summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
diff options
context:
space:
mode:
authorEvan Cheng <evan.cheng@apple.com>2006-05-11 23:55:42 +0000
committerEvan Cheng <evan.cheng@apple.com>2006-05-11 23:55:42 +0000
commite165a78551a91d8420cd8f074d97701e8788f8b5 (patch)
tree590d6035b42a39a608f93d2f39b24ec44b43f46f /lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
parente993cc27ad9fd84e6aaf652c94eb9ca0cb63a898 (diff)
downloadllvm-e165a78551a91d8420cd8f074d97701e8788f8b5.tar.gz
llvm-e165a78551a91d8420cd8f074d97701e8788f8b5.tar.bz2
llvm-e165a78551a91d8420cd8f074d97701e8788f8b5.tar.xz
Refactor scheduler code. Move register-reduction list scheduler to a
separate file. Added an initial implementation of top-down register pressure reduction list scheduler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28226 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp')
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp813
1 files changed, 813 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
new file mode 100644
index 0000000000..acd6904ce2
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -0,0 +1,813 @@
+//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Evan Cheng and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements bottom-up and top-down register pressure reduction list
+// schedulers, using standard algorithms. The basic approach uses a priority
+// queue of available nodes to schedule. One at a time, nodes are taken from
+// the priority queue (thus in priority order), checked for legality to
+// schedule, and emitted if legal.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sched"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+#include <climits>
+#include <iostream>
+#include <queue>
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+namespace {
+ cl::opt<bool> SchedLowerDefNUse("sched-lower-defnuse", cl::Hidden);
+}
+
+namespace {
+//===----------------------------------------------------------------------===//
+/// ScheduleDAGRRList - The actual register reduction list scheduler
+/// implementation. This supports both top-down and bottom-up scheduling.
+///
+
+class ScheduleDAGRRList : public ScheduleDAG {
+private:
+ /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
+ /// it is top-down.
+ bool isBottomUp;
+
+ /// AvailableQueue - The priority queue to use for the available SUnits.
+ ///
+ SchedulingPriorityQueue *AvailableQueue;
+
+public:
+ ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
+ const TargetMachine &tm, bool isbottomup,
+ SchedulingPriorityQueue *availqueue)
+ : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
+ AvailableQueue(availqueue) {
+ }
+
+ ~ScheduleDAGRRList() {
+ delete AvailableQueue;
+ }
+
+ void Schedule();
+
+private:
+ void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
+ void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
+ void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle);
+ void ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle);
+ void ListScheduleTopDown();
+ void ListScheduleBottomUp();
+};
+} // end anonymous namespace
+
+
+/// Schedule - Schedule the DAG using list scheduling.
+void ScheduleDAGRRList::Schedule() {
+ DEBUG(std::cerr << "********** List Scheduling **********\n");
+
+ // Build scheduling units.
+ BuildSchedUnits();
+
+ CalculateDepths();
+ CalculateHeights();
+ DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(&DAG));
+
+ AvailableQueue->initNodes(SUnits);
+
+ // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
+ if (isBottomUp)
+ ListScheduleBottomUp();
+ else
+ ListScheduleTopDown();
+
+ AvailableQueue->releaseState();
+
+ DEBUG(std::cerr << "*** Final schedule ***\n");
+ DEBUG(dumpSchedule());
+ DEBUG(std::cerr << "\n");
+
+ // Emit in scheduled order
+ EmitSchedule();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Bottom-Up Scheduling
+//===----------------------------------------------------------------------===//
+
+static const TargetRegisterClass *getRegClass(SUnit *SU,
+ const TargetInstrInfo *TII,
+ const MRegisterInfo *MRI,
+ SSARegMap *RegMap) {
+ if (SU->Node->isTargetOpcode()) {
+ unsigned Opc = SU->Node->getTargetOpcode();
+ const TargetInstrDescriptor &II = TII->get(Opc);
+ return II.OpInfo->RegClass;
+ } else {
+ assert(SU->Node->getOpcode() == ISD::CopyFromReg);
+ unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
+ if (MRegisterInfo::isVirtualRegister(SrcReg))
+ return RegMap->getRegClass(SrcReg);
+ else {
+ for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
+ E = MRI->regclass_end(); I != E; ++I)
+ if ((*I)->hasType(SU->Node->getValueType(0)) &&
+ (*I)->contains(SrcReg))
+ return *I;
+ assert(false && "Couldn't find register class for reg copy!");
+ }
+ return NULL;
+ }
+}
+
+static unsigned getNumResults(SUnit *SU) {
+ unsigned NumResults = 0;
+ for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
+ MVT::ValueType VT = SU->Node->getValueType(i);
+ if (VT != MVT::Other && VT != MVT::Flag)
+ NumResults++;
+ }
+ return NumResults;
+}
+
+/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
+/// the Available queue is the count reaches zero. Also update its cycle bound.
