 8,
-
- /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except that
- /// the first operand is an immediate integer constant. This constant is
- /// often zero, because it is commonly used to assert that the instruction
- /// defining the register implicitly clears the high bits.
- SUBREG_TO_REG = 9,
-
- /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
- /// register-to-register copy into a specific register class. This is only
- /// used between instruction selection and MachineInstr creation, before
- /// virtual registers have been created for all the instructions, and it's
- /// only needed in cases where the register classes implied by the
- /// instructions are insufficient. It is emitted as a COPY MachineInstr.
- COPY_TO_REGCLASS = 10,
-
- /// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
- DBG_VALUE = 11,
-
- /// REG_SEQUENCE - This variadic instruction is used to form a register that
- /// represents a consecutive sequence of sub-registers. It's used as a
- /// register coalescing / allocation aid and must be eliminated before code
- /// emission.
- // In SDNode form, the first operand encodes the register class created by
- // the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
- // pair. Once it has been lowered to a MachineInstr, the regclass operand
- // is no longer present.
- /// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
- /// After register coalescing references of v1024 should be replace with
- /// v1027:3, v1025 with v1027:4, etc.
- REG_SEQUENCE = 12,
-
- /// COPY - Target-independent register copy. This instruction can also be
- /// used to copy between subregisters of virtual registers.
- COPY = 13,
-
- /// BUNDLE - This instruction represents an instruction bundle. Instructions
- /// which immediately follow a BUNDLE instruction which are marked with
- /// 'InsideBundle' flag are inside the bundle.
- BUNDLE = 14,
-
- /// Lifetime markers.
- LIFETIME_START = 15,
- LIFETIME_END = 16,
-
- /// A Stackmap instruction captures the location of live variables at its
- /// position in the instruction stream. It is followed by a shadow of bytes
- /// that must lie within the function and not contain another stackmap.
- STACKMAP = 17,
-
- /// Patchable call instruction - this instruction represents a call to a
- /// constant address, followed by a series of NOPs. It is intended to
- /// support optimizations for dynamic languages (such as javascript) that
- /// rewrite calls to runtimes with more efficient code sequences.
- /// This also implies a stack map.
- PATCHPOINT = 18
- };
+enum {
+ PHI = 0,
+ INLINEASM = 1,
+ PROLOG_LABEL = 2,
+ EH_LABEL = 3,
+ GC_LABEL = 4,
+
+ /// KILL - This instruction is a noop that is used only to adjust the
+ /// liveness of registers. This can be useful when dealing with
+ /// sub-registers.
+ KILL = 5,
+
+ /// EXTRACT_SUBREG - This instruction takes two operands: a register
+ /// that has subregisters, and a subregister index. It returns the
+ /// extracted subregister value. This is commonly used to implement
+ /// truncation operations on target architectures which support it.
+ EXTRACT_SUBREG = 6,
+
+ /// INSERT_SUBREG - This instruction takes three operands: a register that
+ /// has subregisters, a register providing an insert value, and a
+ /// subregister index. It returns the value of the first register with the
+ /// value of the second register inserted. The first register is often
+ /// defined by an IMPLICIT_DEF, because it is commonly used to implement
+ /// anyext operations on target architectures which support it.
+ INSERT_SUBREG = 7,
+
+ /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
+ IMPLICIT_DEF = 8,
+
+ /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except that
+ /// the first operand is an immediate integer constant. This constant is
+ /// often zero, because it is commonly used to assert that the instruction
+ /// defining the register implicitly clears the high bits.
+ SUBREG_TO_REG = 9,
+
+ /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
+ /// register-to-register copy into a specific register class. This is only
+ /// used between instruction selection and MachineInstr creation, before
+ /// virtual registers have been created for all the instructions, and it's
+ /// only needed in cases where the register classes implied by the
+ /// instructions are insufficient. It is emitted as a COPY MachineInstr.
+ COPY_TO_REGCLASS = 10,
+
+ /// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
+ DBG_VALUE = 11,
+
+ /// REG_SEQUENCE - This variadic instruction is used to form a register that
+ /// represents a consecutive sequence of sub-registers. It's used as a
+ /// register coalescing / allocation aid and must be eliminated before code
+ /// emission.
+ // In SDNode form, the first operand encodes the register class created by
+ // the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
+ // pair. Once it has been lowered to a MachineInstr, the regclass operand
+ // is no longer present.
+ /// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
+ /// After register coalescing references of v1024 should be replace with
+ /// v1027:3, v1025 with v1027:4, etc.
+ REG_SEQUENCE = 12,
+
+ /// COPY - Target-independent register copy. This instruction can also be
+ /// used to copy between subregisters of virtual registers.
+ COPY = 13,
+
+ /// BUNDLE - This instruction represents an instruction bundle. Instructions
+ /// which immediately follow a BUNDLE instruction which are marked with
+ /// 'InsideBundle' flag are inside the bundle.
+ BUNDLE = 14,
+
+ /// Lifetime markers.
+ LIFETIME_START = 15,
+ LIFETIME_END = 16,
+
+ /// A Stackmap instruction captures the location of live variables at its
+ /// position in the instruction stream. It is followed by a shadow of bytes
+ /// that must lie within the function and not contain another stackmap.
+ STACKMAP = 17,
+
+ /// Patchable call instruction - this instruction represents a call to a
+ /// constant address, followed by a series of NOPs. It is intended to
+ /// support optimizations for dynamic languages (such as javascript) that
+ /// rewrite calls to runtimes with more efficient code sequences.
+ /// This also implies a stack map.
+ PATCHPOINT = 18
+};
} // end namespace TargetOpcode
} // end namespace llvm