+void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
+ unsigned CurCycle) {
+ // FIXME: the distance between two nodes is not always == the predecessor's
+ // latency. For example, the reader can very well read the register written
+ // by the predecessor later than the issue cycle. It also depends on the
+ // interrupt model (drain vs. freeze).
+ PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
+
+ if (!isChain)
+ PredSU->NumSuccsLeft--;
+ else
+ PredSU->NumChainSuccsLeft--;
+
+#ifndef NDEBUG
+ if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
+ std::cerr << "*** List scheduling failed! ***\n";
+ PredSU->dump(&DAG);
+ std::cerr << " has been released too many times!\n";
+ assert(0);
+ }
+#endif
+
+ if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
+ // EntryToken has to go last! Special case it here.
+ if (PredSU->Node->getOpcode() != ISD::EntryToken) {
+ PredSU->isAvailable = true;
+ AvailableQueue->push(PredSU);
+ }
+ }
+}
+
+/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
+/// count of its predecessors. If a predecessor pending count is zero, add it to
+/// the Available queue.
+void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle) {
+ DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(SU->dump(&DAG));
+ SU->Cycle = CurCycle;
+
+ AvailableQueue->ScheduledNode(SU);
+ Sequence.push_back(SU);
+
+ // Bottom up: release predecessors
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+ E = SU->Preds.end(); I != E; ++I)
+ ReleasePred(I->first, I->second, CurCycle);
+ SU->isScheduled = true;
+ CurCycle++;
+}
+
+/// isReady - True if node's lower cycle bound is less or equal to the current
+/// scheduling cycle. Always true if all nodes have uniform latency 1.
+static inline bool isReady(SUnit *SU, unsigned CurCycle) {
+ return SU->CycleBound <= CurCycle;
+}
+
+/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
+/// schedulers.
+void ScheduleDAGRRList::ListScheduleBottomUp() {
+ unsigned CurCycle = 0;
+ // Add root to Available queue.
+ AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
+
+ // While Available queue is not empty, grab the node with the highest
+ // priority. If it is not ready put it back. Schedule the node.
+ std::vector<SUnit*> NotReady;
+ SUnit *CurNode = NULL;
+ while (!AvailableQueue->empty()) {
+ SUnit *CurNode = AvailableQueue->pop();
+ while (!isReady(CurNode, CurCycle)) {
+ NotReady.push_back(CurNode);
+ CurNode = AvailableQueue->pop();
+ }
+
+ // Add the nodes that aren't ready back onto the available list.
+ AvailableQueue->push_all(NotReady);
+ NotReady.clear();
+
+ ScheduleNodeBottomUp(CurNode, CurCycle);
+ }
+
+ // Add entry node last
+ if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
+ SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+ Sequence.push_back(Entry);
+ }
+
+ // Reverse the order if it is bottom up.
+ std::reverse(Sequence.begin(), Sequence.end());
+
+
+#ifndef NDEBUG
+ // Verify that all SUnits were scheduled.
+ bool AnyNotSched = false;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
+ if (!AnyNotSched)
+ std::cerr << "*** List scheduling failed! ***\n";
+ SUnits[i].dump(&DAG);
+ std::cerr << "has not been scheduled!\n";
+ AnyNotSched = true;
+ }
+ }
+ assert(!AnyNotSched);
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Down Scheduling
+//===----------------------------------------------------------------------===//
+
+/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
+/// the PendingQueue if the count reaches zero.
+void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
+ unsigned CurCycle) {
+ // FIXME: the distance between two nodes is not always == the predecessor's
+ // latency. For example, the reader can very well read the register written
+ // by the predecessor later than the issue cycle. It also depends on the
+ // interrupt model (drain vs. freeze).
+ SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
+
+ if (!isChain)
+ SuccSU->NumPredsLeft--;
+ else
+ SuccSU->NumChainPredsLeft--;
+
+#ifndef NDEBUG
+ if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
+ std::cerr << "*** List scheduling failed! ***\n";
+ SuccSU->dump(&DAG);
+ std::cerr << " has been released too many times!\n";
+ assert(0);
+ }
+#endif
+
+ if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
+ SuccSU->isAvailable = true;
+ AvailableQueue->push(SuccSU);
+ }
+}
+
+
+/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
+/// count of its successors. If a successor pending count is zero, add it to
+/// the Available queue.
+void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle) {
+ DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(SU->dump(&DAG));
+ SU->Cycle = CurCycle;
+
+ AvailableQueue->ScheduledNode(SU);
+ Sequence.push_back(SU);
+
+ // Top down: release successors
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
+ E = SU->Succs.end(); I != E; ++I)
+ ReleaseSucc(I->first, I->second, CurCycle);
+ SU->isScheduled = true;
+ CurCycle++;
+}
+
+void ScheduleDAGRRList::ListScheduleTopDown() {
+ unsigned CurCycle = 0;
+ SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+
+ // All leaves to Available queue.
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ // It is available if it has no predecessors.
+ if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
+ AvailableQueue->push(&SUnits[i]);
+ SUnits[i].isAvailable = true;
+ }
+ }
+
+ // Emit the entry node first.
+ ScheduleNodeTopDown(Entry, CurCycle);
+
+ // While Available queue is not empty, grab the node with the highest
+ // priority. If it is not ready put it back. Schedule the node.
+ std::vector<SUnit*> NotReady;
+ SUnit *CurNode = NULL;
+ while (!AvailableQueue->empty()) {
+ SUnit *CurNode = AvailableQueue->pop();
+ while (!isReady(CurNode, CurCycle)) {
+ NotReady.push_back(CurNode);
+ CurNode = AvailableQueue->pop();
+ }
+
+ // Add the nodes that aren't ready back onto the available list.
+ AvailableQueue->push_all(NotReady);
+ NotReady.clear();
+
+ ScheduleNodeTopDown(CurNode, CurCycle);
+ }
+
+
+#ifndef NDEBUG
+ // Verify that all SUnits were scheduled.
+ bool AnyNotSched = false;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ if (!SUnits[i].isScheduled) {
+ if (!AnyNotSched)
+ std::cerr << "*** List scheduling failed! ***\n";
+ SUnits[i].dump(&DAG);
+ std::cerr << "has not been scheduled!\n";
+ AnyNotSched = true;
+ }
+ }
+ assert(!AnyNotSched);
+#endif
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// RegReductionPriorityQueue Implementation
+//===----------------------------------------------------------------------===//
+//
+// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
+// to reduce register pressure.
+//
+namespace {
+ template<class SF>
+ class RegReductionPriorityQueue;
+
+ /// Sorting functions for the Available queue.
+ struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+ RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
+ bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
+ bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
+
+ bool operator()(const SUnit* left, const SUnit* right) const;
+ };
+
+ struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+ RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
+ td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
+ td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
+
+ bool operator()(const SUnit* left, const SUnit* right) const;
+ };
+} // end anonymous namespace
+
+namespace {
+ template<class SF>
+ class RegReductionPriorityQueue : public SchedulingPriorityQueue {
+ std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
+
+ public:
+ RegReductionPriorityQueue() :
+ Queue(SF(this)) {}
+
+ virtual void initNodes(const std::vector<SUnit> &sunits) {}
+ virtual void releaseState() {}
+
+ virtual int getSethiUllmanNumber(unsigned NodeNum) const {
+ return 0;
+ }
+
+ bool empty() const { return Queue.empty(); }
+
+ void push(SUnit *U) {
+ Queue.push(U);
+ }
+ void push_all(const std::vector<SUnit *> &Nodes) {
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
+ Queue.push(Nodes[i]);
+ }
+
+ SUnit *pop() {
+ SUnit *V = Queue.top();
+ Queue.pop();
+ return V;
+ }
+ };
+
+ template<class SF>
+ class BURegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
+ // SUnits - The SUnits for the current graph.
+ const std::vector<SUnit> *SUnits;
+
+ // SethiUllmanNumbers - The SethiUllman number for each node.
+ std::vector<int> SethiUllmanNumbers;
+
+ public:
+ BURegReductionPriorityQueue() {}
+
+ void initNodes(const std::vector<SUnit> &sunits) {
+ SUnits = &sunits;
+ // Add pseudo dependency edges for two-address nodes.
+ if (SchedLowerDefNUse)
+ AddPseudoTwoAddrDeps();
+ // Calculate node priorities.
+ CalculatePriorities();
+ }
+
+ void releaseState() {
+ SUnits = 0;
+ SethiUllmanNumbers.clear();
+ }
+
+ int getSethiUllmanNumber(unsigned NodeNum) const {
+ assert(NodeNum < SethiUllmanNumbers.size());
+ return SethiUllmanNumbers[NodeNum];
+ }
+
+ private:
+ void AddPseudoTwoAddrDeps();
+ void CalculatePriorities();
+ int CalcNodePriority(const SUnit *SU);
+ };
+
+
+ template<class SF>
+ class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
+ // SUnits - The SUnits for the current graph.
+ const std::vector<SUnit> *SUnits;
+
+ // SethiUllmanNumbers - The SethiUllman number for each node.
+ std::vector<int> SethiUllmanNumbers;
+
+ public:
+ TDRegReductionPriorityQueue() {}
+
+ void initNodes(const std::vector<SUnit> &sunits) {
+ SUnits = &sunits;
+ // Calculate node priorities.
+ CalculatePriorities();
+ }
+
+ void releaseState() {
+ SUnits = 0;
+ SethiUllmanNumbers.clear();
+ }
+
+ int getSethiUllmanNumber(unsigned NodeNum) const {
+ assert(NodeNum < SethiUllmanNumbers.size());
+ return SethiUllmanNumbers[NodeNum];
+ }
+
+ private:
+ void CalculatePriorities();
+ int CalcNodePriority(const SUnit *SU);
+ };
+}
+
+// Bottom up
+bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
+ unsigned LeftNum = left->NodeNum;
+ unsigned RightNum = right->NodeNum;
+ bool LIsTarget = left->Node->isTargetOpcode();
+ bool RIsTarget = right->Node->isTargetOpcode();
+ int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
+ int RPriority = SPQ->getSethiUllmanNumber(RightNum);
+ bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0);
+ bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0);
+ int LBonus = 0;
+ int RBonus = 0;
+
+ // Schedule floaters (e.g. load from some constant address) and those nodes
+ // with a single predecessor each first. They maintain / reduce register
+ // pressure.
+ if (LIsFloater)
+ LBonus += 2;
+ if (RIsFloater)
+ RBonus += 2;
+
+ if (!SchedLowerDefNUse) {
+ // Special tie breaker: if two nodes share a operand, the one that use it
+ // as a def&use operand is preferred.
+ if (LIsTarget && RIsTarget) {
+ if (left->isTwoAddress && !right->isTwoAddress) {
+ SDNode *DUNode = left->Node->getOperand(0).Val;
+ if (DUNode->isOperand(right->Node))
+ LBonus += 2;
+ }
+ if (!left->isTwoAddress && right->isTwoAddress) {
+ SDNode *DUNode = right->Node->getOperand(0).Val;
+ if (DUNode->isOperand(left->Node))
+ RBonus += 2;
+ }
+ }
+ }
+
+ if (LPriority+LBonus < RPriority+RBonus)
+ return true;
+ else if (LPriority+LBonus == RPriority+RBonus)
+ if (left->NumPredsLeft > right->NumPredsLeft)
+ return true;
+ else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus)
+ if (left->CycleBound > right->CycleBound)
+ return true;
+ return false;
+}
+
+static inline bool isCopyFromLiveIn(const SUnit *SU) {
+ SDNode *N = SU->Node;
+ return N->getOpcode() == ISD::CopyFromReg &&
+ N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
+}
+
+// FIXME: This is probably too slow!
+static void isReachable(SUnit *SU, SUnit *TargetSU,
+ std::set<SUnit *> &Visited, bool &Reached) {
+ if (Reached) return;
+ if (SU == TargetSU) {
+ Reached = true;
+ return;
+ }
+ if (!Visited.insert(SU).second) return;
+
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+ E = SU->Preds.end(); I != E; ++I)
+ isReachable(I->first, TargetSU, Visited, Reached);
+}
+
+static bool isReachable(SUnit *SU, SUnit *TargetSU) {
+ std::set<SUnit *> Visited;
+ bool Reached = false;
+ isReachable(SU, TargetSU, Visited, Reached);
+ return Reached;
+}
+
+static SUnit *getDefUsePredecessor(SUnit *SU) {
+ SDNode *DU = SU->Node->getOperand(0).Val;
+ for (std::set<std::pair<SUnit*, bool> >::iterator
+ I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+ if (I->second) continue; // ignore chain preds
+ SUnit *PredSU = I->first;
+ if (PredSU->Node == DU)
+ return PredSU;
+ }
+
+ // Must be flagged.
+ return NULL;
+}
+
+static bool canClobber(SUnit *SU, SUnit *Op) {
+ if (SU->isTwoAddress)
+ return Op == getDefUsePredecessor(SU);
+ return false;
+}
+
+/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
+/// it as a def&use operand. Add a pseudo control edge from it to the other
+/// node (if it won't create a cycle) so the two-address one will be scheduled
+/// first (lower in the schedule).
+template<class SF>
+void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
+ SUnit *SU = (SUnit *)&((*SUnits)[i]);
+ SDNode *Node = SU->Node;
+ if (!Node->isTargetOpcode())
+ continue;
+
+ if (SU->isTwoAddress) {
+ unsigned Depth = SU->Node->getNodeDepth();
+ SUnit *DUSU = getDefUsePredecessor(SU);
+ if (!DUSU) continue;
+
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(),
+ E = DUSU->Succs.end(); I != E; ++I) {
+ SUnit *SuccSU = I->first;
+ if (SuccSU != SU && !canClobber(SuccSU, DUSU)) {
+ if (SuccSU->Node->getNodeDepth() <= Depth+2 &&
+ !isReachable(SuccSU, SU)) {
+ DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
+ << " to SU #" << SuccSU->NodeNum << "\n");
+ if (SU->Preds.insert(std::make_pair(SuccSU, true)).second)
+ SU->NumChainPredsLeft++;
+ if (SuccSU->Succs.insert(std::make_pair(SU, true)).second)
+ SuccSU->NumChainSuccsLeft++;
+ }
+ }
+ }
+ }
+ }
+}
+
+/// CalcNodePriority - Priority is the Sethi Ullman number.
+/// Smaller number is the higher priority.
+template<class SF>
+int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
+ int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
+ if (SethiUllmanNumber != 0)
+ return SethiUllmanNumber;
+
+ unsigned Opc = SU->Node->getOpcode();
+ if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+ SethiUllmanNumber = INT_MAX - 10;
+ else if (SU->NumSuccsLeft == 0)
+ // If SU does not have a use, i.e. it doesn't produce a value that would
+ // be consumed (e.g. store), then it terminates a chain of computation.
+ // Give it a small SethiUllman number so it will be scheduled right before its
+ // predecessors that it doesn't lengthen their live ranges.
+ SethiUllmanNumber = INT_MIN + 10;
+ else if (SU->NumPredsLeft == 0 &&
+ (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
+ SethiUllmanNumber = 1;
+ else {
+ int Extra = 0;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+ if (I->second) continue; // ignore chain preds
+ SUnit *PredSU = I->first;
+ int PredSethiUllman = CalcNodePriority(PredSU);
+ if (PredSethiUllman > SethiUllmanNumber) {
+ SethiUllmanNumber = PredSethiUllman;
+ Extra = 0;
+ } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
+ Extra++;
+ }
+
+ SethiUllmanNumber += Extra;
+ }
+
+ return SethiUllmanNumber;
+}
+
+/// CalculatePriorities - Calculate priorities of all scheduling units.
+template<class SF>
+void BURegReductionPriorityQueue<SF>::CalculatePriorities() {
+ SethiUllmanNumbers.assign(SUnits->size(), 0);
+
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
+ CalcNodePriority(&(*SUnits)[i]);
+}
+
+static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
+ unsigned Sum = 0;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) {
+ SUnit *SuccSU = I->first;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) {
+ SUnit *PredSU = II->first;
+ if (!PredSU->isScheduled)
+ Sum++;
+ }
+ }
+
+ return Sum;
+}
+
+
+// Top down
+bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
+ unsigned LeftNum = left->NodeNum;
+ unsigned RightNum = right->NodeNum;
+ int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
+ int RPriority = SPQ->getSethiUllmanNumber(RightNum);
+ bool LIsTarget = left->Node->isTargetOpcode();
+ bool RIsTarget = right->Node->isTargetOpcode();
+ bool LIsFloater = LIsTarget && left->NumPreds == 0;
+ bool RIsFloater = RIsTarget && right->NumPreds == 0;
+ unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
+ unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
+
+ if (left->NumSuccs == 0 && right->NumSuccs != 0)
+ return false;
+ else if (left->NumSuccs != 0 && right->NumSuccs == 0)
+ return true;
+
+ // Special tie breaker: if two nodes share a operand, the one that use it
+ // as a def&use operand is preferred.
+ if (LIsTarget && RIsTarget) {
+ if (left->isTwoAddress && !right->isTwoAddress) {
+ SDNode *DUNode = left->Node->getOperand(0).Val;
+ if (DUNode->isOperand(right->Node))
+ RBonus += 2;
+ }
+ if (!left->isTwoAddress && right->isTwoAddress) {
+ SDNode *DUNode = right->Node->getOperand(0).Val;
+ if (DUNode->isOperand(left->Node))
+ LBonus += 2;
+ }
+ }
+ if (LIsFloater)
+ LBonus -= 2;
+ if (RIsFloater)
+ RBonus -= 2;
+ if (left->NumSuccs == 1)
+ LBonus += 2;
+ if (right->NumSuccs == 1)
+ RBonus += 2;
+
+ if (LPriority+LBonus < RPriority+RBonus)
+ return true;
+ else if (LPriority == RPriority)
+ if (left->Depth < right->Depth)
+ return true;
+ else if (left->Depth == right->Depth)
+ if (left->NumSuccsLeft > right->NumSuccsLeft)
+ return true;
+ else if (left->NumSuccsLeft == right->NumSuccsLeft)
+ if (left->CycleBound > right->CycleBound)
+ return true;
+ return false;
+}
+
+/// CalcNodePriority - Priority is the Sethi Ullman number.
+/// Smaller number is the higher priority.
+template<class SF>
+int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
+ int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
+ if (SethiUllmanNumber != 0)
+ return SethiUllmanNumber;
+
+ unsigned Opc = SU->Node->getOpcode();
+ if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+ SethiUllmanNumber = INT_MAX - 10;
+ else if (SU->NumSuccsLeft == 0)
+ // If SU does not have a use, i.e. it doesn't produce a value that would
+ // be consumed (e.g. store), then it terminates a chain of computation.
+ // Give it a small SethiUllman number so it will be scheduled right before its
+ // predecessors that it doesn't lengthen their live ranges.
+ SethiUllmanNumber = INT_MIN + 10;
+ else if (SU->NumPredsLeft == 0 &&
+ (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
+ SethiUllmanNumber = 1;
+ else {
+ int Extra = 0;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+ if (I->second) continue; // ignore chain preds
+ SUnit *PredSU = I->first;
+ int PredSethiUllman = CalcNodePriority(PredSU);
+ if (PredSethiUllman > SethiUllmanNumber) {
+ SethiUllmanNumber = PredSethiUllman;
+ Extra = 0;
+ } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
+ Extra++;
+ }
+
+ SethiUllmanNumber += Extra;
+ }
+
+ return SethiUllmanNumber;
+}
+
+/// CalculatePriorities - Calculate priorities of all scheduling units.
+template<class SF>
+void TDRegReductionPriorityQueue<SF>::CalculatePriorities() {
+ SethiUllmanNumbers.assign(SUnits->size(), 0);
+
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
+ CalcNodePriority(&(*SUnits)[i]);
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
+ MachineBasicBlock *BB) {
+ return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), true,
+ new BURegReductionPriorityQueue<bu_ls_rr_sort>());
+}
+
+llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAG &DAG,
+ MachineBasicBlock *BB) {
+ return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), false,
+ new TDRegReductionPriorityQueue<td_ls_rr_sort>());
+}
+